首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we investigate by means of immunohistochemistry, the tissue distribution of constitutive cytochrome P4501A (CYP1A), from hatching until 30 days posthatching in developing Siberian sturgeon, Acipenser baeri. For this purpose, a polyclonal (BN-1) antiserum developed against a conservative sequence of piscine CYP1A and a monoclonal (C10-7) antiserum directed against cod CYP1A were used on paraffin-embedded samples. From hatching onwards, distinct CYP1A immunoreactivity was distinctly observed in the following tissues and cells: envelope of oil droplets, matrix and syncytium of the yolk-sac, sinusoids, biliary epithelial cells and hepatocytes. In the digestive tract, buccopharyngeal, oesophageal, gastric and intestinal epithelia, as well as the cytoplasm and brush border of enterocytes were CYP1A-positive. Interestingly, gastric glands and melanin-plug present within lumen of the digestive system were strongly immunoreactive. Kidney (epithelia of renal tubules), gills (pillar and endothelial cells), skin (epithelial cells), muscle fibres of heart and eye (retina) were positive. In brain, we observed a strong CYP1A staining in the developing telencephalon and especially in olfactory system, as well as in those nerve fibres running ventrally toward the posterior brain. A strong CYP1A staining was observed in vascular endothelia of all organs/tissues, especially in the liver. In general, the intensity of CYP1A immunostaining increased during larval development, suggesting besides its known metabolic function (endogenous and/or exogenous), a possible participation of this heme-protein in control of cell division, regulation of growth and differentiation.  相似文献   

2.
In this paper, the toxicity (percentage of hatching and LC50) and histopathological alterations induced by benzo(a)pyrene (B(a)P; 0.032, 0.056, 0.1, 0.32, 0.56 and 0.1 microg l(-1)) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 0.025, 0.05, 0.1, 1.5 and 5 pg l(-1)) have been studied in the early life stages of the seabream, Sparus aurata, from 0 to 15 days post-hatching (dph). Toxicity assays showed that the percentage of hatching decreased with increasing the contaminant concentration. Moreover, the number of hatched larvae was lower for TCDD-exposed eggs in comparison with the B(a)P exposed ones. The sensitivity of the larvae, in terms of LC50, towards B(a)P and TCDD increased with age of the larvae. The LC50 were 0.81 microg l(-1) for B(a)P and 4.37 pg l(-1) for TCDD in neonate larvae and 0.11 microg l(-1) for B(a)P and 1.45 pg l(-1) for TCDD in 5 dph larvae. For histopathological examination, samples from LC50 experiments were taken at different concentrations of B(a)P (between 0.032 and 0.1 microg l(-1)) and TCDD (between 0.025 and 5 pg l(-1)). In both, B(a)P- and TCDD-exposed larvae, a concentration-dependency of the histopathological alterations was detected. In contrast, an age-dependency was not clearly detected, possibly due to the lack of development of mostly the organs in the early life stages. Cytoplasmic vacuolization of hepatocytes, as well as subcutaneous edema and necrosis of the trunk musculature, were the most common histopathological disorders detected in both B(a)P- and TCDD-exposed larvae. On the other hand, there were differences in histopathology on exposure to B(a)P and TCDD. Epithelial desquamation in gills, lack of inflation of the swim bladder, as well as lesions in the nervous system were specific for TCDD, while hepatic, vascular and muscular alterations were common for both toxicants. In parallel to the histopathological examinations, immunohistochemical analyses on cytochrome P450-1A isoenzyme (CYP1A) expression were performed on the same samples. The basal/constitutive distribution of CYP1A and its induction was also analysed in similar stages of larval development of the seabream under control conditions and after sublethal exposure to B(a)P (between 0.032 and 0.1 microg l(-1)) and TCDD (between 0.025 and 5 pg l(-1)). During the endogenous nutrition period (from hatching until 4 dph), constitutive CYP1A immunoreactivity was observed in the syncytium and in the matrix of the yolk sac. On the other hand, during exogenous feeding (between 4 and 10 dph), basal CYP1A immunoreactivity was detected in vascular hepatic system, whereas exocrine pancreas showed no reactivity. In gut, basal CYP1A immunoreactivity was restricted to the intestinal brush border and the apical cytoplasm of some enterocytes. Induced CYP1A immunoreactivity in B(a)P-exposed larvae was detected within cytoplasm of hepatocytes, intestinal enterocytes and endothelial cells of the heart. Finally, in TCDD-exposed larvae, CYP1A induction was also detected in pancreatic acinar cells, as well as in renal epithelial cells. The results of this study provided preliminary evidence that constitutive and inducible CYP1A organ distribution in S. aurata larvae was similar to that existing in adult fish. Moreover, exposure to TCDD was more toxic for the larvae and induced more CYP1A that exposure to B(a)P.  相似文献   

