首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Predominately neuronal cell cultures were produced as described in previous communications. Neuronal cells were exposed to ferric nitrilotriacetate (Fe-NTA) at varying concentrations. Studies of the neuronal cells were performed at 13 and 20 days in culture. In addition to morphologic studies, biochemical assays including choline acetyltransferase (ChAT) activity, specific [3H]flunitrazepam (FLU) binding, clonazepam (CLO)-displaceable [3H]FLU binding, Ro5-4864-displaceable [3H]FLU binding, high-affinity [3H]GABA uptake, and protein determinations were performed. The data demonstrate that chelated ferric iron has an adverse effect on predominately neuronal cultures after 7 days of exposure as measured by choline acetyltransferase activity, while other measures remained unaffected; however, after 14 days of exposure all measures were significantly decreased. The effects of Fe-NTA exposure appear to be both concentration and duration-of-exposure related.  相似文献   

2.
After murine fetal cells from the rostral mesencephalic tegmentum were isolated, prepared, and cultured; neuronal and glial cells in primary mixed cell cultures were exposed to ferric nitrilotriacetate (Fe-NTA) at varying concentrations. Studies were performed at 23 days in culture after 14 day exposure to Fe-NTA. In addition to morphologic studies, biochemical assays including specific [3H]flunitrazepam (FLU) binding, clonazepam (CLO)-displaceable [3H]-FLU binding, Ro5-4864-displaceable [3H]-FLU binding, [3H]dopamine (DA) uptake, [3H]haloperidol (HAL) binding, [3H]spiperone (SP) binding, glutamine synthetase activity (GS), and protein determinations were performed. The data demonstrate that chelated ferric iron has an adverse effect on these cells. The data also demonstrate that increasing concentrations of Fe-NTA resulted in massive neuronal dropout leaving the culture population virtually all glial; however, the specific binding of [3H]HAL and [3H]SP increased. There was a concomitant decrease in both glutamine synthetase activity and overall protein content. The mechanism of enhancement in the presence of Fe-NTA of [3H]HAL and [3H]SP binding is unknown and may be unique, but may be related to the known increase in D2 receptor ligand affinity in the presence of other multivalent cations (Ca2+ and Mg2+).  相似文献   

3.
Cultured glial cells were exposed to ferric nitrilotriacetate (Fe-NTA) at varying concentrations. Studies of the exposed glial cells were performed at days 29 and 36 post-conceptional age (culture days 8 and 15). In addition to morphologic studies, biochemical assays including [3H]-flunitrazepam (FLU) specific binding, Ro5-4864-displaceable3H-FLU binding, and protein determinations were performed. At day 29 post-conceptional age, significant decreases in3H-FLU specific binding, Ro5-4864-displaceable3H-FLU binding, and protein determinations were discernible only in the presence of 100 M Fe-NTA. At day 36 post-conceptional age3H-FLU specific binding was significantly decreased at 20, 60, and 100 M Fe-NTA concentrations, while Ro5-4864-displaceable3H-FLU binding and protein determinations were significantly reduced at 60 and 100 M Fe-NTA concentrations. The effects of Fe-NTA exposure appear to be both concentration and duration-of-exposure related. When compared to previously reported neuronal cell culture, studies utilizing3H-FLU specific binding, Ro5-4864-displaceable3H-FLU binding, and protein determinations, glial cells appear to be significantly more resistant to chelated iron exposure.  相似文献   

4.
Astroglial cells in primary cultures bind [3H]flunitrazepam with a high affinity on a single type of site and on a number of binding sites which increased during astroglial growth and differentiation. These binding sites show a particular pharmacological spectrum characterized by an inhibition of high affinity by RO-5-4864 (4-chlorodiazepam), an anticonvulsant of the benzodiazepine family and by an inhibition of binding of lower affinities by diazepam clonazepam and clobazam. RO-5-4864 and clonazepam compete for the same binding site in astroglia. The heat stability and the hormonal modulation by thyroxine are similar for astroglia and neuronal-cells. Benxodiazepines modulate the astroglial 5-HT receptor. Such an effect could be a possible physiological response to benzodiazepines for astroglial cells in primary cultures.  相似文献   

