首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prolyl 4-hydroxylase, a key enzyme in collagen biosynthesis, catalyzes the conversion of selected prolyl residues to trans-hydroxyproline in nascent or completed pro-alpha chains of procollagen. The enzyme is a tetramer composed of two nonidentical subunits, designated alpha and beta. To compare the enzyme and its subunits from different sources, the chick embryo and human placental prolyl 4-hydroxylases were purified to homogeneity and their physicochemical and immunological properties were determined. Both enzymes were glycoproteins with estimated apparent molecular weights ranging between 400 and 600 kDa. Amino acid and carbohydrate analyses showed slight differences between the two holomeric enzymes, consistent with their deduced amino acid sequences from their respective cDNAs. Human placental prolyl 4-hydroxylase contained more tightly bound iron than the chick embryo enzyme. Immunodiffusion of the human placental enzyme with antibodies raised against the purified chick embryo prolyl 4-hydroxylase demonstrated partial identity, indicating different antigenic determinants in their tertiary structures. The enzymes could be separated by high-resolution capillary electrophoresis, indicating differential charge densities for the native chick embryo and human placental proteins. Electrophoretic studies revealed that the human prolyl 4-hydroxylase is a tetrameric enzyme containing two nonidentical subunits of about 64 and 62 kDa, in a ratio of approximately 1 to 2, designated alpha and beta, respectively. In contrast, the chick embryo alpha and beta subunit ratio was 1 to 1. Notably, the human alpha subunit was partially degraded when subjected to electrophoresis under denaturing conditions. Analogously, when the chick embryo enzyme was subjected to limited proteolysis, selective degradation of the alpha subunit was observed. Finally, only the alpha subunit was bound to Concanavalin A demonstrating that the alpha subunits of prolyl 4-hydroxylase in both species were glycosylated. Using biochemical techniques, these results demonstrated that the 4-trans-hydroxy-L-proline residues in human placental collagens are synthesized by an enzyme whose primary structure and immunological properties differ from those of the previously well-characterized chick embryo enzyme, consistent with their recently deduced primary structures from cDNA sequences.  相似文献   

2.
A single polypeptide is shown to act both as the beta subunit of the proline hydroxylase (EC 1.14.11.2) and as a protein disulfide-isomerase (EC 5.3.4.1). When isolated from chick embryos or rat liver, the beta subunit of prolyl 4-hydroxylase and the enzyme protein disulfide-isomerase have identical molecular weights and peptide maps as produced by digestion with Staphylococcus aureus V8 protease. The apparent molecular weights of both proteins isolated from human placental tissue are slightly higher, and the human beta subunit and one of its peptides have molecular weights about Mr 500 higher than the protein disulfide-isomerase and its corresponding peptide. Experiments with polyclonal and monoclonal antibodies also suggest a structural identity between the two proteins. The beta subunit isolated from the prolyl 4-hydroxylase tetramer has protein disulfide-isomerase activity similar to protein disulfide-isomerase itself, and even the beta subunit when present in the prolyl 4-hydroxylase tetramer has one-half of this activity.  相似文献   

3.
The collagen prolyl hydroxylases are enzymes that are required for proper collagen biosynthesis, folding, and assembly. They reside within the endoplasmic reticulum and belong to the group of 2-oxoglutarate and iron-dependent dioxygenases. Although prolyl 4-hydroxylase has been characterized as an alpha2beta2 tetramer in which protein disulfide isomerase is the beta subunit with two different alpha subunit isoforms, little is known about the enzyme prolyl 3-hydroxylase (P3H). It was initially characterized and shown to have an enzymatic activity distinct from that of prolyl 4-hydroxylase, but no amino acid sequences or genes were ever reported for the mammalian enzyme. Here we report the characterization of a novel prolyl 3-hydroxylase enzyme isolated from embryonic chicks. The primary structure of the enzyme, which we now call P3H1, demonstrates that P3H1 is a member of a family of prolyl 3-hydroxylases, which share the conserved residues present in the active site of prolyl 4-hydroxylase and lysyl hydroxylase. P3H1 is the chick homologue of mammalian leprecan or growth suppressor 1. Two other P3H family members are the genes previously called MLAT4 and GRCB. In this study we demonstrate prolyl 3-hydroxylase activity of the purified enzyme P3H1 on a full-length procollagen substrate. We also show it to specifically interact with denatured collagen and to exist in a tight complex with other endoplasmic reticulum-resident proteins. Immunohistochemistry with a monoclonal antibody specific for chick P3H1 localizes P3H1 specifically to tissues that express fibrillar collagens, suggesting that other P3H family members may be responsible for modifying basement membrane collagens.  相似文献   

