首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The diacylated lipopeptide FSL-1 enhanced the generation of IgG antibodies in TLR2(+/+) mice, but not in TLR2(-/-) mice, when administered together with hen egg lysozyme as an antigen. Escherichia coli lipopolysaccharide enhanced the generation of antigen-specific antibodies in both TLR2(-/-) and TLR2(+/+) mice. In TLR2(+/+) mice, the level of enhancement due to FSL-1 was similar to that caused by lipopolysaccharide. Analysis of the IgG antibodies subclass demonstrated that the level of Th2-type IgG1 antibodies was higher than that of Th1-type IgG2a antibodies. Both FSL-1 and lipopolysaccharide induced production of IL-10 and IL-6 by splenocytes from TLR2(+/+) mice. Lipopolysaccharide also induced production of these cytokines by splenocytes from TLR2(-/-) mice, but FSL-1 did not. Neither FSL-1 nor lipopolysaccharide induced IL-12p70 production by splenocytes from either type of mice. FSL-1 upregulated B7.2 expression in B220(+) cells from TLR2(+/+) mice but not those from TLR2(-/-) mice, whereas lipopolysaccharide upregulated B7.2 expression in B220(+) cells from both types of mice. FSL-1 and, to a lesser extent, lipopolysaccharide activated mitogen-activated protein kinases in splenocytes. FSL-1 and, to a lesser extent, lipopolysaccharide induced the expression of c-Fos, which is known to be involved in Th2-type responses, in splenocytes. Thus, this study demonstrated that FSL-1 possessed TLR2-mediated Th2-type responses in vivo.  相似文献   

2.
Toxoplasma gondii-derived heat shock protein 70 (T.g.HSP70) induced maturation of bone marrow-derived dendritic cells (DCs) of wild-type (WT) C57BL/6 mice as evidenced by an increase in surface expression of MHC class I and II molecules and costimulatory molecules such as CD40, CD80, and CD86. Functionally, decreased phagocytic ability and increased alloreactive T cell stimulatory ability were observed in T.g.HSP70-stimulated DCs. These phenotypic and functional changes of T.g.HSP70-stimulated DCs were demonstrated in Toll-like receptor (TLR) 2- and myeloid differentiation factor 88 (MyD88)-deficient but not TLR4-deficient C57BL/6 mice. DCs from WT and TLR2-deficient but not TLR4-deficient mice produced IL-12 after T.g.HSP70 stimulation. T.g.HSP70-stimulated DCs from WT, TLR2-deficient, and MyD88-deficient, but not TLR4-deficient mice expressed IFN-beta mRNA. Thus, T.g.HSP70 stimulates murine DC maturation via TLR4 through the MyD88-independent signal transduction cascade.  相似文献   

3.
The present study was designed to elucidate the role of Toll-like receptor (TLR) 2 and TLR4 in the host response to Cryptococcus neoformans. Both TLR2 knockout (KO) and TLR4KO mice produced interleukin-1beta (IL-1beta), IL-6, IL-12p40 and tumor necrosis factor-alpha (TNF-alpha) in sera and cleared this fungal pathogen from infected lungs at a comparable level to control littermate (LM) mice. Synthesis of these cytokines was not significantly different in the lungs of these KO mice and LM mice, although IL-1beta, IL-6 and IL-12p40 tended to be lower in TLR2KO, but not TLR4KO, mice than in controls. In addition, there was no significant reduction detected in the synthesis of IL-12 and TNF-alpha by bone marrow-derived dendritic cells from TLR2KO and TLR4KO mice upon stimulation with live yeast cells. Finally, HEK293 cells expressing either TLR2/dectin-1 or TLR4/MD2/CD14 did not respond to C. neoformans in the activation of nuclear factor kappa B (NFkappaB) detected by a luciferase assay. Our results suggest that TLR2 and TLR4 do not or only marginally contribute to the host and cellular response to this pathogen.  相似文献   

