首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteinase inhibitor genes are expressed in solanaceous and leguminous plants following wounding of the foliage by mechanical methods. Previous studies have shown that a cloned proteinase inhibitor II-chloramphenicol acetyl transferase (pin2-CAT) chimeric gene is regulated in a wound-inducible manner in transgenic plants. In this study, we analyzed transgenic plant tissues for expression of the pin2-CAT gene in response to various plant hormones. We found that CAT activity was induced in tobacco (Nicotiana tabacum) callus incubated in the absence of any plant growth regulators. Addition of growth regulators to the medium thus permitted us to measure the effects of these substances on the activity of the pin2-CAT gene construction. Cytokinin (BAP) and ethylene (ethophon) even at low concentrations stimulated the expression of CAT activity by 25 to 50%. Abscisic acid at concentrations up to 4.4 × 10−5 molar had no effect upon CAT activity, but increasing auxin (naphthalene acetic acid) levels completely inhibited the synthesis of CAT protein. Gibberellic acid had little effect except at very high concentration (2.9 × 105 molar). The kinetics of activation of the pin2-CAT gene were quite long (5 to 7 days) when unwounded calli were plated on media lacking auxin. This effect was documented for calli derived from several transformed plants, containing the full, chimeric pin2-CAT (pRT45) gene. In addition, calli from tissues transformed with wild-type vectors or from several plants transformed with pRT50 (a noninducible derivative of pRT45) were not induced by plating on media lacking auxin. Other naturally occurring and synthetic auxins had similar effects to naphthalene acetic acid in inhibiting the induction of the chimeric gene fusion. Finally, leaf discs from transformed plants were induced by incubation in MS liquid medium in the presence and absence of naphthalene acetic acid. NAA was also effective in down regulating the chimeric gene in whole plant tissues.  相似文献   

2.
Bound auxin metabolism in cultured crown-gall tissues of tobacco   总被引:1,自引:1,他引:0  
Bound auxin metabolism in cultured crown-gall tumor cells and pith callus of tobacco was examined by feeding radiolabeled auxins and auxin conjugates. In all tissues fed [14C]indoleacetic acid (IAA), at least one-third of the IAA was decarboxylated, and most of the remaining radiolabel occurred in a compound(s) which did not release IAA with alkaline hydrolysis. In cells transformed by the A6 strain of Agrobacterium tumefaciens, the only detectable IAA conjugate was indole-3-acetylaspartic acid (IAAsp), whereas cells transformed by the gene 2 mutant strain A66 produced an unidentified amide conjugate but no IAAsp. By contrast, cells fed [14C]naphthaleneacetic acid (NAA) accumulated several amide and ester conjugates. The major NAA metabolite in A6-transformed cells was naphthaleneacetylaspartic acid (NAAsp), whereas the major metabolites in A66-transformed cells were NAA esters. In addition, A66-transformed cells produced an amide conjugate of NAA which was not found in A6-transformed cells and which showed chromatographic properties similar to the unknown IAA conjugate. Pith callus fed [14C] NAA differed from both tumor lines in that it preferentially accumulated amide conjugates other than NAAsp. Differences in the accumulation of IAA and NAA conjugates were attributed in part to the high capacity of tobacco cells to oxidize IAA and in part to the specificity of bound auxin hydrolases. All tissues readily metabolized IAAsp and indole-3-acetyl-myo-inositol, but hydrolyzed NAAsp very slowly. Indirect evidence is provided which suggests that ester conjugates of NAA are poorly hydrolyzed as well. Analysis of tissues fed [14C]NAA together with high concentrations of unlabeled IAA or NAA indicates that tissue-specific differences in NAA metabolism were not the result of variation in endogenous auxin levels. Our results support the view that bound auxin hydrolysis is highly specific and an important factor controlling bound auxin accumulation.  相似文献   

