首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
By infecting multiple host species and acting as a food resource, parasites can affect food web topography and contribute to ecosystem energy transfer. Owing to the remarkable secondary production of some taxa, parasite biomass – although cryptic – can be comparable to other invertebrate and vertebrate groups. More resolved estimates of parasite biomass are therefore needed to understand parasite interactions, their consequences for host fitness, and potential influences on ecosystem energetics. We developed an approach to quantify the masses of helminth parasites and compared our results with those of biovolume‐based approaches. Specifically, we massed larval and adult parasites representing 13 species and five life stages of trematodes and cestodes from snail and amphibian hosts. We used a replicated regression approach to quantify dry mass and compared these values with indirect biovolume estimates to test the validity of density assumptions. Our technique provided precise estimates (R2 from 0.69 to 0.98) of biomass across a wide range of parasite morphotypes and sizes. Individual parasites ranged in mass from 0.368 ± 0.041 to 320 ± 98.1 μg. Among trematodes, adult parasites tended to be the largest followed by rediae, with nonclonal larval stages (metacercariae and cercariae) as the smallest. Among similar morphotypes, direct estimates of dry mass and the traditional biovolume technique provided generally comparable estimates (although important exceptions also emerged). Finally, we present generalized length‐mass regression equations to calculate trematode mass from length measurements, and discuss the most efficient use of limited numbers of parasites. By providing a novel method of directly estimating parasite biomass while also helping to validate more traditional methods involving length‐mass conversion, our findings aim to facilitate future investigations into the ecological significance of parasites, particularly with respect to ecosystem energetics. In addition, this novel technique can be applied to a wide range of difficult‐to‐mass organisms.  相似文献   

2.
Larval helminths often share intermediate hosts with other individuals of the same or different species. Competition for resources and/or conflicts over transmission routes are likely to influence both the association patterns between species and the life history strategies of each individual. Parasites sharing common intermediate hosts may have evolved ways to avoid or associate with other species depending on their definitive host. If not, individual parasites could develop alternative life history strategies in response to association with particular species. Three sympatric species of helminths exploit the amphipod Paracalliope fluviatilis as an intermediate host in New Zealand: the acanthocephalan Acanthocephalus galaxii, the trematode Microphallus sp. and the progenetic trematode Coitocaecum parvum. Adult A. galaxii and C. parvum are both fish parasites whereas Microphallus sp. infects birds. We found no association, either positive or negative, among the three parasite species. The effects of intra- and interspecific interactions were also measured in the trematode C. parvum. Both intra- and interspecific competition seemed to affect both the life history strategy and the size and fecundity of C. parvum. Firstly, the proportion of progenesis was higher in metacercariae sharing their host with Microphallus sp., the bird parasite, than in any other situation. Second, the intensity of intraspecific competition apparently constrained the ability of metacercariae to adopt progenesis and limited both the growth and egg production of progenetic individuals. These results show that the life history strategy adopted by a parasite may be influenced by other parasites sharing the same host.  相似文献   

3.
Opportunity for parasites to manipulate host behavioral phenotype may be influenced by several factors, including the host ecology and the presence of cohabiting parasites in the same host. Metacercariae of Ornithodiplostomum ptychocheilus and "black spot" Crassiphiala bulboglossa have similar life cycles. Each parasite uses a littoral snail as a first intermediate host, fathead minnows as a second intermediate host, and a piscivorous bird as a final host. Metacercariae of black spot encyst in the dermal and epidermal tissues, while metacercariae of O. ptychocheilus encyst on the brain over a region that coordinates optomotor responses. Because of site differences within the host, we predicted that O. ptychocheilus metacercariae might manipulate the behavioral phenotype of minnows to facilitate transmission to the final host, but metacercariae of black spot would not. In our study population, prevalence was 100% for O. ptychocheilus , with an overall median intensity of 105 metacercariae per minnow. Prevalence of black spot was 60%, with a median abundance and intensity of 12 and 20 metacercariae per minnow for the overall sample and for infected fish, respectively. Minnows accumulated both parasites over time, producing significant correlations between intensity and minnow body length and between intensities of the 2 parasites. Minnows infected with black spot had on average twice as many O. ptychocheilus metacercariae as similar-sized minnows without any black spot cercariae. We found no correlation between body condition of minnows and intensity for either parasite. We measured 2 aspects of anti-predator competence to test for effects linked to parasite intensity. We found no correlation between intensity of either species of parasite and latency to behavioral response to attack from a mechanical model heron, nor was there any effect of parasite intensity on a measure of shoaling affinity. The absence of any detectable effect of metacercariae on anti-predator competence in minnows may reflect selection against parasite pathology from predation by non-hosts of the parasites and overwinter mortality due to low dissolved oxygen.  相似文献   