3.
A pleuronectiform fish, the barfin flounder Verasper moseri, has three molecular forms of gonadotropin-releasing hormone (GnRH) in the brain, salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II) and seabream GnRH (sbGnRH). To elucidate the ontogenic origin of the neurons that produce these GnRH molecules, the development of three GnRH systems was examined by in situ hybridization and immunocytochemistry. Neuronal somata that express sGnRH mRNA were detected first in the vicinity of the olfactory epithelium 21 days after hatching (Day 21), and then in the transitional area between the olfactory nerve and olfactory bulb and the terminal nerve ganglion on Day 28. cGnRH-II mRNA-expressing neuronal somata were first identified in the midbrain tegmentum near the ventricle on Day 7. cGnRH-II-immunoreactive (ir) fibers were first found in the brain on Day 7. sbGnRH mRNA-expressing neuronal somata were first detected in the preoptic area on Day 42. sbGnRH-ir fibers were localized in the preoptic area-hypothalamus, and formed a distinctive bundle of axons projecting to the pituitary on Day 70. These results indicate that three forms of GnRH neurons have separate embryonic origins in the barfin flounder as in other perciform fish such as tilapia Oreochromis niloticus and red seabream Pagrus major: sGnRH, cGnRH-II and sbGnRH neurons derive from the olfactory placode, the midbrain tegmentum near the ventricle and the preoptic area, respectively.  相似文献   

4.
5.
6.
Cholesterol metabolism in the brain is distinct from that in other tissues due to the fact that cholesterol itself is unable to pass across the blood-brain barrier. Elimination of brain cholesterol is mainly dependent on a neuronal-specific cytochrome P450, CYP46A1, catalyzing the conversion of cholesterol into 24(S)-hydroxycholesterol (24OHC), which is able to pass the blood-brain barrier. A suitable model for studying this elimination from human neuronal cells has not been described previously. It is shown here that differentiated Ntera2/clone D1 (NT2) cells express the key genes involved in brain cholesterol homeostasis including CYP46A1, and that the expression profiles of the genes observed during neuronal differentiation are those expected to occur in vivo. Thus there was a decrease in the mRNA levels corresponding to cholesterol synthesis enzymes and a marked increase in the mRNA level of CYP46A1. The latter increase was associated with increased levels of CYP46A1 protein and increased production of 24OHC. The magnitude of the secretion of 24OHC from the differentiated NT2 cells into the medium was similar to that expected to occur under in vivo conditions. An alternative to elimination of cholesterol by the CYP46A1 mechanism is elimination by CYP27A1, and the product of this enzyme, 27-hydroxycholesterol (27OHC), is also known to pass the blood-brain barrier. The CYP27A1 protein level decreased during the differentiation of the NT2 cells in parallel with decreased production of 27OHC. The ratio between 24OHC and 27OHC in the medium from the cultured cells increased, by a factor of 13, during the differentiation process. The results suggest that progenitor cells eliminate cholesterol in the form of 27OHC while neurogenesis induces a change to the CYP46A1 dependent pathway. Furthermore this study demonstrates that differentiated NT2 cells are suitable for studies of cholesterol homeostasis in human neurons.  相似文献   

