首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
An open tank photobioreactor containing transparent rectangular chambers (TRCs) was developed to improve the photosynthetic efficiency of microalgal cultivation. The TRCs, made of transparent acrylic, conducted light deep into the photobioreactor, especially at high cell concentrations. The average irradiance, Iav, was calculated by Lambert–Beer's law, and was used to determine the light conditions in the cultivation system. The photobioreactor provided large areas of illumination that improved the effective utilization of light energy for microalgae growth and created a good artificial environment for a high rate of cell growth, even at low Iav. The biomass concentration of Chlorella sp. reached 3.745 g L−1 on the 13th day, with biomass productivity of 0.340 g L−1 d−1. The total biomass obtained was 56% more than that of similar culture systems without TRCs.  相似文献   

2.
Synechococcus sp. (PTCC 6021), a cyanobacterium species, was cultivated in an internally illuminated photobioreactor. The reactor was designed to achieve a monoseptic cultivation of the species. The goal was to study the growth–irradiance behavior of Synechococcus sp. (PTCC 6021). To accomplish this, different initial light irradiances were implemented inside the photobioreactor and the growth of the cells was monitored. It was observed that cell growth increased with higher light intensity until the photoinhibition occurrence at light irradiance higher than 250?μE?m?2?s?1. The maximum OD600, maximum growth rate, and biomass productivity increased, and hence the extinction coefficient decreased, with the increase in light irradiance before photoinhibition. The maximum optical density (OD600) of 5.91 was obtained with irradiance below 250?μE?m?2?s?1 during a growth period of 80 days. The modified Monod function could model the growth–irradiance of cells with satisfactory agreement with the experimental data. The comparison of growth–irradiance of the studied species with other photosynthetic organisms showed the same trend as for cyanobacteria with photoinhibition.  相似文献   

3.
Gametophyte cells of brown algae Laminaria japonica were employed both in a modified silicone tubular membrane-aerated photobioreactor (bubble-less cultivation mode) and a bubble-column photobioreactor (bubbling cultivation mode), to study different gas–liquid mixing modes on cell growth rate and cell physiological status. With an inoculum density of 50 mg DCW l−1, in modified artificial Pacific seawater (APSW) medium at 13°C, light intensity of 60 μE m−2 s−1, light cycle of 16/8 h L/D, and aeration rate of 60 ml min−1, the specific growth rates were 0.082 d−1 for bubble-less mode and 0.070 d−1 for bubbling mode with biomass, in the form of dry cell density, increasing 10.9 and 6.8 times, respectively, during the 36 days’ photolithotrophic cultivation. The specific oxygen evolution rate under bubble-less mode was 39.6% higher than under bubbling mode on the 18th day. The gametophyte cells grew in cell aggregates with clump sizes, at day 36, of 1.5 mm and 0.5 mm diameter under bubble-less and bubbling mode respectively and cell injury percentages of 5.1% and 21.1%, respectively. The silicone tubular membrane-aerated photobioreactor was better suited for the cultivation of fragile macroalgal gametophyte cells due to the absence of hydrodynamic shear stress caused by fluid turbulence and the presence of a bubble-less gas supply.  相似文献   

4.
The influence of cultivation conditions on the growth of the cyanobacterium Spirulina platensis was investigated by using two types of photobioreactors. In a rotative photobioreactor the doubling time (t d) was 3.54 days. The better value found for t d in an aerated photobioreactor by changing the initial nitrogen concentration (NaNO3) at 0.003, 0.015, 0.030 and 0.060M was 2.5 days. A factorial experimental design was performed in order to estimate the contributions of initial nitrogen concentration, inoculum and cultivation time as well as their interactions. All three factors and their interactions proved to be significant in influencing the cellular concentration of S. platensis.  相似文献   