3.
Macromolecules may transfer between the cytoplasm and the nucleus only through specific gates—the nuclear pore complexes (NPCs). Translocation of nucleic acids and large proteins requires the presence of a nuclear localization signal (NLS) within the transported molecule. This NLS is recognized by a class of soluble transport receptors termed karyopherins α and β. We previously characterized the expression pattern of the tomato karyopherin α1 (LeKAPα1) promoter in transformed tobacco plants. Expression of LeKAPα1 was mainly observed in growing tissues where cell division and extension is rapid. The expression pattern of LeKAPα1 resembled that of auxin-responsive genes. This led us to suggest that auxin participates in the regulation of LeKAPα1 expression. Here we characterized the correlation between auxin level and the activity of the LeKAPα1 promoter. To this end, transgenic tobacco plants carrying the GUS reporter gene under the control of the LeKAPα1 promoter were treated with various levels of exogenous auxin. We also studied transgenic plants in which we increased the endogenous levels of auxin. For this, we expressed in plants both the LeKAPα1 promoter-GUS reporter and the Agrobacterium tumefaciens iaaM gene, which increases the endogenous levels of auxin. The results indicate that the auxin indole-3-acetic acid (IAA) can induce LeKAPα1 expression. We also identified that the sites and levels of LeKAPα1 expression correlated with the endogenous pathways of polar auxin transport.Key words: auxin, karyopherin α1, nuclear pore complex, TYLCV, plant virus  相似文献   

4.
Jones SE  Demeo JS  Davies NW  Noonan SE  Ross JJ 《Planta》2005,222(3):530-534
The pin1-1 mutant of Arabidopsis thaliana has been pivotal for studies on auxin transport and on the role of auxin in plant development. It was reported previously that when whole shoots were analysed, levels of the major auxin, indole-3-acetic acid (IAA) were dramatically reduced in the mutant, compared with the WT (Okada et al. 1991). The cloning of PIN1, however, provided evidence that this gene encodes a facilitator of auxin efflux, raising the question of how the pin1-1 mutation might reduce overall IAA levels as well as IAA transport. We therefore re-examined IAA levels in individual parts of pin1-1 and WT plants, focusing on inflorescence stems. Our data show that there is in fact no systemic IAA deficiency in the mutant. The previously reported difference between mutant and WT may have been due to the inclusion of reproductive structures in the WT harvest: we show here that the inflorescence itself contains high levels of IAA. We reconcile the normal IAA levels of pin1-1 inflorescence stems with their (previously-reported) reduced ability to transport IAA by presenting evidence that the auxin in mutant stems is not imported from their apical portion. Our data also indicate that levels of another auxin, indole-3-butyric acid (IBA), are very low in stems of the genotypes used in this study.  相似文献   

5.
The indoleacetic-acid-lysine synthetase (iaaL) gene from Pseudomonas syringae subsp. savastanoi was fused to tobacco tapetum-specific expression promoter TA29, and introduced into tobacco. The expression pattern of this chimeric gene was studied, and the endogenous indoleacetic acid (IAA) levels in different organs were assayed. The results demonstrated that TA29 promoter was only able to direct the specific expression of iaaL gene in transgenic tobacco anther, and resulted in the decrease of endogenous IAA levels in transgenic tobacco anther. No significant phe-notype variation was observed among the transgenic plants at the whole plant level. However, the percentage of pollen embryogenesis was reduced to 11 % when anthers of the transgenic plants were cultured on the modified hormone-free Nistch H (NH) medium, while those of both CK1 and CK2 (see sec. 1.2.2) were more than 50% ; when the an-thers were cultured on NH medium supplemented with 0. 2 mg/L IAA, the percentage of pollen embryogenesis re-stor  相似文献   