4.
We determined whether distinct subclasses of dendritic cells (DC) could polarize cytokine production and regulate the pattern of xenograft rejection. C57BL/6 recipients, transplanted with Lewis rat hearts, exhibited a predominantly CD11c(+)CD8alpha(+) splenic DC population and an intragraft cytokine profile characteristic of a Th1-dominant response. In contrast, BALB/c recipients of Lewis rat heart xenografts displayed a predominantly CD11c(+)CD8alpha(-) splenic DC population and IL-4 intragraft expression characteristic of a Th2 response. In addition, the CD11c(+)IL-12(+) splenic DC population in C57BL/6 recipients was significantly higher than that in BALB/c recipients. Adoptive transfer of syngeneic CD8alpha(-) bone marrow-derived DC shifted a Th1-dominant, slow cell-mediated rejection to a Th2-dominant, aggressive acute vascular rejection (AVR) in C57BL/6 mice. This was associated with a cytokine shift from Th1 to Th2 in these mice. In contrast, transfer of CD8alpha(+) bone marrow-derived DC shifted AVR to cell-mediated rejection in BALB/c mice and significantly prolonged graft survival time from 6.0 +/- 0.6 days to 14.2 +/- 0.8 days. CD8alpha(+) DC transfer rendered BALB/c mice susceptible to cyclosporine therapy, thereby facilitating long-term graft survival. Furthermore, CD8alpha(+) DC transfer in IL-12-deficient mice reconstituted IL-12 expression, induced Th1 response, and attenuated AVR. Our data suggest that the pattern of acute xenogeneic rejection can be regulated by distinct DC subsets.  相似文献   

5.
Tick saliva is thought to contain a number of molecules that prevent host immune and inflammatory responses. In this study, the effects of Ixodes scapularis saliva on cytokine production by bone marrow-derived dendritic cells (DCs) from C57BL/6 mice stimulated by TLR-2, TLR-4, and TLR-9 ligands were studied. Saliva at remarkably diluted concentrations (<1/2000) promotes a dose-dependent inhibition of IL-12 and TNF-alpha production induced by all TLR ligands used. Using a combination of fractionation techniques (microcon filtration, molecular sieving, and reversed-phase chromatography), we unambiguously identified PGE(2) as the salivary inhibitor of IL-12 and TNF-alpha production by DCs. Moreover, we have found that I. scapularis saliva (dilution 1/200; approximately 10 nM PGE(2)) marginally inhibited LPS-induced CD40, but not CD80, CD86, or MHC class II expression. In addition, saliva significantly suppressed the ability of DCs to stimulate Ag-specific CD4(+) T cell proliferation and IL-2 production. Notably, the effect of saliva on DC maturation and function was reproduced by comparable concentrations of standard PGE(2). These findings indicate that PGE(2) accounts for most inhibition of DC function observed with saliva in vitro. The role of salivary PGE(2) in vector-host interaction and host immune modulation and inflammation in vivo is also discussed. This study is the first to identify molecularly a DC inhibitor from blood-sucking arthropods.  相似文献   

6.
Food-borne Campylobacter jejuni (Cj) is an important cause of enteritis. We showed that C57BL/6 and congenic interleukin (IL)-10(-/-) mice serve as models of Cj colonization and enteritis, respectively. Thus, C57BL/6 mice are resistant to Cj induced disease. Because dendritic cells (DCs) are central to regulating adaptive immune responses, we investigated the interaction of Cj with murine bone marrow-derived DCs (BM-DCs) to assess bacterial killing, DC activation, and the ability of Cj-infected BM-DCs to stimulate Campylobacter-specific T cell responses in vitro. BM-DCs challenged with Cj efficiently internalized and killed Cj 11168 and significantly upregulated surface MHC-II, CD40, CD80 and CD86 demonstrating a mature phenotype. Infected BM-DCs secreted significant amounts of tumor necrosis factor-alpha (TNF-alpha), IL-6 and IL-12p70. Formalin-killed Cj also induced maturation of BM-DCs with similar cytokine production but at a significantly lower magnitude than live bacteria. Maximal activation of murine BM-DCs required internalization of Cj; attachment alone was not sufficient to elicit significant responses. Also, various strains of Cj elicited different magnitudes of cytokine production from BM-DCs. Finally, in a coculture system, Cj-infected BM-DCs induced high level interferon-gamma (INF-gamma) production from CD4+T cells indicating Th1 polarization. Thus, DCs from resistant C57BL/6 mice initiate T cell responses against Cj.  相似文献   