4.
Monoclonal antibodies to human (8 clones) and rat (12 clones) prolyl 4-hydroxylase [EC 1.14.11.2] were prepared and characterized as regards subclass, subunit specificity, inhibition and crossreactivity. Among the antibodies to the human enzyme, four clones showed the IgG1 subclass, two IgA, one IgG2b, and one IgM. Four clones reacted with the alpha subunit of the enzyme, while the others reacted with the beta subunit. The enzymatic activity was inhibited by four clones. Five clones crossreacted with the rat enzyme. One clone inhibited the rat enzyme. Among the antibodies to the rat enzyme, seven clones showed the IgG1 subclass, four IgG2a and one IgG2b. Seven clones reacted with the alpha subunit, and four with the beta subunit. One reacted with neither subunit. The enzymatic activity was inhibited by seven clones. Seven clones crossreacted with the human enzyme. Three clones inhibited the human enzyme.  相似文献   

5.
Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the formation of 4-hydroxyproline in collagens by the hydroxylation of proline residues in X-Pro-Gly sequences. The reaction requires Fe2+, 2-oxoglutarate, O2, and ascorbate and involves an oxidative decarboxylation of 2-oxoglutarate. Ascorbate is not consumed during most catalytic cycles, but the enzyme also catalyzes decarboxylation of 2-oxoglutarate without subsequent hydroxylation, and ascorbate is required as a specific alternative oxygen acceptor in such uncoupled reaction cycles. A number of compounds inhibit prolyl 4-hydroxylase competitively with respect to some of its cosubstrates or the peptide substrate, and recently many suicide inactivators have also been described. Such inhibitors and inactivators are of considerable interest, because the prolyl 4-hydroxylase reaction would seem a particularly suitable target for chemical regulation of the excessive collagen formation found in patients with various fibrotic diseases. The active prolyl 4-hydroxylase is an alpha 2 beta 2 tetramer, consisting of two different types of inactive monomer and probably containing two catalytic sites per tetramer. The large catalytic site may be cooperatively built up of both the alpha and beta subunits, but the alpha subunit appears to contribute the major part. The beta subunit has been found to be identical to the enzyme protein disulfide isomerase and a major cellular thyroid hormone-binding protein and shows partial homology with a phosphoinositide-specific phospholipase C, thioredoxins, and the estrogen-binding domain of the estrogen receptor. The COOH-terminus of this beta subunit has the amino acid sequence Lys-Asp-Glu-Leu, which was recently suggested to be necessary for the retention of a polypeptide within the lumen of the endoplasmic reticulum. The alpha subunit does not have this COOH-terminal sequence, and thus one function of the beta subunit in the prolyl 4-hydroxylase tetramer appears to be to retain the enzyme within this cell organelle.  相似文献   