7.
We performed a detailed analysis of mouse cytochrome P450 2A5 (CYP2A5) expression by in situ hybridization (ISH) and immunohistochemistry (IHC) in the respiratory tissues of mice. The CYP2A5 mRNA and the corresponding protein co-localized at most sites and were predominantly detected in the olfactory region, with an expression in sustentacular cells, Bowman's gland, and duct cells. In the respiratory and transitional epithelium there was no or only weak expression. The nasolacrimal duct and the excretory ducts of nasal and salivary glands displayed expression, whereas no expression occurred in the acini. There was decreasing expression along the epithelial linings of the trachea and lower respiratory tract, whereas no expression occurred in the alveoli. The hepatic CYP2A5 inducers pyrazole and phenobarbital neither changed the CYP2A5 expression pattern nor damaged the olfactory mucosa. In contrast, the olfactory toxicants dichlobenil and methimazole induced characteristic changes. The damaged Bowman's glands displayed no expression, whereas the damaged epithelium expressed the enzyme. The CYP2A5 expression pattern is in accordance with previously reported localization of protein and DNA adducts and the toxicity of some CYP2A5 substrates. This suggests that CYP2A5 is an important determinant for the susceptibility of the nasal and respiratory epithelia to protoxicants and procarcinogens.  相似文献   

8.
Wild stocks of Pacific salmon in the Northwestern United States have declined in recent years, and the major factors contributing to these losses include water pollution and loss of habitat. In salmon, sublethal chemical exposures may impact critical behaviors (such as homing, feeding, predator-avoidance) that are important for species survival. Therefore, understanding the potential for these species to biotransform organic compounds within sensitive target tissues such as liver, gills and olfactory region can help estimate or predict their susceptibility to pollutants. In this study, we used real-time quantitative polymerase chain reaction (Q-PCR), Western blotting, and catalytic assays to characterize the expression of Phase I biotransformation enzymes in coho salmon (Oncorhynchus kisutch), a sensitive species in the Pacific Northwest. Gene expression analysis using Q-PCR assays developed for coho genes revealed the presence of the predominant cytochrome P450 mRNAs (CYP1A, CYP2K1, CYP2M1, CYP3A27) in the olfactory rosettes and provided quantitative mRNA expression levels in coho liver and gills. Q-PCR analysis revealed relatively high expression of the major CYP isoforms in the liver and olfactory rosettes, which was generally confirmed by Western blotting. Extrahepatic CYP expression was generally higher in the olfactory rosettes as compared to the gills. Catalytic studies demonstrated functional CYP1A-dependent ethoxyresorufin-O-deethylase, CYP2-dependent pentoxyresorufin-O-dealkylase, CYP2K1-dependent testosterone 16beta-hydroxylase, and CYP3A27-dependent testosterone 6beta-hydroxylase activities in liver, but not at detectable levels in gills. In contrast, flavin-containing monooxygenase (FMO)-dependent thiourea S-oxidase activity was readily observed in the gills and was substantially higher than that observed in liver. Collectively, the results of this study suggest that the olfactory rosettes are important sites of extrahepatic biotransformation in coho salmon, and that tissue specific-differences in Phase I metabolism may lead to contrasting tissue-specific biotransformation capabilities in this species.  相似文献   

9.
A simple and sensitive method was developed for the determination of cytochrome P450 2E1 (CYP2E1) activity based on the liquid chromatography-mass spectrometry (LC-MS) analysis of 6-hydroxychlorzoxazone generated by 6-hydroxylation of chlorzoxazone under specific catalysis of CYP2E1. In the proposed method, 2-benzoxazolinone was chosen as internal standard and isopropyl ether was used as extraction solvent for sample preparation. The inter-day and intra-day precisions at low, medium and high concentrations of 6-hydroxychlorzoxazone were below 20.0%, and the LOD (S/N=3) was 0.05 ng/mL. This method was applied to analyze the CYP2E1 activity of rat in different brain regions including frontal cortex (FC), cerebellum (CB), brain stem (BS), hippocampus (HC), striatum (ST), thalamus (TH), and olfactory bulb (OB). The results confirmed that chlorzoxazone was a suitable probe for the determination of CYP2E1 activity in brain regions and samples with low content of CYP2E1.  相似文献   