5.
Photoautotrophic cultivation of Euglena gracilis results in cells with high α-tocopherol content but the final cell concentration is usually very low due to the difficulty of supplying light efficiently to the photobioreactor. On the other hand, Euglena grows heterotrophically to high cell concentrations, using various organic carbon sources, but the α-tocopherol contents of heterotrophically grown cells are usually very low. Sequential heterotrophic/photoautotrophic cultivation, by which cells are grown heterotrophically to high cell concentrations and then transferred to photoautotrophic culture for accumulation of α-tocopherol was therefore investigated for efficient α-tocopherol production. In batch culture, using glucose as the organic carbon source, the cellular α-tocopherol content increased from 120 μg g−1 at the end of heterotrophic phase to more than 400 μg g−1 at the end of the photoautotrophic phase. By using ethanol as the organic carbon source during the heterotrophic phase, adding corn steep liquor as a nitrogen source and optimizing light supply during the photoautotrophic phase, the α-tocopherol content of the cells at the end of the photoautotrophic phase increased to 1700 μg g−1. A system consisting of a mini-jar fermentor (for the heterotrophic phase) and an internally illuminated photobioreactor (for the photoautotrophic phase) was then constructed for continuous sequential heterotrophic/photoautotrophic cultivation. The cells were continuously cultivated heterotrophically in the mini-jar fermentor and the effluent was continuously passed through the photobioreactor for α-tocopherol accumulation. In this way, it was possible to produce 7 g l−1 cells containing about 1100 μg α-tocopherol per g-cell continuously for more than 420 h. The continuous process resulted in α-tocopherol productivity of 100 μg l−1 h−1 which is about 9.5 and 4.6 times higher than those obtained in batch photoautotrophic culture and batch heterotrophic cultures, respectively.  相似文献   

6.
Analysis of light energy distribution in culture is important for maximizing the growth efficiency of photosynthetic cells and the productivity of a photobioreactor. To characterize the irradiance conditions in a photobioreactor, we developed a light distribution model for a single-radiator system and then extended the model to multiple radiators using the concept of parallel translation. Mathematical expressions for the local light intensity and the average light intensity were derived for a cylindrical photobioreactor with multiple internal radiators. The proposed model was used to predict the irradiance levels inside an internally radiating photobioreactor using Synechococcus sp. PCC 6301 as a model photosynthetic microorganism. The effects of cell density and radiator number were interpreted through photographic and model simulation studies. The predicted light intensity values were found to be very close to those obtained experimentally, which suggests that the proposed model is capable of accurately interpreting the local light energy profiles inside the photobioreactor system. Due to the simplicity and flexibility of the proposed model, it was also possible to predict the light conditions in other complex photobioreactors, including optical-fiber and pond-type photobioreactors.  相似文献   

7.
In this study, production of the microalga Scenedesmus AMDD in a 300 L continuous flow photobioreactor was maximized using an online flow (dilution rate) control algorithm. To enable online control, biomass concentration was estimated in real time by measuring chlorophyll-related culture fluorescence. A simple microalgae growth model was developed and used to solve the optimization problem aimed at maximizing the photobioreactor productivity. When optimally controlled, Scenedesmus AMDD culture demonstrated an average volumetric biomass productivity of 0.11 g L?1 d?1 over a 25 day cultivation period, equivalent to a 70 % performance improvement compared to the same photobioreactor operated as a turbidostat. The proposed approach for optimizing photobioreactor flow can be adapted to a broad range of microalgae cultivation systems.  相似文献   

8.
Discontinuous airlift mixing was realized by injecting pressured air at time intervals with a frequency between 0.033 and 0.25 Hz (at 80 kPa; i.e., every 4–30 s; valve opening time 800 ms) into outdoor flat panel photobioreactors ( $ 200\, \times \,100\, \times \,2.1\,{\text{cm}} $ ). This caused a flow velocity between 2 and 20 cm s?1 of the culture medium within the photobioreactor and the mixing time was between 38 and 103.5 s, requiring 0.175–1.340 Lgas volume L photobioreactor volume ?1  min?1 pressured air. In order to detect the effect on growth of Scenedesmus obliquus during outdoor experiments and to be able to compare obtained results, a batch run with an airlift frequency of 0.25 Hz was simultaneously used as control. Growth at different airlift frequencies was measured by the increase of cell dry weight (CDW) during 3–5 days and biomass yield on light energy was calculated. With increasing airlift frequencies, growth increased from 52 to 91 % compared to the control. When CDW was at around 1.0–1.5 g L?1, airlift frequency had no effect on growth, indicating that mass transfer gradients of nutrients and gas were not the limiting factors of growth. Above 1.5 g CDW L?1, growth increased with increasing airlift frequency and light limitation for a single cell occurred. This effect was observed during low and high irradiance and it is concluded that a higher mean flow causes a better light distribution, resulting in an enhanced growth. Biomass productivity and demand of pressured air are correlated logarithmically, which enables to save mixing energy during cultivation.  相似文献   