6.
Prolyl 4-hydroxylase, the key enzyme of collagen synthesis, is an alpha2beta2 tetramer, the beta subunit of which is protein disulfide isomerase (PDI). Coexpression of the human alpha subunit and PDI in Pichia produced trace amounts of an active tetramer. A much higher, although still low, assembly level was obtained using a Saccharomyces pre-pro sequence in PDI. Coexpression with human type III procollagen unexpectedly increased the assembly level 10-fold, with no increase in the total amounts of the subunits. The recombinant enzyme was active not only in Pichia extracts but also inside the yeast cell, indicating that Pichia must have a system for transporting all the cosubstrates needed by the enzyme into the lumen of the endoplasmic reticulum. The 4-hydroxyproline-containing procollagen polypeptide chains were of full length and formed molecules with stable triple helices even though Pichia probably has no Hsp47-like protein. The data indicate that collagen synthesis in Pichia, and probably also in other cells, involves a highly unusual control mechanism, in that production of a stable prolyl 4-hydroxylase requires collagen expression while assembly of a stable collagen requires enzyme expression. This Pichia system seems ideal for the high-level production of various recombinant collagens for numerous scientific and medical purposes.  相似文献   

7.
Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the hydroxylation of -X-Pro-Gly- sequences and plays a central role in the synthesis of all collagens. The [alpha(I)]2beta2 type I enzyme is effectively inhibited by poly(L-proline), whereas the [alpha(II)]2beta2 type II enzyme is not. We report here that the poly(L-proline) and (Pro-Pro-Gly)10 peptide substrate-binding domain of prolyl 4-hydroxylase is distinct from the catalytic domain and consists of approximately 100 amino acids. Peptides of 10-19 kDa beginning around residue 140 in the 517 residue alpha(I) subunit remained bound to poly(L-proline) agarose after limited proteolysis of the human type I enzyme tetramer. A recombinant polypeptide corresponding to the alpha(I) subunit residues 138-244 and expressed in Escherichia coli was soluble, became effectively bound to poly(L-proline) agarose and could be eluted with (Pro-Pro-Gly)10. This polypeptide is distinct from the SH3 and WW domains, and from profilin, and thus represents a new type of proline-rich peptide-binding module. Studies with enzyme tetramers containing mutated alpha subunits demonstrated that the presence of a glutamate and a glutamine in the alpha(II) subunit in the positions corresponding to Ile182 and Tyr233 in the alpha(I) subunit explains most of the lack of poly(L-proline) binding of the type II prolyl 4-hydroxylase. Keywords: collagen/dioxygenases/peptide-binding domain/ proline-rich/prolyl hydroxylase  相似文献   

8.
Prolyl 4-hydroxylase catalyzes the formation of 4-hydroxyproline in collagens. The vertebrate enzymes are alpha2beta2 tetramers, whereas the Caenorhabditis elegans enzyme is an alphabeta dimer, the beta subunit being identical to protein-disulfide isomerase (PDI). We report here that the processed Drosophila melanogaster alpha subunit is 516 amino acid residues in length and shows 34 and 35% sequence identities to the two types of human alpha subunit and 31% identity to the C. elegans alpha subunit. Its coexpression in insect cells with the Drosophila PDI polypeptide produced an active enzyme tetramer, and small amounts of a hybrid tetramer were also obtained upon coexpression with human PDI. Four of the five recently identified critical residues at the catalytic site were conserved, but a histidine that probably helps the binding of 2-oxoglutarate to the Fe2+ and its decarboxylation was replaced by arginine 490. The enzyme had a higher Km for 2-oxoglutarate, a lower reaction velocity, and a higher percentage of uncoupled decarboxylation than the human enzymes. The mutation R490H reduced the percentage of uncoupled decarboxylation, whereas R490S increased the Km for 2-oxoglutarate, reduced the reaction velocity, and increased the percentage of uncoupled decarboxylation. The recently identified peptide-binding domain showed a relatively low identity to those from other species, and the Km of the Drosophila enzyme for (Pro-Pro-Gly)10 was higher than that of any other animal prolyl 4-hydroxylase studied. A 1. 9-kilobase mRNA coding for this alpha subunit was present in Drosophila larvae.  相似文献   