5.
Effects of Pb2+, Ni2+, Hg2+ and Se4+ on cultured human glioma U-343MG cells were investigated considering uptake, toxicity and, in combination with radiation, clonogenic cell survival. The cells were exposed to 0-100 m of the metals for a week before the evaluation. The tests showed a tendency to toxicity with 10 m nickel although not significant (P > 0.05). Selenium, lead and mercury exerted a significant toxicity (P < 0.05) at 2.5 m, 10 m and 1 m, respectively. To challenge the clonogenic cell survival capacity, the cells were irradiated with60Co photons after being exposed to the highest nontoxic concentration of the different metals. The clonogenic cell survival tests, after irradiation, showed no significant change if the cells were exposed to 5 m nickel, 0.5 m selenium or 5 m lead compared with those not exposed. Mercury, 0.1 m, gave a relative reduction in survival compared with only irradiated cells of 58 ± 17%. Thus, only mercury affected the radiation-induced damage and/or repair. When exposed to the highest nontoxic concentrations of the different metals, the cultures did not display a significant uptake ratio (metal concentration ratio of exposed cells to control cells) of nickel (3.1 ± 3.3), only a small uptake ratio of selenium (4.0 ± 0.4), while there was a large uptake ratio of both lead (2.6 ± 1.7) x 102 and mercury (1.5 ± 0.2) x 101. The results indicated that nickel was neither especially toxic nor influenced the clonogenic cell survival after irradiation. Mercury was more toxic and also influenced the radiation sensitivity. Lead was taken up strongly but did not influence the radiation sensitivity. Selenium accumulated but gave no detectable effect on the radiation sensitivity.  相似文献   

6.
Benzodiazepine receptors on human blood platelets   总被引:3,自引:0,他引:3  
Binding studies conducted on membrane preparation from human platelets using (3H) Ro5-4864 and (3H) diazepam showed specific and saturable binding. Scatchard analysis revealed a single class of binding sites with KD = 10.8 +/- 0.9 nM and Bmax = 775 +/- 105 fmol/mg protein for (3H) Ro5-4864 and KD = 10.5 +/- 1.1 nM and Bmax = 133 +/- 19 fmol/mg for (3H) diazepam. We were unable to detect any GABA binding site on crude membrane preparation, nor did GABA enhance the binding of (3H) Ro5-4864 or (3H) diazepam. This suggests that benzodiazepine receptors are uncoupled to GABA system on human platelets. Ro15-1788, a specific antagonist for "central type" benzodiazepine (BDZ) binding sites was inactive in displacing (3H) Ro5-4864 from membrane receptors, while PK 11195 (a specific ligand for the "peripheral type" receptor) was the most potent of the drugs tested in inhibiting (3H) Ro5-4864 binding. These results indicate that human blood platelets bear "peripheral-type" BDZ receptor. Moreover, we could not detect any (3H) propyl beta carboline specific binding on platelet membranes. Results on benzodiazepine receptors on human circulating lymphocytes are also reported and similarity in pharmacological properties with platelet benzodiazepine receptors is suggested.  相似文献   

7.
The present study tests the hypothesis that hypoxia alters the high-affinity kainate receptors in fetal guinea pig brain. Experiments were conducted in normoxic and hypoxic guinea pig fetus at preterm (45 days of gestation) and term (60 days of gestation). Hypoxia in the guinea pig fetus was induced by exposure to maternal hypoxia (FiO2=7%) for 60 min. Brain tissue hypoxia in the fetus was documented biochemically by decreased levels of ATP and phosphorreatine. [3H]-Kainate binding characteristics (Bmax=number of receptors, Kd=dissociation constant) were used as indices of kainate receptor modification. P2 membrane fractions were prepared from the cortex of normoxic and hypoxic fetuses and were washed six times prior to performing the binding assays. [3H]kainate binding was performed at 0°C for 30 min in a 500 l medium containing 50 mM Tris-HCl buffer, 0.1 mM EDTA (pH 7.4), 300 g protein and varying concentrations of radiolabelled kainate ranging from 1 to 200 nM. Non-specific binding was determined in the presence of 1.0 mM glutamate. During brain development from 45 to 60 days gestation, Bmax value increased from 330±16 to 417±10 fmoles/mg protein; however, the Kd was unchanged (8.2±0.4 vs 8.8±0.5 nM, respectively). During hypoxia at 60 days, the Kd value significantly increased as compared to normoxic control (15.5±0.7 vs 8.8±0.5 nM, respectively), whereas the Bmax was not affected (435±12 vs 417±10 fmol/mg protein, respectively). At 45 days, hypoxia also increased the Kd (11.9±0.6 vs 8.2±0.4 nM) without affecting the Bmax (290±15 vs 330±16 fmol/mg protein, respectively). The results show that the number of kainate receptors increase during gestation without change in affinity and demonstrate that hypoxia modifies the high-affinity kainate receptor sites at both ages; however the effect is much stronger at 60 days (term). The decreased affinity of the site could decrease the kainate receptor-mediated fast kinetics of desensitization and provide a longer period for increased Na+-influx, leading to increased accumulation of intracellular Ca2+ by reversal of the Na+–Ca2+ exchange mechanism. In addition, Kd values for kainate-type glutamate receptor sites are 30–40 fold lower (i.e. higher affinity) than those for NMDA-displaceable glutamate sites. The higher affinity suggests that the activation of the kainate-type glutamate receptor during hypoxia could precede initiation of NMDA receptormediated excitotoxic mechanisms. We propose that hypoxia-induced modification of the high affinity kainate receptor in the fetus is a potential mechanism of neuroexcitotoxicity.  相似文献   