6.
The rolB gene of the plant pathogen Agrobacterium rhizogenes has an important role in the establishment of hairy root disease in infected plant tissues. When expressed as a single gene in transgenic plants the RolB protein gives rise to effects indicative of increased auxin activity. It has been reported that the RolB product is a β-glucosidase and proposed that the physiological and developmental alterations in transgenic plants expressing the rolB gene are the result of this enzyme hydrolysing bound auxins, in particular (indole-3-acetyl)-β-D-glucoside (IAGluc), and thereby bringing about an increase in the intracellular concentration of indole-3-acetic acid (IAA). Using tobacco plants as a test system, this proposal has been investigated in detail. Comparisons have been made between the RolB phenotype and that of IaaM/iaaH transformed plants overproducing IAA. In addition, the levels of IAA and IAA amide and IAA ester conjugates were determined in wild-type and transgenic 35S-rolB tobacco plants and metabolic studies were carried out with [13C6]IAA [2′-14C]IAA, [14C]IAGluc, [5-3H]-2-o-(indole-3-acetyl)-myo-inositol and [14C]indole-3-acetylaspartic acid. The data obtained demonstrate that expression of the rolB encoded protein in transgenic tobacco does not produce a phenotype that resembles that of IAA over producing plants, does not alter the size of the free IAA pool, has no significant effect on the rate of IAA metabolism, and, by implication, appears not to influence the overall rate of IAA biosynthesis. Furthermore, the in vivo hydrolysis of IAGluc, and that of the other IAA conjugates that were tested, is not affected. On the basis of these findings, it is concluded that the RolB phenotype is not the consequence of an increase in the size of the free IAA pool mediated by an enhanced rate of hydrolysis of IAA conjugates.  相似文献   

7.
The indoleacetic acid-lysine synthetase (iaaL) gene of Pseudornonas syringae subsp. savastanoi was fused to a rice Rchl0 promoter and introduced into tobacco plants. The expression pattern of this chimeric Rchl0-iaaL gene in the transgenic plants was studied, and the endogenous levels of indoleacetic acid (IAA) were assayed with the high-performance liquid chromatography (HPLC) method. The results showed that the Rchl0 promoter could direct the high level expression of the iaaL gene in young inflorescences, fully bloomed flowers, and immature fruits, resulted in a decrease of the IAA levels by 32%–82%. The transgenic plants displayed decreased apical dominance, enlongated stamens, abnormal inflorescences and fruits. The transgenie plant pYL614-T14, in which the endogenous IAA levels in inflorescences were reduced by 82 %, displayed extremely abnormal inflorescence with only two flowers and a much higher potential of vegetative growth than that of the controls after flowering. These Rchl 0-iaaL gene transgenic tobacco plants would pro- vide valuable materials for further studies of physiological functions of IAA in reproductive development.  相似文献   

8.
The effect of phototropic stimulation of Zea coleoptile tips on the distribution of both endogenous indoleacetic acid (IAA) and applied C14-labeled IAA was determined. The tips rested on bisected agar blocks. More IAA was found in the blocks under the shaded side of the coleoptile tips than those under the irradiated side. However, no significant difference was observed between the total amounts of IAA, endogenous or labeled, in the irradiated and shaded sides of the experimental system. In addition, less endogenous auxin was found in the shaded tissues than in their irradiated counterparts. It is suggested that phototropism following unilateral irradiation with first positive radiant densities might be a consequence of lateral inequalities in the ability of the irradiated and shaded tissues to transport auxin basipetally.  相似文献   

9.
10.
Although salt stress mainly disturbs plant root growth by affecting the biosynthesis and signaling of phytohormones, such as gibberellin (GA) and auxin, the exact mechanisms of the crosstalk between these two hormones remain to be clarified. Indole-3-acetic acid (IAA) is a biologically active auxin molecule. In this study, we investigated the role of Arabidopsis GA20-oxidase 2 (GA20ox2), a final rate-limiting enzyme of active GA biosynthesis, in IAA-directed root growth under NaCl stress. Under the NaCl treatment, seedlings of a loss-of-function ga20ox2-1 mutant exhibited primary root and root hair elongation, altered GA4 accumulation, and decreased root Na+ contents compared with the wild-type, transgenic GA20ox2-complementing, and GA20ox2-overexpression plant lines. Concurrently, ga20ox2-1 alleviated the tissue-specific inhibition of NaCl on IAA generation by YUCCAs, IAA transport by PIN1 and PIN2, and IAA accumulation in roots, thereby explaining how NaCl increased GA20ox2 expression in shoots but disrupted primary root and root hair growth in wild-type seedlings. In addition, a loss-of-function pin2 mutant impeded GA20ox2 expression, indicating that GA20ox2 function requires PIN2 activity. Thus, the activation of GA20ox2 retards IAA-directed primary root and root hair growth in response to NaCl stress.  相似文献   

