共查询到20条相似文献,搜索用时 22 毫秒
1.
Immunomodulatory role of vascular endothelial growth factor and angiopoietin-1 in airway remodeling 总被引:3,自引:0,他引:3
The blood vessels formed in asthmatic airways are involved in inflammatory and airway remodeling processes in chronic asthma. Vascular endothelial cell growth factor (VEGF) and angiopoietin-1 (Ang-1) are primary angiogenic growth factors, involved in the formation of such blood vessels. VEGF has been reported to contribute to non-specific airway hyper-responsiveness, have chemotactic effects on eosinophils, and enhance airway smooth muscle cell proliferation. Furthermore, Th2 cells have receptors for VEGF, and Th2-associated cytokines increase VEGF production. There are reports that elevated levels of VEGF correlates with the severity of asthma. Ang-1 has been shown to induce pro-inflammatory effects such as eosinophil chemotaxis via tie-2 receptors. Reports indicate ang-1 contribution to increased secretion of matrix metalloproteinase-2 (MMP-2) and decreased secretion of tissue inhibitors of metalloproteinase-2 (TIMP-2). However, Ang-1 has also been shown to exhibit several anti-inflammatory properties such as suppressing expression of adhesion molecules, blocking vascular permeability and eosinophil chemotaxis induced by VEGF. These findings support the notion that apart from their roles in blood vessels formation, these angiogenic growth factors are directly involved in the pathogenesis of chronic asthma. This paper reviews individual and combined roles of VEGF and Ang-1. The potential therapeutic applications involving these factors are also discussed. 相似文献
2.
3.
Essential role for nuclear PTEN in maintaining chromosomal integrity 总被引:22,自引:0,他引:22
A broad spectrum of mutations in PTEN, encoding a lipid phosphatase that inactivates the P13-K/AKT pathway, is found associated with primary tumors. Some of these mutations occur outside the phosphatase domain, suggesting that additional activities of PTEN function in tumor suppression. We report a nuclear function for PTEN in controlling chromosomal integrity. Disruption of Pten leads to extensive centromere breakage and chromosomal translocations. PTEN was found localized at centromeres and physically associated with CENP-C, an integral component of the kinetochore. C-terminal PTEN mutants disrupt the association of PTEN with centromeres and cause centromeric instability. Furthermore, Pten null cells exhibit spontaneous DNA double-strand breaks (DSBs). We show that PTEN acts on chromatin and regulates expression of Rad51, which reduces the incidence of spontaneous DSBs. Our results demonstrate that PTEN plays a fundamental role in the maintenance of chromosomal stability through the physical interaction with centromeres and control of DNA repair. We propose that PTEN acts as a guardian of genome integrity. 相似文献
4.
5.
Fardini Y Wang X Témoin S Nithianantham S Lee D Shoham M Han YW 《Molecular microbiology》2011,82(6):1468-1480
Fusobacterium nucleatum is a Gram-negative oral anaerobe, capable of systemic dissemination causing infections and abscesses, often in mixed-species, at different body sites. We have shown previously that F. nucleatum adheres to and invades host epithelial and endothelial cells via a novel FadA adhesin. In this study, vascular endothelial (VE)-cadherin, a member of the cadherin family and a cell-cell junction molecule, was identified as the endothelial receptor for FadA, required for F. nucleatum binding to the cells. FadA colocalized with VE-cadherin on endothelial cells, causing relocation of VE-cadherin away from the cell-cell junctions. As a result, the endothelial permeability was increased, allowing the bacteria to cross the endothelium through loosened junctions. This crossing mechanism may explain why the organism is able to disseminate systemically to colonize in different body sites and even overcome the placental and blood-brain barriers. Co-incubation of F. nucleatum and Escherichia coli enhanced penetration of the endothelial cells by the latter in the transwell assays, suggesting F. nucleatum may serve as an 'enabler' for other microorganisms to spread systemically. This may explain why F. nucleatum is often found in mixed infections. This study reveals a possible novel dissemination mechanism utilized by pathogens. 相似文献
6.