8.
The kinetics and specificity of GABA and taurine uptake were studied in the bullfrog sympathetic ganglia. GABA uptake system consisted of simple saturable component and taurine uptake system consisted of two saturable components exclusive of non-saturable influx. Taurine unaffected GABA uptake while GABA inhibited taurine uptake competitively with theK i/Km ratio of 38. GABA (5.14 M) uptake was inhibited by -aminovaleric acid and slightly by 2,4-diaminobutyric acid (5 mM, each) among ten structural analogs. Taurine uptake under high-affinity conditions was most strongly suppressed by hypotaurine and -alanine competitively with theK i/Km ratio of 1.0 and 1.9, respectively. Autoradiography showed that glial cells were heavily labeled by both [3H]GABA and [3H]taurine. These results suggest that GABA is transported by a highly specific carrier system distinct from the taurine carrier and that taurine, hypotaurine, and -alanine may share the same high-affinity carrier system in the glial cells of the bullfrog sympathetic ganglia.  相似文献   

9.
To investigate the, interaction between -aminobutyric acid (GABA) and benzodiazepine (BZD) receptor sites during development, the time-course of appearance of flunitrazepam (FNZ) binding sites and their pharmacological characterization were studied in developing chick optic lobe. At the earliest stage examined, embryonic day (Ed) 12, the receptor density was 30.9 % (0.05±0.01 pmol/mg protein) of that found in the chick optic lobes of adult chicks. The adult value was achieved on Ed 16 (0.16±0.01 pmol/mg protein). After this stage there was a sharp and transient increase in specific [3H]FNZ binding of about two-fold reaching a maximal value between hatching and the postnatal day (pnd) 2 (0.33±0.01 pmol/mg protein). Scatchard analysis at different stages of development revealed the presence of a single population of specific FNZ binding sites. The increase in [3H]FNZ binding during development was due to a large number of binding sites while their affinity remained unchanged. Competition experiments in the chick optic lobe revealed that the order of potency for displacement of specific [3H]FNZ binding paralleled the pharmacological potency of the BZDs tested. The IC50 s for clonazepam, flunitrazepam, Ro 15-1788 and chlordiazepoxide were 3.02, 4.30, 0.32, and 4778.64 nM respectively. Ro 5-4864, a potent inhibitor of BZD binding to peripheral tissues, had no effect on specific [3H]FNZ binding indicating that only central BZD binding sites are present in the chick optic lobe. The peak of maximal expression of BZD receptor sites precedes in 5–6 days the peak of GABA receptor sites indicating a precocious development of BZD receptor sites. The different appearance of both peaks may represent important events during development probably related to synaptogenesis.  相似文献   