7.
Estrogens increase aspects of innate immunity and contribute to sex differences in the prevalence of autoimmune diseases and in response to infection. The goal of the present study was to assess whether exposure to 17beta-estradiol (E2) affects the development and function of bone marrow-derived dendritic cells and to determine whether similar changes are observed in CD11c(+) splenocytes exposed to E2 in vivo. E2 facilitated the differentiation of BM precursor cells into functional CD11c(+)CD11b(+)MHC class II(+) dendritic cells (DCs) with increased expression of the costimulatory molecules CD40 and CD86. Exposure of bone marrow-derived dendritic cells to E2 also enhanced production of IL-12 in response to the TLR ligands, CpG and LPS. In contrast, CD11c(+) cells isolated from the spleens of female C57BL/6 mice that were intact, ovariectomized, or ovariectomized with E2 replacement exhibited no differences in the number or activity of CD11c(+)CD11b(+)MHC class II(+) DCs. The presence of E2 in vivo, however, increased the number of CD11c(+)CD49b(+)NK1.1(low) cells and reduced numbers of CD11c(+)CD49b(+)NK1.1(high) cells, a surface phenotype for IFN-producing killer DCs (IKDCs). Ultrastructural analysis demonstrated that CD11c(+)NK1.1(+) populations were comprised of cells that had the appearance of both DCs and IKDCs. CD11c(+) splenocytes isolated from animals with supplemental E2 produced more IFN-gamma in response to IL-12 and IL-18. These data illustrate that E2 has differential effects on the development and function of DCs and IKDCs and provide evidence that E2 may strengthen innate immunity by enhancing IFN-gamma production by CD11c(+) cells.  相似文献   

8.
Gao Y  Zhang M  Chen L  Hou M  Ji M  Wu G 《Cellular immunology》2012,272(2):242-250
The purpose of this study was to observe the diverse functions of Toll-like receptors (TLRs) in responses to specific schistosome antigens. Bone marrow-derived dendritic cells (BMDCs) from TLR2-deficient (TLR2(-/-)) or TLR4-deficient (TLR4(-/-)) mice were activated with soluble schistosomule antigen (SSA) or soluble egg antigen (SEA). TLR2 mRNA expression was significantly increased in B6 BMDCs following SEA stimulation. TLR2-deficient BMDCs showed enhanced MHCII expression following SSA and SEA stimulation. TLR2-deficient but not TLR4-deficient BMDC failed to produce IL-12p70 and IL-10 in response to schistosome antigens. TLR2-deficient BMDCs induced a stronger CD4(+) T cell proliferative response. IL-4 and IL-10 expression was inhibited in CD4(+) T cells primed with TLR2-deficient BMDCs, while enhanced in TLR4-deficient BMDCs-primed CD4(+) T cells. These results suggest that TLR2 is essential for the establishment of the DC production of IL-12p70 and IL-10.  相似文献   

9.
Induction of IL-12 and IL-23 is essential for protective immunity against Cryptococcusneoformans. The contribution of dendritic cells vs. macrophages to IL-12/23 production in response to C. neoformans infection is unclear. Activation of conventional bone marrow-derived dendritic cells (BMDC), plasmacytoid BMDC, and bone marrow-derived macrophages (BMMPhi) was assessed by analyzing cytokine responses and the expression of MHC-II, CD86, and CD80 in each cell type. Cryptococcus neoformans induced the release of IL-12/23p40 by BMDC, but not by BMMPhi, in a TLR2- and TLR4-independent but MyD88-dependent manner. Conventional BMDC rather than plasmacytoid BMDC up-regulated MHC-II and CD86, while BMMPhi down-regulated MHC-II and CD86 in response to C. neoformans. The up-regulation of MHC-II and CD86 on BMDC required MyD88. Our data point to conventional DC as critical IL-12/23-producing antigen-presenting cells during cryptococcosis.  相似文献   