11.
To visualize phytohormone localization in plant tissues, transgenic plants comprising the GUS reporter gene are often used. However, until now only qualitative assessment of the hormone presence was available. In this work, we suggested the method for IAA quantification in transgenic DR5::GUS Arabidopsis thaliana L. plants by the analysis of digital images. An empirical quadratic dependence was established between the IAA concentration in medium and the level of GUS-dependent staining. Using this method, we demonstrated that, after A. thaliana root gravistimulation for 90 min, auxin lateral redistribution occurred. It resulted in the increase in the IAA concentration in the lower root part (in the elongation zone and apical meristem) by 200% on the average.  相似文献   

12.
Optimization of plant architecture is important for cultivation and yield of cereal crops in the field. Tillering is an essential factor used to determine the overall architecture of cereal crops. It has long been recognized that the development of branching patterns is controlled by the level and distribution of auxin within a plant. To better understand the relationship between auxin levels and tillering in rice, we examined rice plants with increased or decreased levels of free IAA. To decrease IAA levels, we selected the rice IAA-glucose synthase gene (OsIAGLU) from the rice genome database based on high sequence homology with IAA-glucose synthase from maize (ZmIAGLU), which is known to generate IAAglucose conjugate from free IAA. The OsIAGLU gene driven by the Cauliflower Mosaic Virus 35S promoter was transformed into a rice cultivar to generate transgenic rice plants constitutively over-expressing this gene. The number of tillers and panicles significantly increased in the transgenic lines compared to the wild-type plants, while plant height and panicle length decreased. These results indicate that decreased levels of free IAA likely enhance tiller formation in rice. To increase levels of free IAA, we treated rice plants with three different concentrations of exogenous IAA (1 μM, 10 μM and 100 μM) twice a week by spraying. Exogenous IAA treatment at concentrations of 10 μM and 100 μM significantly reduced tiller number in three different rice cultivars. These results indicate that exogenously applied IAA inhibits shoot branching in rice. Overall, auxin tightly controls tiller formation in rice in a negative way.  相似文献   

13.
14.
The contents of free indole-3-acetic acid (IAA) and alkali-labile, conjugated IAA were measured in relation to a `floral gradient' present in epidermis and subepidermis tissues of flowering plants of Nicotiana tabacum by capillary gas-chromatographic spectrometric analysis by selected ion monitoring (GC-SIM-MS) using 2,4,5,6,7-penta deutero IA (2H5-IAA) as an internal standard. In floral axes, floral branches and stems with floral branches, free IAA levels (dry weight) were 387, 253, and 417 nanograms, and bound IAA levels were 99, 1089, and 268 nanograms. In vegetative tissue of the first plus second internodes (measured from top), and of the 11th to 13th internodes, free IAA levels were 826 and 500 nanograms, and bound IAA levels were 1421 and 286 nanograms, respectively. Since flower-forming ability of excised cells from the epidermis and subepidermis shows a gradient in an in vitro system, but levels of IAA in these tissues do not, there thus appears to be no correlation between flower-forming ability (in vitro) and endogenous IAA levels (at the time of excision) in tobacco stem tissues.  相似文献   