9.
Protein disulfide isomerase (PDI) is a modular polypeptide consisting of four domains, a, b, b', and a', plus an acidic C-terminal extension, c. PDI carries out multiple functions, acting as the beta subunit in the animal prolyl 4-hydroxylases and in the microsomal triglyceride transfer protein and independently acting as a protein folding catalyst. We report here that the minimum sequence requirement for the assembly of an active prolyl 4-hydroxylase alpha(2)beta(2) tetramer in insect cell coexpression experiments is fulfilled by the PDI domain construct b'a' but that the sequential addition of the b and a domains greatly increases the level of enzyme activity obtained. In the assembly of active prolyl 4-hydroxylase tetramers, the a and b domains of PDI, but not b' and a', can in part be substituted by the corresponding domains of ERp57, a PDI isoform that functions naturally in association with the lectins calnexin and calreticulin. The a' domain of PDI could not be substituted by the PDI a domain, suggesting that both b' and a' domains contain regions critical for prolyl 4-hydroxylase assembly. All PDI domain constructs and PDI/ERp57 hybrids that contain the b' domain can bind the 14-amino acid peptide Delta-somatostatin, as measured by cross-linking; however, binding of the misfolded protein "scrambled" RNase required the addition of domains ab or a' of PDI. The human prolyl 4-hydroxylase alpha subunit has at least two isoforms, alpha(I) and alpha(II), which form with the PDI polypeptide the (alpha(I))(2)beta(2) and (alpha(II))(2)beta(2) tetramers. We report here that all the PDI domain constructs and PDI/ERp57 hybrid polypeptides tested were more effectively associated with the alpha(II) subunit than the alpha(I) subunit.  相似文献   

10.
Mouse F9 teratocarcinoma stem cells differentiate in monolayer cultures in the presence of retinoic acid, dibutyryl cAMP, and isobutyl methylxanthine. This differentiation is associated with a marked increase in the synthesis rates and mRNA concentrations of basement membrane proteins such as type IV collagen. We report here that the differentiation also involves an increase of up to 50-fold in the concentrations of the mRNAs for the alpha and beta subunits of prolyl 4-hydroxylase, the enzyme required for the cotranslational and post-translational hydroxylation of proline residues in collagens. The time courses and magnitudes of increases in these two mRNA concentrations were similar to those observed in the same experiments for the mRNA of the alpha chain of type IV collagen. In the differentiated F9 cells the concentration of the alpha subunit mRNA was about 30% of the beta subunit mRNA concentration. Northern blot analyses indicated that the sizes of the alpha and beta subunit mRNAs in the differentiated mouse F9 cells are similar to those in human skin fibroblasts. The F9 cell differentiation system appears to provide a useful model for studies on the regulation of prolyl 4-hydroxylase synthesis.  相似文献   

11.
A radioimmunoassay is reported for measuring prolyl hydroxylase. The assay is based on the displacement of radioactively-labelled prolyl hydroxylase from its antibody by the non-labelled enzyme, and on the subsequent precipitation of the enzyme-antibody complex by a cellulose-bound second antibody. Pure prolyl hydroxylase was isolated from foetal human or chick embryo tissues by an affinity column procedure usingpoly(L-proline). The enzyme was labelled with tritium using a technique of reductive alkylation with formaldehyde and sodium [3H]borohydride. No conversion of the enzyme tetramer to its monomers was found to take place during the tritiation reaction. Experiments on the dissociation of the non-labelled enzyme indicated that the degree of displacement of the labelled enzyme was similar regardless of whether the non-labelled enzyme was in the tetramer form or in that of the subunit monomers. The sensitivity of the radioimmunoassay is of the order of 5 -- 10 ng immunoreactive prolyl hydroxylase. The concentrations of the immunoreactive prolyl hydroxylase assayed with the present method in human serum and skin and in several chick embryo tissues are reported.  相似文献   