10.
This study compared for seabream, Sparus aurata exposed to benzo(a)pyrene-B(a)P-, the response of molecular cytochrome P450 1A (CYP1A) and cellular histopathology biomarkers. Male gilthead seabream, Sparus aurata specimens were exposed for 20 days via water to a series of high B(a)P concentrations. CYP1A was assessed by measuring enzymatic activity (EROD) and CYP1A protein content, and cellular responses were evaluated by routine histopathological methods. In addition, biliary metabolites were measured in order to verify that B(a)P was absorbed and metabolised. Histological lesions, both in liver and gills, increased in parallel to B(a)P concentrations, with the majority of changes representing rather non-specific alterations. Hepatic EROD and CYP1A proteins data showed a concentration-dependent induction, while in the gills, EROD activity but not CYP1A proteins showed a non-monotonous dose response, with a maximum induction level at 200 microg B(a)P.L-1 and decreasing levels thereafter. The findings provide evidence that short-term, high dose exposure of fish can result in significant uptake and metabolism of the lipophilic B(a)P, and in pronounced pathological damage of absorptive epithelia and internal organs.  相似文献   

11.
Cytochrome P450 (CYP) 2D6 is expressed in liver, brain and other extrahepatic tissues where it metabolizes a range of centrally acting drugs and toxins. As ethanol can induce CYP2D in rat brain, we hypothesized that CYP2D6 expression is higher in brains of human alcoholics. We examined regional and cellular expression of CYP2D6 mRNA and protein by RT-PCR, Southern blotting, slot blotting, immunoblotting and immunocytochemistry. A significant correlation was found between mean mRNA and CYP2D6 protein levels across 13 brain regions. Higher expression was detected in 13 brain regions of alcoholics (n = 8) compared to nonalcoholics (n = 5) (anovap < 0.0001). In hippocampus this was localized in CA1-3 pyramidal cells and dentate gyrus granular neurons. In cerebellum this was localized in Purkinje cells and their dendrites. Both of these brain regions, and these same cell-types, are known to be susceptible to alcohol damage. For one case, a poor metabolizer (CYP2D6*4/*4), there was no detectable CYP2D6 protein, confirming the specificity of the antibody used. These data suggest that in alcoholics elevated brain CYP2D6 expression may contribute to altered sensitivity to centrally acting drugs and to the mediation of neurotoxic and behavioral effects of alcohol.  相似文献   

12.
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and cholesterol 7 alpha-hydroxylase (CYP7A1), essential enzymes of cholesterol synthesis and excretion, respectively, were isolated from a chicken liver cDNA library. When their recombinant proteins were overexpressed in HNK293 cells, corresponding enzyme activities were observed. The complete open reading frames of MHGR and CYP7A1 contained (i) 2625 base pairs (bp), predicting a protein of 875 amino acids, and (ii) 1539 bp, predicting a protein of 513 amino acids, respectively. By Northern blot analysis, chicken HMGR mRNA expression was detected in most tissues examined, however, the highest levels were found in liver, brain and ileum. CYP7A1 mRNA was detected only in the liver. Changes in chicken HMGR and CYP7A1 mRNA expression with nutritional state were examined and were shown to respond to certain nutritional treatments, i.e. fast refeeding and cholesterol supplementation. HMGR and CYP7A1 mRNA levels were significantly increased with maturation (i.e. egg producing), when compared to immature chickens. However, these stimulations were not associated with estrogen, although this does enhance triacylglycerol and very low density lipoprotein secretion by the chicken liver. The present study is the first to report the molecular characterization of HMGR and CYP7A1, key enzymes of cholesterol metabolism in avian species.  相似文献   