Rapid neurite remodeling is fundamental to nervous system development and plasticity and is regulated by Rho family GTPases that signal f-actin reorganization in response to various receptor ligands. Neuronal N1E-115 cells show dramatic neurite retraction and cell rounding in response to serum factors such as lysophosphatidic acid (LPA), sphingosine-1 phosphate (S1P), and thrombin, due to activation of the RhoA-Rho kinase pathway. Type I phosphatidylinositol 4-phosphate 5-kinases (PIPkinase), which regulate cellular levels of PtdIns(4,5)P(2), have been suggested as targets of the RhoA-Rho kinase pathway able to modulate cytoskeletal dynamics. Here, we show that the introduction of Type Ialpha PIPkinase into N1E-115 cells leads to cell rounding and complete inhibition of neurite outgrowth, perhaps through the dissociation of vinculin and the destabilization of focal adhesions. This occurs independently of RhoA, Rho kinase, and the activation of actomyosin contraction. Strikingly, expression of kinase-dead PIPkinase promotes the outgrowth of neurites, which fail to retract in response to LPA, S1P, thrombin, or active RhoA. Moreover, neurite retraction in response to an endogenous neuronal guidance cue, Semaphorin3A, was also dependent on Type Ialpha PIPkinase. Our results suggest an essential role for a Type I PIPkinase during neurite retraction in response to a number of diverse stimuli. 相似文献
7.
Muradashvili N Tyagi N Tyagi R Munjal C Lominadze D 《Biochemical and biophysical research communications》2011,(4):509-514
Many inflammatory diseases are associated with elevated blood concentration of fibrinogen (Fg) leading to vascular dysfunction. We showed that pathologically high (4 mg/ml) content of Fg disrupts integrity of endothelial cell (EC) layer and causes macromolecular leakage affecting tight junction proteins. However, role of adherence junction proteins, particularly vascular endothelial cadherin (VE-cadherin) and matrix metalloproteinase-9 (MMP-9) in this process is not clear. We tested the hypothesis that at high levels Fg affects integrity of mouse brain endothelial cell (MBEC) monolayer through activation of MMP-9 and downregulation of VE-cadherin expression and in part its translocation to the cytosol.The effect of Fg on cultured MBEC layer integrity was assessed by measuring transendothelial electrical resistance. Cellular expression and translocation of VE-cadherin were assessed by Western blot and immunohistochemical analyses, (respectively). Our results suggest that high content of Fg decreased VE-cadherin expression at protein and mRNA levels. Fg induced translocation of VE-cadherin to cytosol, which led to disruption of cell-to-cell interaction and cell to subendothelial matrix attachment. Fg-induced alterations in cell layer integrity and their attachment were diminished during inhibition of MMP-9 activity.Thus Fg compromises EC layer integrity causing downregulation and translocation of VE-cadherin and through MMP-9 activation. These results suggest that increased level of Fg could play a significant role in vascular dysfunction and remodeling. 相似文献
8.
The cortical cytoskeleton of vascular endothelial cells plays an important role in responding to mechanical stimuli and controlling the distribution of cell surface proteins. Here, we have used atomic force microscopy to visualize the dynamics of cortical cytoskeleton in living bovine pulmonary artery endothelial cells. We demonstrate that the cortical cytoskeleton, organized as a complex polygonal mesh, is highly dynamic and shows two modes of remodeling: intact-boundary-mode where mesh element boundaries remain intact but move at approximately 0.08 microm/min allowing the mesh element to change shape, and altered-boundary-mode where new mesh boundaries form and existing ones disappear. 相似文献
9.
10.