12.
J Koivu  R Myllyl? 《Biochemistry》1986,25(20):5982-5986
Protein disulfide-isomerase was isolated as a homogeneous protein from 15-day-old chick embryos. The enzyme has a molecular weight of 56,000 in SDS-polyacrylamide gel electrophoresis. Its Km value for randomly cross-linked ribonuclease, a protein used as a substrate for the enzyme, was 0.3 microM, and the Km value for DTT was 1.0 microM. Its optimum pH was 7.5 and its optimum temperature, 33 degrees C. The maximal velocity of pure protein disulfide-isomerase from chick embryos under optimal conditions was about 29,000 units/g. Protein disulfide-isomerase was able to activate purified prolyl 4-hydroxylase 2- to 3-fold, the activation being higher for enzyme stored for a longer time. This activation is probably due to the repairing of disulfide exchanges occurring in the prolyl 4-hydroxylase structure during purification and storage. Prolyl 4-hydroxylase activity was very stable in microsomes, however, and protein disulfide-isomerase was unable to increase the microsomal prolyl 4-hydroxylase activity, suggesting that prolyl 4-hydroxylase retains its native conformation in microsomes. Protein disulfide-isomerase was able to reactivate prolyl 4-hydroxylase inactivated by mild H2O2 treatment. The activity obtained after this treatment and protein disulfide-isomerase incubation corresponded to the amount of prolyl 4-hydroxylase tetramer found after H2O2 treatment. The data suggest that protein disulfide-isomerase is able to activate only the tetramer part of the enzyme preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
B Bossy  L F Reichardt 《Biochemistry》1990,29(44):10191-10198
We have cloned and characterized a chick homologue of the human vitronectin receptor alpha subunit (alpha v) whose primary sequence is 83% identical with its human counterpart but less than 40% identical with any other known integrin alpha subunit. Comparison of the chick and human sequences reveals several highly conserved regions, including the cytoplasmic domain. The putative ligand binding domain contains alpha v-specific residues that may contribute to ligand binding specificity. These are concentrated in three regions that are located before and between the first three Ca2+ binding domains. Polyclonal antibodies raised against two peptides deduced from the putative cytoplasmic and extracellular domains of the chick alpha v sequence recognize specifically integrin heterodimers in chick embryo fibroblasts. At least three putative beta subunits coimmunoprecipitate with the chick alpha v subunit. In addition to a protein with the same molecular weight as beta 3 (94K), protein bands of Mr 84K and 110K are also coprecipitated. By successive immunodepletions, we demonstrate that this latter Mr 110K subunit is beta 1, which appears to be one of the alpha v-associated subunits in chick embryo fibroblasts.  相似文献   

14.
Production of human prolyl 4-hydroxylase in Escherichia coli   总被引:1,自引:0,他引:1  
Prolyl 4-hydroxylase (P4H) catalyzes the post-translational hydroxylation of proline residues in collagen strands. The enzyme is an alpha2beta2 tetramer in which the alpha subunits contain the catalytic active sites and the beta subunits (protein disulfide isomerase) maintain the alpha subunits in a soluble and active conformation. Heterologous production of the native alpha2beta2 tetramer is challenging and had not been reported previously in a prokaryotic system. Here, we describe the production of active human P4H tetramer in Escherichia coli from a single bicistronic vector. P4H production requires the relatively oxidizing cytosol of Origami B(DE3) cells. Induction of the wild-type alpha(I) cDNA in these cells leads to the production of a truncated alpha subunit (residues 235-534), which assembles with the beta subunit. This truncated P4H is an active enzyme, but has a high Km value for long substrates. Replacing the Met235 codon with one for leucine removes an alternative start codon and enables production of full-length alpha subunit and assembly of the native alpha2beta2 tetramer in E. coli cells to yield 2 mg of purified P4H per liter of culture (0.2 mg/g of cell paste). We also report a direct, automated assay of proline hydroxylation using high-performance liquid chromatography. We anticipate that these advances will facilitate structure-function analyses of P4H.  相似文献   