13.
14.
信号失活是嗅觉动态过程的一个重要步骤, 这一过程涉及多样的气味降解酶类。本研究利用RT-PCR方法从家蚕Bombyx mori雄蛾的触角中克隆了一个细胞色素P450基因CYP6AE21。该基因含有一个1 572 bp的开放阅读框(open reading frame, ORF), 编码523个氨基酸, 预测分子量为60.5 kD, 等电点为8.4, 含有细胞色素P450的特征序列血红素结合位点区域。CYP6AE21和CYP6AE2基因一样在相同位置含有1个内含子序列, 且相应的2个外显子大小相同。两者的核苷酸序列相似性达到94.5%, 且在基因组上以头尾相连的方式成簇排列, 中间由约7.6 kb核苷酸序列隔开。CYP6AE21在幼虫的头部和脂肪体, 以及雄蛾和雌蛾的触角中表达量较高; 在幼虫的其他组织和蛾的多个组织中也有一定的表达。P450酶系的重要组分之一--NADPH细胞色素P450还原酶(cytochrome P450 reductase, CPR)基因也在雌蛾和雄蛾触角中高水平表达, 而在其他组织中表达量相对较低。亚细胞定位分析表明CYP6AE21表达产物定位于细胞质中。推测CYP6AE21和CYP6AE2是由其中一个基因加倍复制形成的; 此P450的功能之一可能是参与内化进细胞的气味分子的降解清除。  相似文献   

15.
16.
17.
Studies initiated to determine the expression of CYP1A1/1A2 isoenzymes in the primary cultures of rat brain neuronal and glial cells revealed significant activity of CYP1A-dependent 7-ethoxyresorufin-o-dealkylase (EROD) in microsomes prepared from both rat brain neuronal and glial cells. RT-PCR and immunocytochemical studies demonstrated constitutive mRNA and protein expression of CYP1A1 and 1A2 isoenzymes in cultured neuronal and glial cells. Cultured neurons exhibited relatively higher constitutive mRNA and protein expression of CYP1A1 and 1A2 isoenzymes, associated with higher activity of EROD than the glial cells. Induction studies with 3-methylchlorantherene (MC), a known CYP1A-inducer, resulted in significant concentration dependent increase in the activity of EROD in cultured rat brain cells with glial cells exhibiting a greater magnitude of induction than the neuronal cells. This difference in the increase in enzyme activity was also observed with RT-PCR and immunocytochemical studies, indicating relatively higher increase in CYP1A1 and 1A2 mRNA as well as protein expression in the cultured glial cells when compared to the neuronal cells. The greater magnitude of induction of CYP1A1 in glial cells is of significance, as these cells are components of the blood-brain barrier and it is suggested that they have a potential role in the toxication-detoxication mechanism. Our data indicating differences in the expression and sensitivity of CYP1A1 isoenzymes in cultured rat brain cells will not only help in identifying and distinguishing xenobiotic metabolizing capability of these cells but also in understanding the vulnerability of these specific cell types towards neurotoxicants.  相似文献   

18.
The mammalian olfactory mucosa (OM) is unique among extrahepatic tissues in having high levels, and tissue-selective forms, of cytochrome P450 (CYP) enzymes. These enzymes may have important toxicological implications, as well as biological functions, in this chemosensory organ. In addition to a tissue-selective, abundant expression of CYP1A2, CYP2A, and CYP2G1, some of the OM CYPs are also known to have an early developmental expression, a resistance to xenobiotic inducers, and a lack of responsiveness to circadian rhythm. Efforts to fully characterize the regulation of CYP expression in the OM, and to identify the underlying mechanisms, are important for our understanding of the physiological functions and toxicological significance of these biotransformation enzymes, and may also shed unique light on the general mechanisms of CYP regulation. The aim of this mini-review is to provide a summary of current knowledge of the various modes of regulation of CYPs expressed in the OM, an update on our mechanistic studies on tissue-selective CYP expression, and a review of the literature on xenobiotic inducibility of OM CYPs. Our goal is to stimulate further studies in this exciting research area, which is of considerable importance, in view of the constant exposure of the human nasal tissues to inhaled, as well as systemically derived, chemicals, the prevalence of olfactory system damage in individuals with neurodegenerative diseases, and the current uncertainty in risk assessments for potential olfactory toxicants.  相似文献   