9.
Summary Process conditions for cell cultures derived from conchocelis of female red macroalga Porphyra haitanensis were optimized in an illuminated 0.3-l bubble-column photobioreactor, using CO2 in air as the sole carbon source during a 20-day cultivation period. It reached the highest growth rate when the initial cell density was 700 mg l−1 (dry weight), the optional aeration rate was 1.2 v/v/min, inorganic nitrate concentration was 15 mM and inorganic phosphate concentration was 0.6 mM. This is the first reported bioreactor cultivation study of cell cultures derived from conchocelis of Porphyra haitanensis.  相似文献   

10.
The growth of marine diatoms Phaeodactylum tricornutum was investigated on a medium with artificial sea water under artificial and natural light. The maximum specific growth rate was 0.7 day–1, the productivity was 0.8 g/L day, and the maximum biomass was 3.86 g/L under artificial light in laboratory conditions. In the conditions of Crimea, the maximum productivity of P. tricornutum amounted to 6 g/m2 day under natural light in an outdoor photobioreactor (pool). The results of cultivation of P. tricornutum in a pool with artificial seawater under natural light may serve as a basis for developing technologies for the industrial cultivation of algae.  相似文献   

11.
The green micro-algae Chlamydomonas reinhardtiiand Dunaliella tertiolecta were cultivated undermedium-duration square-wave light/dark cycles with acycle time of 15 s. These cycles were used to simulatethe light regime experienced by micro-algae inexternally-illuminated (sunlight) air-lift loopbioreactors with internal draft tube. Biomass yieldin relation to light energy was determined as gprotein per mol of photons (400–700 nm). Between 600and 1200 mol m-2 s-1 the yield at a10/5 s light/dark cycle was equal to the yield atcontinuous illumination. Consequently, provided thatthe liquid circulation time is 15 s, a considerabledark zone seems to be allowed in the interior ofair-lift loop photobioreactors (33% v/v) without lossof light utilization efficiency. However, at a 5/10 slight/dark cycle, corresponding to a 67% v/v darkzone, biomass yield decreased. Furthermore, bothalgae, C. reinhardtii and D. tertiolecta,responded similarly to these cycles with respect tobiomass yield. This was interesting because they werereported to exhibit a different photoacclimationstrategy. Finally, it was demonstrated that D.tertiolecta was much more efficient at low (average)photon flux densities (57–370 mol m-2s-1) than at high PFDs (> 600 mol m-2s-1) and it was shown that D. tertiolectawas cultivated at a sub-optimal temperature (20 °C).  相似文献   

12.
The biochemical properties of Spirulina platensis in an internally illuminated photobioreactor (IlPBR) were investigated under different light-emitted diode (LED) wavelengths; blue (λmax= 450 and 460 nm), green (λmax= 525 nm), red (λmax = 630 and 660 nm), and white (6,500K), with various light intensities (200, 500, 1,000, and 2,000 μmol/m2/sec) were examined. The highest specific growth rate, maximum biomass, and phycocyanin productivity occurred under the red LEDs (0.39/day, 0.10 g/L/day, and 0.14 g/g-cell/day, respectively) at 1,000 μmol/m2/sec; the lowest growth rate was obtained under blue LEDs. Indeed, the size of trichomes was changed into short form under blue LEDs at all light intensities or all LEDs at 2,000 μmol/m2/sec for the first 2 days after inoculation, and S. platensis did not grow in the IlPBR under the dark condition. These results provide a base for different approaches for designing the pilot scale photobioreactor and developing cost-effective light sources.  相似文献   

13.
Synechocystis sp. PCC 6803 was grown in a 2.5 l enclosed photobioreactor on medium with or without glucose. The incident light intensities ranged from 1.5 klux to 7 klux. The highest average specific growth rates of mixotrophic culture and photoautotrophic culture were, respectively, 1.3 h–1 at a light intensity of 7 klux on 3.2 g l–1 glucose and 0.3 h–1 at both light intensities of 5 klux and 7 klux. The highest cell density 2.5 g l –1 was obtained at both of light intensities 5 klux and 7 klux on 3.2 g glucose l–1. Glucose consumption decreased with decreasing light intensity. The energy yields of mixotrophic cultures were 4 to 6 times higher than that of photoautotrophic cultures. Light favored mixotrophic growth of Synechocystis sp. PCC 6803, especially at higher light intensities (5–7 klux).  相似文献   