15.
Prolyl 3-hydroxylase activity and the extent of collagen proline 3-hydroxylation were studied in six transformed and three control human cell lines. In the transformed cell lines, the enzyme activity was markedly high in two, similar to that in control cells in two and significantly low in two. The extent of proline 3-hydroxylation was markedly high in cell lines with high enzyme activity, but it was also significantly high in some transformed cell lines with enzyme activities similar to those in the controls. The results thus suggest that, in addition to the amount of enzyme activity present, the rate of collagen synthesis also affects the extent of proline 3-hydroxylation in the newly synthesized collagen. The effect of acute cell transformation on prolyl 3-hydroxylase and 4-hydroxylase activities was studied by infecting chick-embryo fibroblasts with Rous sarcoma virus mutant NY68, temperature-sensitive for transformation. At the permissive temperature prolyl 3-hydroxylase activity showed a more rapid increase and decrease than did prolyl 4-hydroxylase activity, the maximal activity for both enzymes being about 2.5 times that in the control chick fibroblasts. When the transformed cells were shifted to the non-permissive temperature the decays in the elevated enzyme activities were similar, suggesting identical half-lives.  相似文献   

16.
Prolyl 4-hydroxylase, an alpha 2 beta 2 tetramer, catalyzes the formation of 4-hydroxyproline in collagens by the hydroxylation of proline residues in peptide linkages and plays a crucial role in the synthesis of these proteins. The gene for the beta-subunit of prolyl 4-hydroxylase has recently been mapped to the long arm of human chromosome 17, at band 17q25. We report here chromosomal localization of the gene for the catalytically and regulatorily important alpha-subunit of human prolyl 4-hydroxylase. Analysis of 24 rodent x human cell hybrids by Southern blotting with cDNA probes for the human alpha-subunit indicated complete cosegregation of the gene for the alpha-subunit with human chromosome 10. A cell hybrid containing only part of chromosome 10 mapped the gene to 10q11----qter. In situ hybridization mapped the gene to 10q21.3-23.1. The gene for the alpha-subunit is thus not physically linked to that for the beta-subunit of the enzyme.  相似文献   

17.
Protein disulphide isomerase (PDI) is a highly unusual multifunctional polypeptide, identical to the beta-subunit of prolyl 4-hydroxylase. It has two -Cys-Gly-His-Cys- sequences which represent two independently acting catalytic sites of PDI activity. We report here on the expression in baculovirus vectors of various mutant PDI/beta-subunits together with a wild-type alpha-subunit of the human prolyl 4-hydroxylase alpha 2 beta 2 tetramer in Spodoptera frugiperda insect cells. When either one or both of the -Cys-Gly-His-Cys- sequences was converted to -Ser-Gly-His-Cys-, a tetramer was formed as with wild-type PDI/beta-subunit. This tetramer was fully active prolyl 4-hydroxylase. The data demonstrate that PDI activity of the PDI/beta-subunit is not required for tetramer assembly or for the prolyl 4-hydroxylase activity of the tetramer, and thus other sequences of the PDI/beta-subunit may be critical for keeping the alpha-subunits in a catalytically active, non-aggregated conformation. Measurements of the PDI activities of tetramers containing the various mutant PDI/beta-subunits demonstrated that the activity of the wild-type tetramer is almost exclusively due to the C-terminal PDI catalytic sites, which explains the finding that the PDI activity of the PDI/beta-subunit present in the tetramer is about half that in the free polypeptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have used specific oligonucleotide probes to measure the effect of hydralazine on mRNA levels of the alpha and beta subunits of prolyl 4-hydroxylase (PH), a key post-translational modifying enzyme in collagen biosynthesis. Hydralazine exerts a paradoxical effect on collagen biosynthesis in cultured fibroblasts. Cells exposed to hydralazine synthesize substantially reduced amounts of collagen, which is severely deficient in hydroxyproline. Surprisingly, however, the level of prolyl hydroxylase activity assayed in extracts of treated cells is markedly increased, suggesting overproduction of the enzyme. Hybridization analysis indicated that in untreated cells the concentration of the alpha PH subunit mRNA was about 20-25% of the beta PH subunit mRNA concentration. Hydralazine treatment increased the mRNAs for both alpha and beta subunits of PH by three- to fourfold. A differential induction of these mRNAs was observed, however. The alpha subunit mRNA was maximally increased within 24 h, whereas the beta subunit mRNA was increased more slowly, reaching a maximum at 72 h. In contrast, the 5.8 and 4.8-kb mRNAs for pro alpha 1(I) collagen were virtually eliminated by 72 h. This study demonstrates that the increased prolyl hydroxylase activity is a direct result of hydralazine-mediated increases in steady state mRNA content for the alpha and beta subunits of this enzyme. Moreover, the earlier induction of alpha PH mRNA may provide the first evidence at the mRNA level that regulation of PH activity occurs mainly through regulation of the alpha subunit of PH. In addition, the decrease in collagen synthesis by hydralazine appears to result directly from suppression of both species of mRNA for pro alpha 1(I) collagen.  相似文献   