4.
Most ecosystems are exposed to multiple stressors acting in concert and their combined effects on parasite prevalence in freshwater, marine and terrestrial habitats are largely unknown. We investigated the relationships between farming intensity, water abstraction intensity and parasite prevalence in the mud snail Potamopyrgus antipodarum from 20 stream sites within the Manuherikia River catchment (New Zealand) by using generalized linear models and an information-theoretic model-selection approach. Three trematode taxa that use water birds as definitive hosts were found in the snail host. The average prevalence of all parasites infecting Potamopyrgus in the catchment was 5%. Microphallus sp. “lively”, the most common parasite, was most prevalent at high farming intensity and low water abstraction, besides showing an antagonistic interaction between the two agricultural stressors. These findings highlight the importance of considering multiple stressors and their potential interactions when studying host–parasite systems. Because snails often play key roles in aquatic communities, providing an important link between primary producers and higher trophic levels, and are a common intermediate host to a high diversity of trematode parasites, this host–parasite model system may represent a promising bioassessment tool for detecting anthropogenic disturbances in freshwater systems.  相似文献   

5.
Because resistance to parasites usually has a cost for host species, it is theoretically expected that, in case of multi-infection, host immune responses should vary according to the levels of parasite pathogenicity. The crustacean gammarid Gammarus aequicauda is the second intermediate host of 4 trematode species. Three of these parasites always encyst in the abdomen of gammarids and have no particular effect on the host. However, 1 of these species is sometimes able to encyst in the cerebroid ganglia of the gammarid and strongly alter its behavior in a way that increases its predation risk by aquatic birds, the definitive hosts. In accordance with the hypothesis that the level of parasite pathogenicity influences the likelihood and the degree of host reaction, cases of melanization in our gammarid collection almost exclusively concern the cerebral metacercariae. Our results also indicate that this melanization is able to cancel the behavioral alterations induced by the parasite, suggesting that the cause of the manipulation is not the physical presence of metacercariae in the brain.  相似文献   

6.
Aim To use a comparative approach to understand parasite demographic patterns in native versus introduced populations, evaluating the potential roles of host invasion history and parasite life history. Location North American east and west coasts with a focus on San Francisco Bay (SFB). Methods Species richness and prevalence of trematode parasites were examined in the native and introduced ranges of two gastropod host species, Ilyanassa obsoleta and Littorina saxatilis. We divided the native range into the putative source area for introduction and areas to the north and south; we also sampled the overlapping introduced range in SFB. We dissected 14,781 snails from 103 populations and recorded the prevalence and identity of trematode parasites. We compared trematode species richness and prevalence across the hosts’ introduced and native ranges, and evaluated the influence of host availability on observed patterns. Results Relative to the native range, both I. obsoleta and L. saxatilis have escaped (lost) parasites in SFB, and L. saxatilis demonstrated a greater reduction of trematode diversity and infection prevalence than I. obsoleta. This was not due to sampling inequalities between the hosts. Instead, rarefaction curves suggested complete capture of trematode species in native source and SFB subregions, except for L. saxatilis in SFB, where infection was extremely rare. For I. obsoleta, infection prevalence of trematodes using fish definitive hosts was significantly lower in SFB compared to the native range, unlike those using bird hosts. Host availability partly explained the presence of introduced trematodes in SFB. Main conclusions Differential losses of parasite richness and prevalence for the two gastropod host species in their introduced range is probably the result of several mechanistic factors: time since introduction, propagule pressure, vector of introduction, and host availability. Moreover, the recent occurrence of L. saxatilis’ invasion and its active introduction vector suggest that its parasite diversity and distribution will probably increase over time. Our study suggests that host invasion history and parasite life history play key roles in the extent and diversity of trematodes transferred to introduced populations. Our results also provide vital information for understanding community‐level influences of parasite introductions, as well as for disease ecology in general.  相似文献   