15.
16.
17.
Auxin is a key plant growth regulator that also impacts plant–pathogen interactions. Several lines of evidence suggest that the bacterial plant pathogen Pseudomonas syringae manipulates auxin physiology in Arabidopsis thaliana to promote pathogenesis. Pseudomonas syringae strategies to alter host auxin biology include synthesis of the auxin indole‐3‐acetic acid (IAA) and production of virulence factors that alter auxin responses in host cells. The application of exogenous auxin enhances disease caused by P. syringae strain DC3000. This is hypothesized to result from antagonism between auxin and salicylic acid (SA), a major regulator of plant defenses, but this hypothesis has not been tested in the context of infected plants. We further investigated the role of auxin during pathogenesis by examining the interaction of auxin and SA in the context of infection in plants with elevated endogenous levels of auxin. We demonstrated that elevated IAA biosynthesis in transgenic plants overexpressing the YUCCA 1 (YUC1) auxin biosynthesis gene led to enhanced susceptibility to DC3000. Elevated IAA levels did not interfere significantly with host defenses, as effector‐triggered immunity was active in YUC1‐overexpressing plants, and we observed only minor effects on SA levels and SA‐mediated responses. Furthermore, a plant line carrying both the YUC1‐overexpression transgene and the salicylic acid induction deficient 2 (sid2) mutation, which impairs SA synthesis, exhibited additive effects of enhanced susceptibility from both elevated auxin levels and impaired SA‐mediated defenses. Thus, in IAA overproducing plants, the promotion of pathogen growth occurs independently of suppression of SA‐mediated defenses.  相似文献   

18.
Indole-3-butyric acid (IBA) was recently identified by GC/MS analysis as an endogenous constituent of various plants. Plant tissues contained 9 ng g?1 fresh weight of free IBA and 37 ng g?1 fresh weight of total IBA, compared to 26 ng g?1 and 52 ng g?1 fresh weight of free and total indole-3-acetic acid (IAA), respectively. IBA level was found to increase during plant development, but never reached the level of IAA. It is generally assumed that the greater ability of IBA as compared with IAA to promote rooting is due to its relatively higher stability. Indeed, the concentrations of IAA and IBA in autoclaved medium were reduced by 40% and 20%, respectively, compared with filter sterilized controls. In liquid medium, IAA was more sensitive than IBA to non-biological degradation. However, in all plant tissues tested, both auxins were found to be metabolized rapidly and conjugated at the same rate with amino acids or sugar. Studies of auxin transport showed that IAA was transported faster than IBA. The velocities of some of the auxins tested were 7. 5 mm h?1 for IAA, 6. 7 mm h?1 for naphthaleneacetic acid (NAA) and only 3. 2 mm h?1 for IBA. Like IAA, IBA was transported predominantly in a basipetal direction (polar transport). After application of 3H-IBA to cuttings of various plants, most of the label remained in the bases of the cuttings. Easy-to-root cultivars were found to absorb more of the auxin and transport more of it to the leaves. It has been postulated that easy-to-root, as opposed to the difficult-to-root cultivars, have the ability to hydrolyze auxin conjugates at the appropriate time to release free auxin which may promote root initiation. This theory is supported by reports on increased levels of free auxin in the bases of cuttings prior to rooting. The auxin conjugate probably acts as a ‘slow-release’ hormone in the tissues. Easy-to-root cultivars were also able to convert IBA to IAA which accumulated in the cutting bases prior to rooting. IAA conjugates, but not IBA conjugates, were subject to oxidation, and thus deactivation. The efficiency of the two auxins in root induction therefore seems to depend on the stability of their conjugates. The higher rooting promotion of IBA was also ascribed to the fact that its level remained elevated longer than that of IAA, even though IBA was metabolized in the tissue. IAA was converted to IBA by seedlings of corn and Arabidopsis. The Km value for IBA formation was low (approximately 20 μM), indicating high affinity for the substrate. That means that small amounts of IAA (only a fraction of the total IAA in the plant tissues) can be converted to IBA. It was suggested that IBA is formed by the acetylation of IAA with acetyl-CoA in the carboxyl position via a biosynthetic pathway analogous to the primary steps of fatty acid biosynthesis, where acetyl moieties are transferred to an acceptor molecule. Incubation of the soluble enzyme fraction from Arabidopsis with 3H-IBA, IBA and UDP-glucose resulted in a product that was identified tentatively as IBA glucose (IBGIc). IBGIc was detected only during the first 30 min of incubation, showing that it might be converted rapidly to another conjugate.  相似文献   