19.
Lysyl hydroxylase is the enzyme catalyzing the formation of hydroxylysyl residues in collagens. Large differences in the extent of hydroxylysyl residues are found among collagen types. Three lysyl hydroxylase isoenzymes (LH1, LH2, LH3) have recently been characterized from human and mouse tissues. Nothing is known about the distribution of these isoforms within cells or whether they exhibit collagen type specificity. We measured mRNA levels of the three isoforms, as well as the mRNAs of the main collagen types I, III, IV, and V and the alpha subunit of prolyl 4-hydroxylase, another enzyme involved in collagen biosynthesis, in different human cell lines. Large variations were found in mRNA expression of LH1 and LH2 but not LH3. Immunoblotting was utilized to confirm the results of Northern hybridization. The levels of mRNA of LH1, LH2, and the alpha subunit of prolyl 4-hydroxylase showed significant correlations with each other. The LH3 mRNA levels did not correlate with those of LH1, LH2, or the alpa subunit of prolyl 4-hydroxylase, clearly indicating a difference in the regulation of LH3. No correlation was observed between LH isoforms and individual collagen types, indicating a lack of collagen type specificity for lysyl hydroxylase isoforms. Our observations suggest that LH1, LH2, and the alpha subunit of prolyl 4-hydroxylase are coregulated together with total collagen synthesis but not with the specific collagen types and indicate that LH3 behaves differently from LH1 and LH2, implying a difference in their substrates. These observations set the basis for further studies to define the functions of lysyl hydroxylase isoforms.  相似文献   

20.
The collagen prolyl 4-hydroxylases (C-P4Hs), enzymes residing within the lumen of the endoplasmic reticulum, play a central role in the synthesis of all collagens. The vertebrate enzymes are alpha(2)beta(2) tetramers in which the two catalytic sites are located in the alpha subunits, and protein disulfide isomerase serves as the beta subunit. All attempts to assemble an active C-P4H tetramer from its subunits in in vitro cell-free systems have been unsuccessful, but assembly of a recombinant enzyme has been reported in several cell types by coexpression of the two types of subunit. An active type I C-P4H tetramer was obtained here by periplasmic expression in Escherichia coli strains BL21 and RB791. Further optimization for production by stepwise regulated coexpression of its subunits in the cytoplasm of a thioredoxin reductase and glutathione reductase mutant E. coli strain resulted in large amounts of human type I C-P4H tetramer. The specific activity of the C-P4H tetramer purified from the cytoplasmic expression was within the range of values reported for human type I C-P4H isolated as a nonrecombinant enzyme or produced in the endoplasmic reticulum of insect cells, but the expression level, about 25 mg/l in a fermenter, is about 5-10 times that obtained in insect cells. The enzyme expressed in E. coli differed from those present in vivo and those produced in other hosts in that it lacked the N glycosylation of its alpha subunits, which may be advantageous in crystallization experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号