10.
We used ion-sensitive, double-barrel microelectrodes to measure changes in hepatocyte transmembrane potential (V m), intracellular K+, Cl-, and Na+ activities (a i k, a Cl i and a Na i ), and water volume during l-alanine uptake. Mouse liver slices were superfused with control and experimental Krebs physiological salt solutions. The experimental solution contained 20 m l-alanine, and the control solution was adjusted to the same osmolality (305 mOsm) with added sucrose. Hepatocytes also were loaded with 50 mm tetramethylammonium ion (TMA+) for 10 min. Changes in cell water volume during l-alanine uptake were determined by changes in intracellular, steady-state TMA+ activity measured with the K+ electrode. Hepatocyte control V m was -33±1 mV. l-alanine uptake first depolarized V m by 2±0.2 mV and then hyperpolarized V m by 5 mV to-38±1 mV (n = 16) over 6 to 13 min. During this hyperpolarization, a Na i increased by 30% from 19±2 to 25±3 mm (P < 0.01), and a K i did not change significantly from 83±3 mm. However, with added ouabain (1 mm) l-alanine caused only a 2-mV increase in V m, but now a K i decreased from 61±3 to 54±5 mm (P < 0.05). Hyperpolarization of V m by l-alanine uptake also resulted in a 38% decrease of a Cl i from 20±2 to 12±3 mm (P < 0.001). Changes in V m and V ClV m voltage traces were parallel during the time of l-alanine hyperpolarization, which is consistent with passive distribution of intracellular Cl with the V m in hepatocytes. Added Ba2+ abolished the l-alanineinduced hyperpolarization, and a Cl i remained unchanged. Hepatocyte water volume during l-alanine uptake increased by 12±3%. This swelling did not account for any changes in ion activities following l-alanine uptake. We conclude that hepatocyte a K i is regulated by increased Na+-K+ pump activity during l-alanine uptake in spite of cell swelling and increased V m due to increased K+ conductance. The hyperpolarization of V m during l-alanine uptake provides electromotive force to decrease a Cl i . The latter may contribute to hepatocyte volume regulation during organic solute transport.This work was supported by grant AA-08867 from the Alcohol, Drug Abuse, and Mental Health Association.  相似文献   

11.
The transport of [3H]l-glutamate, [3H]l-aspartate, [3H]-aminobutyric acid ([3H]GABA), [3H]dopamine, [3H]norepinephrine and [3H]5-hydroxytryptamine (3H-5-HT) was measured in primary astroglial cultures from newborn rat cerebral hemispheres. There was a high-affinity uptake with aK m of 69.0 M for L-glutamate, 12.3 M forl-aspartate and 3.1 M for GABA. The uptake showed properties of high capacity with aV max of 17.0 nmol·mg prot–1·min–1 forl-glutamate, 1.1 nmol·mg prot–1·min–1 forl-aspartate and 0.04 nmol·mg prot–1·min–1 for GABA. No high-affinity high capacity transport system was found for the monoamines studies. Autoradiographic examination demonstrated a heavy deposit of grains suggesting a prominent accumulation of [3H]l-glutamate and [3H]l-aspartate in the astroglial-like cells of the cultures, while the [3H]GABA accumulation was less intense. On the other hand, there was only a weak accumulation of grains after incubating the cultures with [3H]dopamine, [3H]norepinephrine or [3H]5-HT. Thus, astroglial cells in culture accumulate amino acid neurotransmitters and monoamines in different ways with a high-affinity high-capacity uptake of glutamate, aspartate and GABA and a diffusion-uptake of dopamine, norepinephrine and 5-HT.  相似文献   

12.
The present study tests the hypothesis that pretreatment with allopurinol, a xanthine oxidase inhibitor, will prevent modification of the NMDA receptor during cerebral hypoxia in newborn piglets. Eighteen newborn piglets were studied. Six normoxic control animals were compared to six untreated hypoxic and six allopurinol (20 mg/kg i.v.) pretreated hypoxic piglets. Cerebral hypoxia was induced by lowering the FiO2 to 0.05–0.07 for 1 hour and tissue hypoxia was confirmed biochemically by the measurement of ATP and phosphocreatine. Brain cell membrane Na+,K+-ATPase activity was determined to assess membrane function. Na+,K+-ATPase activity was decreased from control in both the untreated and treated hypoxic animals (46.0 ± 1.0 vs 37.9 ± 2.5 and 37.3 ± 1.4 mol Pi/mg protein/hr, respectively, p < 0.05). [3H]MK-801 binding was determined as an index of NMDA receptor modification. The receptor density (Bmax) in the untreated hypoxic group was decreased compared to normoxic control (1.09 ± 0.17 vs 0.68 ± 0.22 pmol/mg protein, p < 0.01). The dissociation constant (Kd) was also decreased in the untreated group (10.0 ± 2.0 vs 4.9 ± 1.4 nM, p < 0.01), indicating an increase in receptor affinity. However, in the allopurinol treated hypoxic group, the Bmax (1.27 ± 0.09 pmol/mg protein) was similar to normoxic control and the Kd (8.1 ± 1.2 nM, p < 0.05) was significantly higher than in the untreated hypoxic group. The data show that the administration of allopurinol prior to hypoxia prevents hypoxia-induced modification of the NMDA receptor-ion channel binding characteristics, despite neuronal membrane dysfunction. By preventing NMDA receptor-ion channel modification, allopurinol may produce a neuromodulatory effect during hypoxia and attenuate NMDA receptor mediated excitotoxicity.  相似文献   