Thomas P. Vacek William Gillespie Neetu Tyagi Jonathan C. Vacek Suresh C. Tyagi 《Amino acids》2010,39(5):1161-1169
Remodeling by its very nature implied synthesis and degradation of extracellular matrix (ECM) proteins. Although oxidative
stress, matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) have been implicated in vascular remodeling,
the differential role of MMPs versus TIMPs and oxidative stress in vascular remodeling was unclear. TIMP-3 induced vascular
cell apoptosis, therefore, we hypothesized that during vascular injury TIMP-3, MMP-9 and -12 (elastin-degrading MMP) were
increased, whereas MMP-2 (constitutive MMP) and TIMP-4 (cardioprotective TIMP) decreased. Because of the potent anti-oxidant,
vasorelaxing, anti-hypertensive agent, hydrogen sulfide (H2S) was used to mitigate the vascular remodeling due to the differential expression of MMP and TIMP. Carotid artery injury
was created by inserting a PE-10 catheter and rotating several times before pulling out. The insertion hole was sealed. Mice
were grouped: wild type (WT), wild-type damaged artery (WTD), WT + NaHS (sodium hydrogen sulfide, precursor of H2S) treatment (30 μmol/L in drinking water/6 weeks) and WTD + NaHS treatment. Carotid arteries were analyzed for oxidative
stress and remodeling, by measuring super oxide dismutase-1 (SOD1), p47 (NADPH oxidase subunit), nitrotyrosine, MMPs and TIMPs
by in situ immunolabeling and by Western blot analyses. The results suggested robust increase in p47, nitrotyrosine, MMP-9,
MMP-12, TIMP-3 and decrease in SOD1 and MMP-2 levels in the injured arteries. The treatment with H2S ameliorated these effects. We concluded that p47, TIMP-3, MMP-9 and -12 were increased where as SOD-1, MMP-2 and TIMP-4
were decreased in the injured arteries. The treatment with H2S mitigated the vascular remodeling by normalizing the levels of redox stress, MMPs and TIMPs. 相似文献
11.
Anastasia Familtseva Nevena Jeremic George H. Kunkel Suresh C. Tyagi 《Molecular and cellular biochemistry》2017,426(1-2):177-181
Nephrotic syndrome (NS) is a kidney disease predominantly present in children with idiopathic condition; final stage of the disease progresses into end-stage renal disease. Generally, NS is treated using standard steroid therapy, however; most of the children are steroid sensitive and about 15–20% are non-responders (SRNS). Non-responsiveness of these children would be a risk with the possibility of mutational changes in podocyte genes (NPHS1, NPHS2, WT1, PLCE1). The mutation in podocyte genes is associated with SRNS. NPHS1, NPHS2, and WT1 genes are identified/directly linked to SRNS. The present study is a surveillance on the mutation analysis of WT1 (exons 8 and 9) and NPHS2 (exons 1–8) gene in SRNS followed by clinical management. In the present study, we analyzed these two genes in a total of 117 SRNS (73 boys and 44 girls) children. A total of five mutations were detected in six children. First, WT1 mutation was detected at 9th intron-IVS 9 + 4C > T position in one SRNS female patient. This WT1 mutation was identified in a girl having Frasier Syndrome (FS) with focal segmental glomerulosclerosis and a complete sex reversal found through molecular and karyological screening. In NPHS2, missense mutations of P20L (in two children), P316S, and p.R229Q, and a frame shift mutation of 42delG were detected. Thus, applying molecular investigation helped us to decide on treatment plan of SRNS patients, mainly to avoid unnecessary immunosuppressive treatment. 相似文献
12.