7.
Many biotic interactions can affect the prevalence and intensity of parasite infections in aquatic snails. Historically, these studies have centered on interactions between trematode parasites or between trematodes and other organisms. The present investigation focuses on the nematode parasite Daubaylia potomaca and its interactions with a commensal, Chaetogaster limnaei limnaei , and a variety of trematode species. It was found that the presence of C. l. limnaei indirectly increased the mean intensity of D. potomaca infections, apparently by acting as a restraint for various trematode parasites, particularly the rediae of Echinostoma sp. In turn, Echinostoma sp. rediae adversely affected the mean intensity of D. potomaca by their consumption of both juvenile and adult nematodes present in tissues of the snail. These organisms not only belong to 3 different phyla but occupy distinct trophic levels as well. The complex interactions among these 3 organisms in the snail host provide an excellent example of biotic interactions influencing the infection dynamics of parasites in aquatic snails.  相似文献   

8.
The diversity of fish parasite life history strategies makes these species sensitive bioindicators of aquatic ecosystem health. While monoxenous (single-host) species may persist in highly perturbed, extreme environments, this is not necessarily true for heteroxenous (multiple-host) species. As many parasites possess complex life cycles and are transmitted through a chain of host species, their dependency on the latter to complete their life cycles renders them sensitive to perturbed environments. In the present study, parasite communities of grey mullet Liza aurata and Liza ramada (Mugilidae) were investigated at two Mediterranean coastal sites in northern Israel: the highly polluted Kishon Harbor (KH) and the relatively unspoiled reference site, Ma'agan Michael (MM). Both are estuarine sites in which grey mullet are one of the most common fish species. The results indicate that fish at the polluted site had significantly less trematode metacercariae than fish at the reference site. Heteroxenous gut helminths were completely absent at the polluted sampling site. Consequently, KH fish displayed lower mean parasite species richness. At the same time, KH fish mean monoxenous parasite richness was higher, although the prevalence of different monoxenous taxa was variable. Copepods had an increased prevalence while monogenean prevalence was significantly reduced at the polluted site. This variability may be attributed to the differential susceptibility of the parasites to the toxicity of different pollutants, their concentration, the exposure time and possible synergistic effects. In this study, we used the cumulative species curve model that extrapolates "true" species richness of a given habitat as a function of increasing sample size. We considered the heteroxenous and monoxenous species separately for each site, and comparison of curves yielded significant results. It is proposed to employ this approach, originally developed for estimating the "true" parasite species richness for a given habitat, in the characterization of communities of differentially impacted coastal marine ecosystems. Communicated by H. von Westernhagen, A. Diamant  相似文献   

9.
对科威特湾微茎科滨鹬马蹄吸虫幼虫期的中间宿主双带盾桑椹螺(Clypeomorus bifasciata)及小相手蟹(Nanosesarma minutum)的季节动态进行了研究。调查期超过一年,在检查的1 600只螺和415只蟹中, 11.8 %的螺感染了8种马蹄属线虫中的一种,且以滨鹬马蹄吸虫的感染占优势(9.9 %螺感染) ; 80 %的蟹感染滨鹬马蹄吸虫囊蚴。虽然一年四季两种宿主都会感染,但吸虫的流行和尾蚴(指成熟期感染)在夏季呈现高蜂。从螺体排出的尾蚴具有明显季节性,在此海湾必须要超过最低温度20℃。总的感染率在较大(较老)的螺里有所下降,显示吸虫影响宿主生存并随之影响宿主群体结构。囊蚴的感染丰度与蟹的个体大小有明显相关性;较大的蟹感染较多的囊蚴,显示宿主能耐受更多的吸虫。调查显示,囊蚴的感染率与蟹的大小或性别无相关性。囊蚴体外脱囊以及产卵吸虫的释放证明,成熟虫体终年存在于所有大小和性别不同的蟹里,显示从蟹到鸟的持续感染是可能的。总的来说,滨鹬马蹄吸虫在海湾的传播动态是由这两种无脊椎动物宿主来协调,并似乎是被一系列依赖于温度的活动控制,这些活动影响易感宿主种群及感染性幼虫期尾蚴和囊蚴的存在。  相似文献   