13.
The Na+-dependent high-affinity choline uptake (HACU) transport and the [3H]hemicholinium-3 ([3H]HC-3) specific binding were measured on hippocampal synaptosomes of young (3–6 months) and old (22 months) Wistar rats. In vitro effects of 100–300 M arachidonic acid (AA) and of 5% ethanol were tested under basal as well as stimulated (55 mM KCl) conditions. The influence of AA (an irreversible decrease of HACU and a reversible increase of [3H]HC-3 binding) was more marked under stimulated rather than basal conditions in brain tissue of young rats. The increased K+-depolarization effect on HACU and the decreased influence of AA on [3H]HC-3 binding were estimated in brain tissue of old compared to young rats. Results suggest the involvement of different pools of the high-affinity choline carrier and marked changes due to aging in the regulation of the HACU transport.  相似文献   

14.
We added iron in the ferric form to predominantly neuronal, cortical cell cultures, and determined clonazepam-displaceable [3H]diazepam binding, choline acetyltransferase activity, high-affinity [3H]GABA uptake, and glutamic acid decarboxylase activity. Chronic exposure (14 days) to low concentrations (0.01, 0.04, and 0.1 g/ml) of added ferric iron resulted in a significant decrease in each of the measures studied.  相似文献   

15.
Direct evidence for the excitotoxicity of -N-oxalyl-L-,-diaminopropionic acid (ODAP), the Lathyrus sativus neurotoxin has been studied by examining the binding of chemically synthesized [2,3 3H]ODAP ([3H]ODAP) to synaptic membranes. [3H]ODAP binding to membranes was mostly nonspecific, with only a very low specific binding (15–20% of the total binding) and was also not saturable. The low specific binding of [3H]ODAP remained unaltered under a variety of assay conditions. A low Bmax of 3.2 ± 0.4 pmol/mg and Kd 0.2 ± 0.08 M could be discerned for the high affinity interactions under conditions wherein more than 80–90% of the binding was nonspecific. While ODAP could inhibit the binding of [3H]glutamate to chick synaptic membranes with a Ki of 10 ± 0.9 M, even L-DAP, a non neurotoxic amino acid was also equally effective in inhibiting the binding of [3H]glutamate. The very low specific binding of [3H]ODAP to synaptic membranes thus does not warrant considering its interactions at glutamate receptors as a significant event. The results thus suggest that the reported in vitro excitotoxic potential of ODAP may not reflect its true mechanism of neurotoxicity.  相似文献   

16.
To elucidate the relationship between the occupancy of BDZ binding sites and phospholipid methylation in brain, we examined phosphatidylethanolamine-N-methyltransferase (PEMT) activity in synaptosomes of rat hippocampi and cerebella in the presence of BDZ ligands with different modes of action. We found that Ro 5-4864, a specific ligand for "peripheral type" receptors, increased PL methylation in hippocampal and cerebellar synaptosomes. This effect was directly related to receptor occupancy, since the specific antagonist PK 11195 inhibited the rise in PEMT activity induced by Ro 5-4864. Clonazepam, on the other hand, tended to reduce PL production in cerebellum and hippocampus except for hippocampal (3H)-phosphatidyl-N-monomethylethanolamine which was elevated by 40 to 70% at doses ranging from 10(-9) to 10(-6) M. When equimolar concentrations of the antagonist Ro 15-1788 were given in association the clonazepam-induced phosphatidyl-N-monomethylethanolamine increase was reduced by 70%. These data support the involvement of structural and functional membrane alterations in the action of BDZ.  相似文献   

17.
Summary The binding and uptake of gold-labeled homologous, apolipoprotein E-free low-density lipoproteins (LDL) by isolated fetal rat liver parenchymal cells in suspension were studied ultrastructurally and morphometrically. Binding experiments using 125I-labeled LDL were also performed. After a 2-h preincubation in a lipoprotein-free medium and a subsequent 1-h postincubation in the presence of LDL-gold, fetal liver parenchymal cells exhibit a binding of 248±17 gold conjugates/100 m plasma membrane and an uptake of 235±17 gold conjugates/100 m2 cytoplasm. Compared with values obtained from freshly isolated nonpreincubated cells, these data correspond to a 15-fold and an 18-fold increase in total binding and uptake of LDL-gold, respectively. Competition experiments reveal that this increase is mainly a result of a 23-fold stimulation of specific binding and a 44-fold stimulation of receptor-mediated uptake of LDL-gold. The 125I-LDL binding experiments give a Kd value of 6.3×10-8 M and a maximum binding capacity of 17.3 fmol LDL/106 cells. Our data provide evidence, further to our in vivo studies, that fetal rat liver parenchymal cells possess high-affinity binding sites for native homologous apolipoprotein E-free LDL. These sites may correspond to B, E receptors of adult rat liver parenchymal cells.  相似文献   