10.
Bacterial flagellin is a target of innate and adaptive immune responses during Salmonella infection. Intravenous injection of Salmonella flagellin into C57BL/6 mice induced rapid IL-6 production and increased expression of activation markers by splenic dendritic cells. CD11b(+), CD8alpha(+), and plasmacytoid dendritic cells each increased expression of CD86 and CD40 in response to flagellin stimulation, although CD11b(+) dendritic cells were more sensitive than the other subsets. In addition, flagellin caused the rapid redistribution of dendritic cells from the red pulp and marginal zone of the spleen into the T cell area of the white pulp. Purified splenic dendritic cells did not respond directly to flagellin, indicating that flagellin-mediated activation of splenic dendritic cells occurs via bystander activation. IL-6 production, increased expression of activation markers, and dendritic cell redistribution in the spleen were dependent on MyD88 expression by bone marrow-derived cells. Avoiding this innate immune response to flagellin is important for bacterial survival, because Salmonella-overexpressing recombinant flagellin was highly attenuated in vivo. These data indicate that flagellin-mediated activation of dendritic cells is rapid, mediated by bystander activation, and highly deleterious to bacterial survival.  相似文献   

11.
Dendritic cells are the most potent antigen-presenting cell for priming naive T cells. Optimal activation of T cells requires that dendritic cells undergo a process of maturation resulting in the increased expression of costimulatory molecules, such as CD40, CD86, and CD80, and the production of cytokines. In this study we analyzed the effect of infection of dendritic cells obtained from two strains of mice, BALB/c and C57BL/6, with the paramyxovirus simian virus 5 (SV5). Our results show that C57BL/6 bone marrow-derived dendritic cells (BMDC) are much more permissive to infection with SV5 at a multiplicity of infection (MOI) of 10 PFU/cell compared to BALB/c BMDC, as determined by the production of viral proteins and progeny. However, infection of BALB/c BMDC with a higher MOI of 50 PFU/cell resulted in a productive infection with the production of significant amounts of viral proteins and progeny. Regardless of the permissivity to infection, both BALB/c and C57BL/6 BMDC efficiently upregulated CD40 and CD86. However, CD80 upregulation correlated with the level of expression of viral proteins and the production of viral progeny. While secreted alpha/beta interferon was required for increased expression of all three molecules, optimal CD80 expression was dependent on an additional signal provided by a productive viral infection. These findings provide evidence that the signals controlling the expression of costimulatory molecules following viral infection are distinct. Further, they suggest that the amount of virus encountered and/or the permissivity of a dendritic cell to infection can alter the resulting maturation phenotype and functional capacity of the infected dendritic cell.  相似文献   

12.

Background

Interleukin (IL)-19 has been reported to enhance chronic inflammatory diseases such as asthma but the in vivo mechanism is incompletely understood. Because IL-19 is produced by and regulates cells of the monocyte lineage, our studies focused on in vivo responses of CD11c positive (CD11c+) alveolar macrophages and lung dendritic cells.