10.
Most hosts are concurrently or sequentially infected with multiple parasites; thus, fully understanding interactions between individual parasite species and their hosts depends on accurate characterization of the parasite community. For parasitic nematodes, noninvasive methods for obtaining quantitative, species‐specific infection data in wildlife are often unreliable. Consequently, characterization of gastrointestinal nematode communities of wild hosts has largely relied on lethal sampling to isolate and enumerate adult worms directly from the tissues of dead hosts. The necessity of lethal sampling severely restricts the host species that can be studied, the adequacy of sample sizes to assess diversity, the geographic scope of collections and the research questions that can be addressed. Focusing on gastrointestinal nematodes of wild African buffalo, we evaluated whether accurate characterization of nematode communities could be made using a noninvasive technique that combined conventional parasitological approaches with molecular barcoding. To establish the reliability of this new method, we compared estimates of gastrointestinal nematode abundance, prevalence, richness and community composition derived from lethal sampling with estimates derived from our noninvasive approach. Our noninvasive technique accurately estimated total and species‐specific worm abundances, as well as worm prevalence and community composition when compared to the lethal sampling method. Importantly, the rate of parasite species discovery was similar for both methods, and only a modest number of barcoded larvae (n = 10) were needed to capture key aspects of parasite community composition. Overall, this new noninvasive strategy offers numerous advantages over lethal sampling methods for studying nematode–host interactions in wildlife and can readily be applied to a range of study systems.  相似文献   

11.
Characterizing the causes of spatial and temporal variation in parasite-induced mortality under natural conditions is crucial to better understanding the factors driving host population dynamics. Our goal was to quantify this variation in the amphipod Paracalliope novizealandiae, a second intermediate host of the trematode, Maritrema novaezealandensis. If infection and development of trematode metacercariae are benign, we expected mature metacercariae to accumulate within amphipods inhabiting high infestation areas. In field samples, intensity levels of mature metacercariae decreased linearly when amphipods harbored >5 immature metacercariae. This finding is consistent with the hypothesis that the parasite can be detrimental at high intensities of infection. Short-term field experiments showed that host survival also declines with the intensity of new infections and drops below 80% when early stage metacercariae reach 10 amphipod?1. However, parasite effects varied over space and time. High-shore amphipods suffered an increased risk of infection in the summer and a lower likelihood of survival: there was a 10–30% decrease in survivorship for any given infection intensity at high- versus low-shore locations. We also tested for differences in the susceptibility of naive and exposed populations using transplant experiments, and found that naive amphipods acquired greater parasite loads (on average, 4.7 vs. 2.8 metacercariae amphipod?1). Because survival decreases rapidly with infection intensity of both early- and late-stage metacercariae, naive populations would suffer considerably if the parasite were to increase its range. Our results indicate that trematode infections cause high mortality in amphipods during summer months under natural conditions, and emphasize that the effects of parasitism vary at local spatial scales and with exposure history.  相似文献   

12.
In late summer 2004, a conspicuous cockle (Cerastoderma edule) mortality event was observed on a tidal flat in the northern Wadden Sea (North Sea, Germany) with many fresh valves and still living cockles lying on the sediment surface. To investigate whether trematode parasites utilizing the cockle as first or second intermediate host were involved in this mortality, buried and surfaced cockles were sampled and analyzed, and a laboratory experiment conducted. The field survey showed no statistical difference in intensity of parasites encysted in the foot of cockles. Three species of Himasthla utilizing the cockle as second intermediate host and known to impair the cockle’s burrowing ability were found in buried cockles with 148.4±111.1 metacercariae/foot and in surfaced cockles with 164.2±84.4. There was also no difference in infection levels of parasites utilizing the cockles as second intermediate host in other cockle tissues between buried and surfaced cockles. In contrast, surfaced cockles showed a ten times higher prevalence (71.0%) than buried cockles (7.4%) of the trematode Gymnophallus choledochus – a parasite utilizing the cockle as first (and second) intermediate host – filling almost the entire body cavity and eliminating gonad structures. In an aquarium experiment of 14 days, all cockles found buried on the tidal flat survived compared to only 23.3% found on the surface. This suggests G. choledochus to be a castrating agent and a serious mortality factor in adult cockle populations.  相似文献   