18.
Recently, pipecolic acid (PA) has been involved in the functioning of the GABAergic system. In the present work we have studied the effect of PA on GABA uptake and release in cerebral cortex slices. PA (100 M) was able to increase the release of [3H]GABA (90%) stimulated by mild depolarization with 15 mM potassium. If during the labeling of the tissue with [3H]GABA, -alanine was present, PA also enhanced the release (42%). However, when nipecotic acid was present instead -alanine, no stimulation of [3H]GABA release by potassium was observed neither in the control nor in the presence of PA. Spontaneous release was not affected by PA in any of the experimental conditions tested. In uptake experiments, only when -alanine was present in the medium PA significantly diminished the uptake (36%) of [3H]GABA. These results suggest that the effect of PA is mostly at the presynaptic level, inhibiting the neuronal GABA uptake and/or enhancing its release.  相似文献   

19.
Summary The nucleoside transport activity of human placental syncytiotrophoblast brush-border and basal membrane vesicles was compared. Adenosine and uridine were taken up into an osmotically active space. Adenosine was rapidly metabolized to inosine, metabolism was blocked by preincubating vesicles with 2-deoxycoformycin, and subsequent adenosine uptake studies were performed in the presence of 2-deoxycoformycin. Adenosine influx by brush-border membrane vesicles was fitted to a two-component system consisting of a saturable system with apparent Michaelis-Menten kinetics (apparentK m approx. 150 m) and a linear component. Adenosine uptake by the saturable system was blocked by nitrobenzylthioinosine (NBMPR), dilazep, dipyridamole and other nucleosides. Inhibition by NBMPR was associated with high-affinity binding of NBMPR to the brush-border membrane vesicles (apparentK d 0.98±0.21nm). Binding of NBMPR to these sites was blocked by adenosine, inosine, uridine, thymidine, dilazep and dipyridamole, and the respective apparentK i values were 0.23±0.012, 0.36±0.035, 0.78±0.1, 0.70±0.12 (mm), and 0.12 and 4.2±1.4 (nm). In contrast, adenosine influx by basal membrane vesicles was low (less than 10% of the rate observed with brush-border membrane vesicles under similar conditions), and hence no quantitative studies of adenosine uptake could be performed with these vesicles. Nevertheless, high-affinity NBMPR binding sites were demonstrated in basal membrane vesicles with similar properties to those in brushborder membrane vesicles (apparentK d 1.05±0.13nM and apparentK i values for adenosine, inosine, uridine, thymidine, dilazep and dipyridamole of 0.14±0.045, 0.54±0.046, 1.26±0.20, 1.09±0.18mm and 0.14 and 3.7±0.5nm, respectively). Exposure of both membrane vesicles to UV light in the presence of [3H]NBMPR resulted in covalent labeling of a membrane protein(s) with a broad apparentM r on SDS gel electropherograms of 77,000–45,000, similar to that previously reported for many other tissues, including human erythrocytes. We conclude that the maternal (brush-border) and fetal (basal) surface of the human placental syncytiotrophoblast posses broad-specificity, facilitated-diffusion, NBMPR-sensitive nucleoside transporters.  相似文献   

20.
The effects of ions on taurine and -alanine uptake were studied in astrocytes during cellular differentiation in primary cultures. The uptakes were strictly Na+-dependent and also inhibited by the omission of K+ and in the presence of ouabain suggesting that their transport is fuelled mainly by these cation gradients. Two sodium ions were associated in the transport of one taurine and -alanine molecule across cell membranes. A reduction in Cl concentration also markedly inhibited the uptake of both amino acids, indicating that this anion is of importance in the transport processes. The similar ion dependency profiles of taurine and -alanine uptake corroborate the assumption that the uptake of these amino acids in astrocytes is mediated by the same carrier. In Na+- and K+-free media both taurine and -alanine uptakes were reduced significantly more in 14-day-old or older than in 7-day-old cultures. No significant changes occurred in the coupling ratio between Na+ and taurine or -alanine as a function of spontaneous cellular differentiation or upon dBcAMP treatment. These results suggest that the uptake systems of these structurally related amino acids in astrocytes have reached a relatively high degree of functional maturity by two weeks in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号