19.
DNA methylation of CYP17 (steroid 17 alpha-hydroxylase) was studied in bovine adrenocortical cells, which lose the capacity to express this tissue-specific gene in culture by phenotypic switching. Restriction enzyme digestions, and sequencing of a lambda clone of a second CYP17 gene (CYP17A2), showed that there are at least three CYP17 genes in the bovine genome. Southern blotting of DNA digested with Msp I or Hpa II together with Eco RI was used to investigate the methylation status of Hpa II sites at -1.0 kb (H1), -1.8 kb (H2), and -2.3 kb (H4) in CYP17A1 and CYP17A2 and at -0.7 kb (H0) in CYP17A3. In cells and tissues other than white blood cells, H0 was nonmethylated whereas H1 was always methylated; H2 and H4 showed variation in methylation status among different cells and tissues. In particular, whereas H4 was methylated in the bovine adrenal cortex in vivo, there was a rapid and complete demethylation at H4 when adrenocortical cells were placed in culture. Sites downstream from H4 did not change methylation over the first six passages in culture; additionally, the coding region of CYP17 remained fully methylated under all conditions. In contrast to adrenocortical cells, DNA from fibroblasts was nonmethylated at H2, whereas all downstream sites were fully methylated. Digestion with another methylation-sensitive enzyme, Bsa HI, which has a site between H2 and H4, showed that this region is methylated in intact adrenal cortex but nonmethylated both in cultured adrenocortical cells and in fibroblasts. The specific changes in methylation at this site and at H4 in adrenocortical cells indicate a reproducible, environmentally determined change in methylation in adrenocortical cells when they are placed in culture.  相似文献   

20.
Cytochrome P450 1B1 (CYP1B1) is a recently cloned dioxin-inducible form of the cytochrome P450 supergene family of xenobiotic-metabolizing enzymes. CYP1B1 is constitutively expressed mainly in extrahepatic tissues and is inducible by aryl hydrocarbon receptor ligands. Human CYP1B1 is involved in activation of chemically diverse human procarcinogens, including polycyclic aromatic hydrocarbons and some aromatic amines, as well as the endogenous hormone 17 beta-estradiol. The metabolism of 17 beta-estradiol by CYP1B1 forms 4-hydroxyestradiol, a product believed to be important in estrogen-induced carcinogenesis. Although the distribution of CYP1B1 mRNA and protein in a number of human normal tissues has been well documented, neither the cells expressing CYP1B1 in individual tissue nor the intracellular localization of the enzyme has been thoroughly characterized. In this study, using nonradioactive in situ hybridization and immunohistochemistry, we examined the cellular localization of CYP1B1 mRNA and protein in a range of human normal tissues. CYP1B1 mRNA and protein were expressed in most samples of parenchymal and stromal tissue from brain, kidney, prostate, breast, cervix, uterus, ovary, and lymph nodes. In most tissues, CYP1B1 immunostaining was nuclear. However, in tubule cells of kidney and secretory cells of mammary gland, immunoreactivity for CYP1B1 protein was found in both nucleus and cytoplasm. This study demonstrates for the first time the nuclear localization of CYP1B1 protein. Moreover, the constitutive expression and wide distribution of CYP1B1 mRNA and protein in many human normal tissues suggest functional roles for CYP1B1 in the bioactivation of xenobiotic procarcinogens and endogenous substrates such as estrogens. (J Histochem Cytochem 49:229-236, 2001)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号