14.
A photoautotrophic cultivation of green algae Scenedesmus cells was used for the removal of nitric oxide (NO) from a model flue gas mixture. In an attempt to improve the solubility of NO in the culture broth, the addition of Fe(II)EDTA to the cultivation was investigated. The addition of Fe(II)EDTA greatly enhanced NO-dissolution in the culture broth and subsequently increased the algal-uptake of NO. NO was assimilated as a source of nitrogen for the growth of Scenedesmus cells since there was a steady increase in cell density with no other nitrogen source in the culture except the incoming NO. 40–45% of NO removal was maintained for more than 12 days with the addition of 5 mM Fe(II)EDTA in a 1-L air-lift type photobioreactor system fed with 300 ppm of NO gas at a rate of 0.3 wm. However, the NO-dissolution-enhancing capacity of Fe(II)EDTA did not reach its full potential due to its oxidation to Fe(III)EDTA, possibly induced by molecular oxygen that evolved from algal photosynthesis, and subsequent loss of chelating capabilities.  相似文献   

15.
Scale-up of tubular photobioreactors   总被引:1,自引:0,他引:1  
The effect of the light/dark cycle frequency on theproductivity of algal culture at differentday-averaged irradiance conditions was evaluated forPhaeodactylum tricornutum grown in outdoortubular photobioreactors. The photobioreactor scale-upproblem was analyzed by establishing the frequency oflight–dark cycling of cells and ensuring that thecycle frequency remained unchanged on scale-up. Thehydrodynamics and geometry related factors wereidentified for assuring an unchanged light/dark cycle.The light/dark cycle time in two different tubularphotobioreactors was shown to be identical when thelinear culture velocity in the large scale device(U LL) and that in the small scale unit (>U LS)were related as follows:ULL = \frac f 9/7 \alpha8/7 ULS.Here f is the scale factor (i.e., the ratio oflarge-to-small tube diameters), is afunction of the illuminated volumes in the tworeactors, and `dark' refers to any zone of the reactorwhere the light intensity is less than the saturationvalue. The above equation was tested in continuouscultures of P. tricornutum in reactors with 0.03 mand 0.06 m diameter tubes, and over the workableculture velocity range of 0.23 to 0.50 m s-1. Thepredicted maximum realistic photobioreactor tubediameter was about 0.10 m for assuring a cultureperformance identical to that in reactors with smaller tubes.  相似文献   

16.
The effect of cell density (1–4.5 g L-1) and light intensity (44 and 82 mol m-2 s-1) on fatty acid composition andeicosapentaenoic acid (EPA, 20:5 3) production was studied ina semi-continuous culture of Monodus subterraneus grown in a helicaltubular photobioreactor (`Biocoil') under laboratory conditions. Under lowlight, the highest proportion of EPA (31.5% of total fatty acids) and EPAcontent (3.5% of dry weight), biomass productivity (1.3 g L-124 h-1) and EPA productivity (44 mg L-1 24 h-1)occurred at optimal cell density of about 1.7 g L-1. Cell densityhad no effect on the total fatty acid (TFA) content and was maintained atca. 11% of dry weight. Under high light, the highest proportion ofEPA to fatty acids (31.8%), the total fatty acids content (13.4%) andEPA content (4.3% of dry weight) occurred at cell density of about 3.4gL-1. But the highest biomass productivity (1.7 g L-124 h-1) and EPA productivity (56 mg L-1 24 h-1) wereobtained at a cell density of 1.6 and 2.6g L-1, respectively. Ourresults suggest that manipulating the cell density and light intensity canmodify the composition of fatty acid and production of eicosapentaenoicacid (EPA) in M. subterraneus.  相似文献   