Essential role for sphingosine kinases in neural and vascular development 总被引:10,自引:0,他引:10 下载免费PDF全文
Mizugishi K Yamashita T Olivera A Miller GF Spiegel S Proia RL 《Molecular and cellular biology》2005,25(24):11113-11121
Sphingosine-1-phosphate (S1P), an important sphingolipid metabolite, regulates diverse cellular processes, including cell survival, growth, and differentiation. Here we show that S1P signaling is critical for neural and vascular development. Sphingosine kinase-null mice exhibited a deficiency of S1P which severely disturbed neurogenesis, including neural tube closure, and angiogenesis and caused embryonic lethality. A dramatic increase in apoptosis and a decrease in mitosis were seen in the developing nervous system. S1P(1) receptor-null mice also showed severe defects in neurogenesis, indicating that the mechanism by which S1P promotes neurogenesis is, in part, signaling from the S1P(1) receptor. Thus, S1P joins a growing list of signaling molecules, such as vascular endothelial growth factor, which regulate the functionally intertwined pathways of angiogenesis and neurogenesis. Our findings also suggest that exploitation of this potent neuronal survival pathway could lead to the development of novel therapeutic approaches for neurological diseases. 相似文献
13.
The role of integrins in the maintenance of endothelial monolayer integrity 总被引:13,自引:9,他引:13 下载免费PDF全文
This paper shows that, in confluent human umbilical vein endothelial cell (EC) monolayers, the integrin heterodimers alpha 2 beta 1 and alpha 5 beta 1, but not other members of the beta 1 subfamily, are located at cell-cell contact borders and not at cellular free edges. Also the alpha v chain, but not its most common partner beta 3, that is widely expressed in EC cell-matrix junctions, is found at cell-cell borders. In EC monolayers, the putative ligands of alpha 2 beta 1 and alpha 5 beta 1 receptors, i.e., laminin, collagen type IV, and fibronectin, are also organized in strands corresponding to cell-cell borders. The location of the above integrin receptors is not an artifact of in vitro culture since it has been noted also in explanted islets of the native umbilical vein endothelium. The integrins alpha 2 beta 1 and alpha 5 beta 1 play a role in the maintenance of endothelial monolayer continuity in vitro. Indeed, specific antibodies to alpha 2 beta 1, alpha 5 beta 1, and the synthetic peptide GRGDSP alter its continuity without any initial cell detachment. Moreover, antibodies to alpha 5 beta 1 increase the permeation of macromolecules across confluent EC monolayers. In contrast beta 3 antibodies were ineffective. It is suggested that the relocation of integrins to cell-cell borders is a feature of cells programmed to form polarized monolayers since integrins have a different distribution in nonpolar confluent dermal fibroblasts. The conclusion is that some members of the integrin superfamily collaborate with other intercellular molecules to form lateral junctions and to control both the monolayer integrity and the permeability properties of the vascular endothelial lining. This also suggest that integrins are adhesion molecules provided with a unique biochemical adaptability to different biological functions. 相似文献
14.
Essential role of Smad3 in the inhibition of inflammation-induced PPARbeta/delta expression 总被引:2,自引:0,他引:2 下载免费PDF全文
Tan NS Michalik L Di-Poï N Ng CY Mermod N Roberts AB Desvergne B Wahli W 《The EMBO journal》2004,23(21):4211-4221
15.
Primo L di Blasio L Roca C Droetto S Piva R Schaffhausen B Bussolino F 《The Journal of cell biology》2007,176(7):1035-1047
The serine/threonine protein kinase phosphoinositide-dependent kinase 1 (PDK1) plays a central role in cellular signaling by phosphorylating members of the AGC family of kinases, including PKB/Akt. We now present evidence showing that PDK1 is essential for the motility of vascular endothelial cells (ECs) and that it is involved in the regulation of their chemotaxis. ECs differentiated from mouse embryonic stem cells lacking PDK1 completely lost their ability to migrate in vitro in response to vascular endothelial growth factor-A (VEGF-A). In addition, PDK1(-/-) embryoid bodies exhibit evident developmental and vascular defects that can be attributed to a reduced cell migration. Moreover, the overexpression of PDK1 increased the EC migration induced by VEGF-A. We propose a model of spatial distribution of PDK1 and Akt in which the synthesis of phosphatidylinositol 3,4,5 triphosphate at plasma membrane by activation of phosphoinositide 3-kinase recruits both proteins at the leading edge of the polarized ECs and promotes cell chemotaxis. These findings establish a mechanism for the spatial localization of PDK1 and its substrate Akt to regulate directional migration. 相似文献
16.