13.
Trematode metacercariae typically are regarded as nonfeeding and metabolically inactive. However, the metacercariae of many trematode species undergo complex and prolonged periods of development within their intermediate hosts. In the present study, we used electron microscopy to document chronological changes in development of the tegument of Ornithodiplostomum ptychocheilus metacercariae recovered from the brains of experimentally infected fathead minnows (Pimephales promelas). Commencing at 4 days postinfection (PI), the smooth, thin, syncytial tegument transforms into a complex microlamellar and microvillar system that encircles the entire body surface. The microvilli are oriented in parallel in an extended pattern, reaching directly away from the parasite and toward the receding host tissue. The microvilli disappear at approximately 28 days PI, followed by deposition of the cyst wall and further transformation of the tegument into the spinose, a glandular structure typical of an immature adult. To our knowledge, the progressive disaggregation of host cells at the leading edge of elongating parasite microvilli has not been demonstrated previously for any trematode. These results provide morphological evidence that the metacercariae of some trematode species undergo complex developmental changes associated with feeding in their intermediate host.  相似文献   

14.
Grass shrimp, Palaemonetes pugio Holthuis and P. vilgaris (Say), were collected at 11 localities along the coast of Georgia and surveyed for digenetic trematode metacercariae. The effect of trematode infection on grass shrimp fitness was also examined. Microphallus turgidas (Leigh) was the only trematode observed. The prevalence of metacercarial cysts of this parasite in P. pugio (75%) was higher than in P. vulgaris (24%), as were the mean intensity, abundance, and population density (no. cysts/cm host body length) of the parasite. Infected shrimp were found at every collection locality and parasite prevalence and density were greatest in P. pugio from higher salinity localities (> or = 20 parts per thousand [ppt]). There was no relation between host body size and parasite density in P. vulgaris, and parasite density increased with host body size in P. pugio, suggesting that the parasite does not affect host survival. There was no relation between parasite density and shrimp egg mass, but nonovigerous female P. pugio were more heavily infected than ovigerous ones. In addition, 1 metacercaria of M. turgidus in each of 2 specimens of P. vulgaris was parasitized by the haplosporidian Urosporidium crescens De Turk. This represents a new shrimp host record for this hyperparasite.  相似文献   

15.
Infection of mussels Mytilus edulis L. by 2 trematode species was studied in a natural intertidal population in the Chupa inlet of the White Sea. The prevalence of metacercariae of Himasthla elongata (Mehlis, 1831) and Cercaria parvicaudata (Stunkard & Shaw, 1931) in mussels reached 100% in 3 to 4 yr old molluscs and remained at this level in older individuals. Infection intensity increased evenly with the age of the molluscan host, showing a tendency to decrease only in the oldest (9 yr old) mussels. These patterns of age dynamics of prevalence and infection intensity were associated with accumulation of trematode larvae in the course of the molluscs' lives. Ability of metacercariae to exist in mussels for long periods (at least 2.5 yr) was verified in the course of an experiment, during which infected molluscs were kept in a subtidal net cage. Decrease of infection intensity in the oldest individuals may reflect selective mortality of the most severely infected molluscs. Among mussels of the same age, higher infection intensity values occurred in larger individuals. This may be due to an enhanced pumping rate in large molluscs, which increases the probability of cercariae, free-living trematode larvae, infecting them via water currents.  相似文献   

16.
Doi H  Yurlova NI 《Parasitology》2011,138(8):1022-1028
It is suspected that host-parasite interactions are influenced by climatic oscillations such as the North Atlantic Oscillation (NAO). However, the effects of climatic oscillations on host-parasite interactions have never been investigated. A long-term (1982-1999) dataset of the host snail Lymnaea stagnalis and trematode metacercariae infection has been collected for Lake Chany in Western Siberia. Using this dataset, we estimated the impact of the NAO on the population dynamics of hosts and parasites as well as their interactions. The results of general linear models showed that the abundance of dominant parasite species and the total parasite abundance significantly increased with NAO, with the exception of Moliniella anceps. Other climatic and biological factors were relatively weak to explain the abundance. There was no significant relationship between NAO and the population density of host snails. The prevalence of infection was related to the total abundance of parasites, but not to the NAO. Thus, the responses to the NAO differed between the host and parasites, indicating mismatching in host-parasite interactions. Therefore, climatic oscillations, such as the NAO, influence common parasitism.  相似文献   