Methodology/Principal Findings

IL-19-deficient (IL-19-/-) mice were studied at baseline (naïve) and following intranasal challenge with microbial products, or recombinant cytokines. Naïve IL-19-/- mixed background mice had a decreased percentage of CD11c+ cells in the bronchoalveolar-lavage (BAL) due to the deficiency in IL-19 and a trait inherited from the 129-mouse strain. BAL CD11c+ cells from fully backcrossed IL-19-/- BALB/c or C57BL/6 mice expressed significantly less Major Histocompatibility Complex class II (MHCII) in response to intranasal administration of lipopolysaccharide, Aspergillus antigen, or IL-13, a pro-allergic cytokine. Neurogenic-locus-notch-homolog-protein-2 (Notch2) expression by lung monocytes, the precursors of BAL CD11c+ cells, was dysregulated: extracellular Notch2 was significantly decreased, transmembrane/intracellular Notch2 was significantly increased in IL-19-/- mice relative to wild type. Instillation of recombinant IL-19 increased extracellular Notch2 expression and dendritic cells cultured from bone marrow cells in the presence of IL-19 showed upregulated extracellular Notch2. The CD205 positive subset among the CD11c+ cells was 3-5-fold decreased in the airways and lungs of naïve IL-19-/- mice relative to wild type. Airway inflammation and histological changes in the lungs were ameliorated in IL-19-/- mice challenged with Aspergillus antigen that induces T lymphocyte-dependent allergic inflammation but not in IL-19-/- mice challenged with lipopolysaccharide or IL-13.

Conclusions/Significance

Because MHCII is the molecular platform that displays peptides to T lymphocytes and Notch2 determines cell fate decisions, our studies suggest that endogenous IL-19 is a constituent of the regulome that controls both processes in vivo.  相似文献   

13.
Chlamydia pneumoniae is an obligate intracellular human pathogen causing diseases such as pneumonia, bronchitis, and pharyngitis. Because of its intracellular replication, cell-mediated immune responses are needed to mediate successful defenses of the host. Because dendritic cells play a central role in linking innate immunity and Ag-specific cell-mediated immune responses we asked whether dendritic cells are activated upon contact with C. pneumoniae and whether known Toll like receptors (TLR) are involved in this process. Here we show that C. pneumoniae was taken up by bone marrow-derived murine dendritic cells. Ingested C. pneumoniae appeared to be unable to develop mature inclusion inside dendritic cells. Furthermore, upon contact with C. pneumoniae dendritic cells were potently stimulated because NF-kappaB was activated and translocated to the nucleus, cytokines like IL-12p40 and TNF-alpha were secreted, and expression of MHC class II molecules, CD40, CD80, and CD86 was up-regulated. Importantly, secretion of cytokines as well as translocation of NF-kappaB were dependent on the presence of TLR2 and independent from TLR4 with the exception of IL-12p40 secretion, which was attenuated in the absence of either a functional TLR2 or 4. In conclusion, we show here that recognition of the Gram-negative bacterium C. pneumoniae depends largely on TLR2 and only to a minor extent on TLR4.  相似文献   

14.
Severe injury causes a dramatic host response that disrupts immune homeostasis and predisposes the injured host to opportunistic infections. Because Toll-like receptors (TLRs) recognize conserved microbial Ags and endogenous danger signals that may be triggered by injury, we wanted to determine how injury influences TLR responses. Using an in vivo injury model, we demonstrate that injury significantly increased TLR2- and TLR4-induced IL-1beta, IL-6, and TNF-alpha production by spleen cells. This influence of injury on TLR reactivity was observed as early as 1 day after injury and persisted for at least 7 days. The outcome of similar studies performed using TLR4-mutant C57BL/10ScN/Cr mice revealed that TLR2 responses remained primed, thus suggesting that injury-induced priming can occur independently of endogenous TLR4 signaling. Increased TLR4 reactivity was also observed in vivo, because LPS-challenged injured mice demonstrated significantly higher cytokine expression levels in the lung, liver, spleen, and plasma. Macrophages and dendritic cells were the major source of these cytokines as judged by intracellular cytokine staining. Moreover, ex vivo studies using enriched macrophage and dendritic cell populations confirmed that T cells did not contribute to the enhanced TLR2 and TLR4 responses. The results of flow cytometry studies using TLR2- and TLR4-MD-2-specific Abs indicated that injury did not markedly alter cell surface TLR2 or TLR4-MD-2 expression. Taken together, these findings establish that injury primes the innate immune system for enhanced TLR2- and TLR4-mediated responses and provides evidence to suggest that augmented TLR reactivity might contribute to the development of heightened systemic inflammation following severe injury.  相似文献   