Haidari M Zhang W Chen Z Ganjehei L Mortazavi A Warier N Vanderslice P Dixon RA 《Experimental cell research》2012,318(14):1673-1684
Vascular endothelial cadherin (VE-cad) tyrosine (Tyr) phosphorylation has been implicated in the disruption of adherens junctions (AJs) induced by inflammatory reactions. The impacts of statins on integrity of AJs and VE-cad Tyr phosphorylation have not been explored. The effects of atorvastatin on IL-1β and monocyte-induced VE-cad Tyr phosphorylation in human umbilical vein endothelial cells (ECs) were studied. In ECs treated with interleukin (IL)-1β for 30 min, VE-cad Tyr phosphorylation, dissociation of the VE-cad/β-catenin complex and transendothelial migration (TEM) of monocytes were increased. These processes were mediated by activation of HRas and RhoA that leads to phosphorylation of myosin light chain (MLC). Atorvastatin inhibited IL-1β-induced Tyr phosphorylation of VE-cad by inhibiting RhoA and by dephosphorylating MLC. The attenuating effect of atorvastatin on VE-cad Tyr phosphorylation was reversed when RhoA was activated or MLC phosphatase was inhibited. Furthermore, inhibiting farnesyl transferase or geranylgeranyl transferase reproduced the inhibitory effects of atorvastatin on VE-cad Tyr phosphorylation. In addition, atorvastatin inhibited monocyte-induced VE-cad Tyr phosphorylation in ECs and attenuated IL-1β-induced TEM of monocytes. Our study introduces a novel pleiotropic effect of atorvastatin and suggests that statins protect the integrity of AJs in ECs by inhibiting RhoA-mediated Tyr phosphorylation of VE-cad. 相似文献
17.
18.
Masashi Kitagawa Masato Hojo Itaru Imayoshi Masanori Goto Mitsushige Ando Toshiyuki Ohtsuka Ryoichiro Kageyama Susumu Miyamoto 《Mechanisms of development》2013,130(9-10):458-466
The vascular system is the first organ to form in the developing mammalian embryo. The Notch signaling pathway is an evolutionarily conserved signaling mechanism essential for proper embryonic development in almost all vertebrate organs. The analysis of targeted mouse mutants has demonstrated essential roles of the Notch signaling pathway in embryonic vascular development. However, Notch signaling-deficient mice have so far not been examined in detail in the head region. The bHLH genes Hes1 and Hes5 are essential effectors for Notch signaling, which regulate the maintenance of progenitor cells and the timing of their differentiation in various tissues and organs. Here, we report that endothelial-specific Hes1 and Hes5 mutant embryos exhibited defective vascular remodeling in the brain. In addition, arterial identity of endothelial cells was partially lost in the brain of these mutant mice. These data suggest that Hes1 and Hes5 regulate vascular remodeling and arterial fate specification of endothelial cells in the development of the brain. Hes1 and Hes5 represent critical transducers of Notch signals in brain vascular development. 相似文献
19.
血管平滑肌细胞(VSMC)表型转化是动脉粥样硬化、高血压和血管成形术后再狭窄等血管重塑性疾病的共同病理生理过程。VSMC表型转化过程中平滑肌特异基因的表达变化和细胞骨架的组构是当前研究的热点问题之一。平滑肌22α(SM22α)是近年发现的一种VSMC分化标志物,其表达具有平滑肌组织特异性和细胞表型特异性,该蛋白作为一种肌动蛋白细胞骨架相关蛋白参与VSMC骨架组构和收缩调节。本文就SM22α的结构特征及其在VSMC骨架组构和血管重塑中的作用机制进行综述。 相似文献
20.