17.
An account is given of the setting up and use of a novel type of closed tubular photobioreactor at the Academic and University Centre in Nove Hrady, Czech Republic. This "penthouse-roof" photobioreactor was based on solar concentrators (linear Fresnel lenses) mounted in a climate-controlled greenhouse on top of the laboratory complex combining features of indoor and outdoor cultivation units. The dual-purpose system was designed for algal biomass production in temperate climate zone under well-controlled cultivation conditions and with surplus solar energy being used for heating service water. The system was used to study the strategy of microalgal acclimation to supra-high solar irradiance, with values as much as 3.5 times the ambient value, making the approach unique. The cultivation system proved to be fully functional with sufficient mixing and cooling, efficient oxygen stripping and light tracking. Experimental results (measurement of the maximum photochemical yield of PSII and non-photochemical quenching) showed that the cyanobacterium Spirulina (= Arthrospira) platensis cultivated under sufficient turbulence and biomass density was able to acclimate to irradiance values as high as 7 mmol photon m–2 s–1. The optimal biomass concentration of Spirulina cultures in September ranged between 1.2 to 2.2 g L–1, which resulted in a net productivity of about 0.5 g L–1 d–1 corresponding to a biomass yield of 32.5 g m–2 d–1 (based on the minimum illuminated surface area of the photobioreactor).  相似文献   

18.
Rhodospirillum rubrum was grown continuously and photoheterotrophically under light limitation using a cylindrical photobioreactor in which the steady state biomass concentration was varied between 0.4 to 4 kg m–3 at a constant radiant incident flux of 100 W m–2. Kinetic and stoichiometric models for the growth are proposed. The biomass productivities, acetate consumption rate and the CO2 production rate can be quantitatively predicted to a high level of accuracy by the proposed model calculations. Nomenclature: C X, biomass concentration (kg m–3) D, dilution rate (h–1) Ea, mean mass absorption coefficient (m2 kg–1) I , total available radiant light energy (W m–2) K, half saturation constant for light (W m–2) R W, boundary radius defining the working illuminated volume (m) r X, local biomass volumetric rate (kg m–3 h–1) <r X>, mean volumetric growth rate (kg m–3 h–1) V W, illuminated working volume in the PBR (m–3). Greek letters: , working illuminated fraction (–) M, maximum quantum yield (–) bar, mean energetic yield (kg J–1).  相似文献   

19.
Analysis of the distribution of 35S-sulfate and 14C-glutamate in major biochemical components of the two marine bacteria, Pseudomonas halodurans and Alteromonas luteo-violaceus, was compared with cell density and total cellular protein during exponential growth in batch culture. For both organisms, the sulfur distribution was restricted principally to the low molecular weight organic and protein fractions, which together accounted for over 90% of the total sulfur. Carbon was more widely distributed, with these two fractions containing only 70% of the total label.Growth rate constants calculated from increases in cell numbers, protein, and 35S and 14C in the various fractions indicated nearly balanced growth in A. luteo-violaceus, with constants derived from all biosynthetic parameters agreeing within 5% during the exponential phase. In contrast, protein synthesis and 35S incorporation into residue protein constants were 30% higher than constants derived from cell counts and incorporation of 14C in P. halodurans. Therefore the cellular protein content P. halodurans varied over a two-fold range, with maximum protein per cell in the late exponential phase. A distinct reduction in the rate constants for total protein and 35S incorporation into residue protein foreshadowed entry into the stationary phase more than one generation before other parameters.Incorporation of 35S-sulfate into residue protein paralleled protein synthesis in both bacteria. The weight percent S in protein agreed well with the composition of an average protein derived from the literature. Sulfur incorporation into protein may be a useful measurement of marine bacterial protein synthesis.Abbreviations L.M.W. low molecular weight - TCA trichloroacetic acid - CFU colony forming unit  相似文献   

20.
Synchronization and synchronous growth of a cell wall-less mutant of Chlamydomonas reinhardii have been described. The following growth conditions were used: A modified Sueokas' high salt minimal medium, 1410 h light-dark cycle, growth temperature 30°C, light intensity 12–18 Klux and dilution of the culture at the end of the dark to a constant cell density of 1.0·106 cells/ml. The time course of increase and distribution of cell volume, cytoplasmic and nuclear division, release of motile cells after the division period and accumulation of DNA, RNA and protein are reported. These mutant cells did not make any sporangium in which the dividing cells were kept as a unit inside a mother cell wall. However, they usually adhered during the period of division, thus making clumps containing 2, 4 and 8 cells. Several of these cell clumps dissolved releasing either single or couples of 2 and 4 cells. After the end of division the cells became flagellated and motile and thereby releasing themselves from the aggregate.Non-Standard Abbreviations AWV average weighed cell volume - MM minimal medium - HSM high salt medium - TCA trichloroacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号