15.
The CD11c(int)B220(+)NK1.1(+)CD49(+) subset of cells has recently been described as IFN-producing killer dendritic cells (IKDC), which share phenotypic and functional properties of dendritic cells and NK cells. Herein we show that bone marrow-derived murine dendritic cell preparations contain abundant CD11c(int)B220(+)NK1.1(+)CD49(+) cells, the removal of which results in loss of tumoricidal activity of unpulsed dendritic cells in vivo. Moreover, following s.c. injection, as few as 5 x 10(3) highly pure bone marrow-derived IKDC cells are capable of shrinking small contralateral syngeneic tumors in C57BL/6 mice, but not in immunodeficient mice, implying the obligate involvement of host effector cells in tumor rejection. Our data suggest that bone marrow-derived IKDC represent a population that has powerful tumoricidal activity in vivo.  相似文献   

16.
The Candida albicans gpi7/gpi7 null mutant strain (Deltagpi7), which is affected in glycosylphosphatidylinositol (GPI) anchor biosynthesis, showed a reduced virulence following systemic infection of C57BL/6 mice. In vitro production of TNF-alpha, IL-6 and IL-1beta by macrophages in response to Deltagpi7 cells was significantly increased as compared to control (wild type GPI7/GPI7 and revertant gpi7/GPI7) cells; this probably contributes to the enhanced recruitment of neutrophils to the peritoneal cavity in response to Deltagpi7 cells. Survival of knockout mice for Toll-like receptor (TLR) 2 and TLR4 following intravenous injection of Deltagpi7 cells showed no significant differences as compared to C57BL/6 mice. In vitro production of TNF-alpha by macrophages and neutrophil recruitment were significantly inhibited in TLR2-/- mice in response to control yeast strains. Interestingly both TNF-alpha production and neutrophil recruitment in response to Deltagpi7 were significantly increased in all three types of mice, with no differences among them, and laminarin failed to inhibit this increased production of TNF-alpha. These results indicate that the enhanced proinflammatory response to Deltagpi7 does not involve recognition through TLR2, TLR4 nor dectin-1. Therefore, complete GPI anchors confer surface properties that are involved in modulation of cytokine production by macrophages in response to C. albicans.  相似文献   

17.
Bacillus anthracis produces lethal toxin (LT) and edema toxin (ET), and they suppress the function of LPS-stimulated dendritic cells (DCs). Because DCs respond differently to various microbial stimuli, we compared toxin effects in bone marrow DCs stimulated with either LPS or Legionella pneumophila (Lp). LT, not ET, was more toxic for cells from BALB/c than from C57BL/6 (B6) as measured by 7-AAD uptake; however, ET suppressed CD11c expression. LT suppressed IL-12, IL-6, and TNF-alpha in cells from BALB/c and B6 mice but increased IL-1beta in LPS-stimulated cultures. ET also suppressed IL-12 and TNF-alpha, but increased IL-6 and IL-1beta in Lp-stimulated cells from B6. Regarding maturation marker expression, LT increased MHCII and CD86 while suppressing CD40 and CD80; ET generally decreased marker expression across all groups. We conclude that the suppression of cytokine production by anthrax toxins is dependent on variables, including the source of the DCs, the type of stimulus and cytokine measured, and the individual toxin tested. However, LT and ET enhancement or suppression of maturation marker expression is more related to the marker studied than the stimuli or cell source. Anthrax toxins are not uniformly suppressive of DC function but instead can increase function under defined conditions.  相似文献   