19.
An alternative to the Cholodny-Went, auxin-transport hypothesis of gravitropic stem bending was proposed as early as 1958, suggesting that gravistimulation induces changes in sensitivity to auxin, accounting for differential growth and bending. To test the sensitivity hypothesis, we immersed marked, decapitated sunflower (Helianthus annuus L.) hypocotyl sections in buffered auxin solutions over a wide concentration range (0, 10−8 to 10−2 molar IAA), photographed them at half-hour intervals, analyzed the negatives with a digitizer/computer, and evaluated surface-length changes in terms of Michaelis-Menten enzyme kinetics. Bending decreases with increasing auxin concentration; above about 10−4 molar IAA the hypocotyls bend down; increasing auxin inhibits elongation growth of lower surfaces (which is high at zero or relatively low auxin levels) but promotes upper-surface growth (which is low at low auxin levels). Thus, lower surfaces have a greater Km sensitivity to applied auxin than upper surfaces. At optimum auxin levels (maximum growth), growth of bottom surfaces exceeds that of top surfaces, so bottom tissues have a greater Vmax sensitivity. Vmax sensitivity of vertical controls is slightly lower than it is for either horizontal surface; Km sensitivity is intermediate. Clearly, gravistimulation leads to significant changes in tissue sensitivity to applied auxin. Perhaps these changes are also important in normal gravitropism.  相似文献   

20.
Campell BR  Town CD 《Plant physiology》1991,97(3):1166-1173
γ-Radiation-induced tumors of Arabidopsis thaliana L. have been produced as a novel approach to isolation of genes that regulate plant development. Tumors excised from irradiated plants are hormone autonomous in culture and have been maintained on hormone-free medium for up to 4 years. Five tumor tissue lines having different morphologies and growth rates were analyzed for auxin, cytokinin, and 1-aminocyclopropane-1-carboxylic acid (ACC) content, ethylene production, and response to exogenous growth regulators. Normal tissues and two crown gall tissue lines were analyzed for comparison. Rosettes and whole seedlings each contained approximately 30 nanograms· (gram fresh weight)−1 free indoleacetic acid (IAA), 150 nanograms· (gram fresh weight)−1 ester-conjugated IAA, and 10 to 20 micrograms· (gram fresh weight)−1 amide-conjugated IAA. The crown gall lines contained similar amounts of free and ester-conjugated IAA but less amide conjugates. Whereas three of the radiation-induced tumor lines had IAA profiles similar to normal tissues, one line had 10- to 100-fold more free IAA and three- to 10-fold less amide-conjugated IAA. The fifth line had normal free IAA levels but more conjugated IAA than control tissues. Whole seedlings contained approximately 2 nanograms· (gram fresh weight)−1 of both zeatin riboside and isopentenyladenosine. The crown gall lines had 100- to 1000-fold higher levels of each cytokinin. In contrast, the three radiation-induced tumor lines analyzed contained cytokinin levels similar to the control tissue. The radiation-induced tumor tissues produced very little ethylene, although each contained relatively high levels of ACC. Normal callus contained similar amounts of ACC but produced several times more ethylene than the radiation-induced tumor lines. Each of the radiation-induced tumor tissues displayed a unique set of responses to exogenously supplied growth regulators. Only one tumor line showed the same response as normal callus to both auxin and cytokinin feeding. In some cases, one or more tumor lines showed increased sensitivity to certain growth substances. In other cases, growth regulator feeding had no significant effect on tumor tissue growth. Morphology of the radiation-induced tumor tissues generally did not correlate with auxin to cytokinin ratio in the expected manner. The results suggest that a different primary genetic event led to the formation of each tumor and that growth and differentiation in the tumor tissue lines are uncoupled from the normal hormonal controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号