18.
B cells play a critical role in the initialization and development of the systemic lupus erythematosus that is dependent on the expression of the endosomal ssRNA receptor TLR7. Previous studies have established that B cell expression of TLR7 is controlled by the type I IFN secreted by plasmacytoid dendritic cells. In this article, we report that VISA, also known as MAVS, IPS-1, and CardIf, essential for RIG-I/MDA5-mediated signaling following sensing of cytosolic RNA, regulate B cell expression of TLR7 and CD23. We found that B cells from a VISA(-/-) mouse express reduced TLR7 but normal basal levels of type I IFN. We also show that although IFN-β and TLR7 agonists synergize to promote TLR7 expression in VISA(-/-) B cells, they do not fully complement the defect seen in VISA(-/-) cells. Cell transfer experiments revealed that the observed effects of VISA(-/-) are B cell intrinsic. The reduced TLR7 expression in B cells is correlated with impaired TLR7 agonist-induced upregulation of activation markers CD69 and CD86, cell proliferation, production of IFN-α, TNF, and IL-12, and NF-κB activation. Finally, studies indicate that genetic background may influence the observed phenotype of our VISA(-/-) mice, because VISA(-/-) B cells differ in CD23 and TLR7 expression when on C57BL/6 versus 129Sv-C57BL/6 background. Thus, our findings suggest an unexpected link between VISA-mediated cytosolic RLR signaling and autoimmunity.  相似文献   

19.
A significant amount of evidence has been accumulated to show that Toll-like receptors (TLRs) function as sensors for microbial invasion. However, little is known about how signalling triggered by TLRs leads to the phagocytosis of pathogens. This study was designed to determine whether stimulation of TLR2 mainly with the lipopeptide FSL-1 plays a role in the phagocytosis of pathogens by macrophages. FSL-1 enhanced the phagocytosis of Escherichia coli to a markedly greater extent than it did that of Staphylococcus aureus, but did not enhance the phagocytosis of latex beads. FSL-1 stimulation resulted in enhanced phagocytosis of bacteria by macrophages from TLR2(+/+) mice but not by those from TLR2(-/-) mice. Chinese hamster ovary cells stably expressing TLR2 failed to phagocytose these bacteria, but the cells expressing CD14 did. FSL-1 induced upregulation of the expression of phagocytic receptors, including MSR1, CD36, DC-SIGN and Dectin-1 in THP-1 cells. Human embryonic kidney 293 cells transfected with DC-SIGN and MSR1 phagocytosed these bacteria. These results suggest that the FSL-1-induced enhancement of phagocytosis of bacteria by macrophages may be explained partly by the upregulation of scavenger receptors and the C-type lectins through TLR2-mediated signalling pathways, and that TLR2 by itself does not function as a phagocytic receptor.  相似文献   

20.
Obesity and type 2 diabetes are characterized by decreased insulin sensitivity, elevated concentrations of free fatty acids (FFAs), and increased macrophage infiltration in adipose tissue (AT). Here, we show that FFAs can cause activation of RAW264.7 cells primarily via the JNK signaling cascade and that TLR2 and TLR4 are upstream of JNK and help transduce FFA proinflammatory signals. We also demonstrate that F4/80(+)CD11b(+)CD11c(+) bone marrow-derived dendritic cells (BMDCs) have heightened proinflammatory activity compared with F4/80(+)CD11b(+)CD11c(-) bone marrow-derived macrophages and that the proinflammatory activity and JNK phosphorylation of BMDCs, but not bone marrow-derived macrophages, was further increased by FFA treatment. F4/80(+)CD11b(+)CD11c(+) cells were found in AT, and the proportion and number of these cells in AT is increased in ob/ob mice and by feeding wild type mice a high fat diet for 1 and 12 weeks. AT F4/80(+)CD11b(+)CD11c(+) cells express increased inflammatory markers compared with F4/80(+)CD11b(+)CD11c(-) cells, and FFA treatment increased inflammatory responses in these cells. In addition, we found that CD11c expression is increased in skeletal muscle of high fat diet-fed mice and that conditioned medium from FFA-treated wild type BMDCs, but not TLR2/4 DKO BMDCs, can induce insulin resistance in L6 myotubes. Together our results show that FFAs can activate CD11c(+) myeloid proinflammatory cells via TLR2/4 and JNK signaling pathways, thereby promoting inflammation and subsequent cellular insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号