17.
The genetic diversity of trematodes within second intermediate hosts has important implications for the evolution of trematode populations as these hosts are utilized after the parasites reproduce asexually within first intermediate hosts and before sexual reproduction within definitive hosts. We characterised the genetic clonal diversity of the marine trematode Maritrema novaezealandensis within amphipod (Paracalliope novizealandiae) second intermediate hosts using four to six microsatellite loci to determine if multiple copies of identical trematode clones existed within naturally infected amphipods. To determine the relative timing of infections by identical clones within hosts, trematode metacercariae were assigned to six developmental stages and the stages of identical clones were compared. The genotypes of 306 trematodes were determined from 44 amphipods each containing more than one trematode. Six pairs of identical trematode clones were recovered in total (representing five amphipods: 11% of amphipods with greater than one trematode) and all pairs of clones belonged to the same developmental stage. This suggests that identical clone infections are effectively synchronous. A general decrease in the number of metacercariae recovered, prevalence, and mean intensity of infection for each subsequent developmental stage coupled with large numbers of metacercariae (>9) only being recovered from recent infections, supports the occurrence of post-infection amphipod mortality and/or within-host trematode mortality. Taken together, our results indicate that natural infections are characterised by high genetic diversity, but that amphipods also periodically encounter "batches" of genetically identical clones, potentially setting the stage for interactions within and between clonal groups inside the host.  相似文献   

18.
《Biotropica》2017,49(2):229-238
Estimates of biodiversity and its global patterns are affected by parasite richness and specificity. Despite this, parasite communities are largely neglected in biodiversity estimates, especially in the tropics. We studied the parasites of annual killifish of the genus Nothobranchius that inhabit annually desiccating pools across the African savannah and survive the dry period as developmentally arrested embryos. Their discontinuous, non‐overlapping generations make them a unique organism in which to study natural parasite fauna. We investigated the relationship between global (climate and altitude) and local (pool size, vegetation, host density and diversity, and diversity of potential intermediate hosts) environmental factors and the community structure of killifish parasites. We examined metazoan parasites from 21 populations of four host species (Nothobranchius orthonotus, N. furzeri, N. kadleci, and N. pienaari) across a gradient of aridity in Mozambique. Seventeen parasite taxa were recorded, with trematode larval stages (metacercariae) being the most abundant taxa. The parasites recorded were both allogenic (life cycle includes non‐aquatic host; predominantly trematodes) and autogenic (cycling only in aquatic hosts; nematodes). The parasite abundance was highest in climatic regions with intermediate aridity, while parasite diversity was associated with local environmental characteristics and positively correlated with fish species diversity and the amount of aquatic vegetation. Our results suggest that parasite communities of sympatric Nothobranchius species are similar and dominated by the larval stages of generalist parasites. Therefore, Nothobranchius serve as important intermediate or paratenic hosts of parasites, with piscivorous birds and predatory fish being their most likely definitive hosts.  相似文献   

19.
We investigate the determinants of macroparasite species richness of Iberian carnivores. For this, we used the parasitological data collected on 14 species of carnivores over a 10-year period. These previously unpublished data permitted to estimate parasite species richness using estimators of species richness, i.e. Jackknife first order and Chao 2. Most of the parasite species were rare, with low prevalence. Potential determinants were investigated as possible factors explaining the variability of parasites species richness among carnivores host body mass, host geographical range, host longevity and host density. Using independent contrasts, we found positive relationships between residuals of estimates of parasite species richness and residuals in host density, and between residuals of estimates of parasite species richness and residuals in host range. These results are discussed in terms of risk of extinction and invasion abilities related to a possible investment in immune defences correlated with parasite diversity.  相似文献   

20.
The prevalence, abundance, and developmental status of the digenetic trematode Proctoeces lintoni Siddiqui et Cable 1960 were compared in 3 species of keyhole limpets Fissurella. A total of 197 limpets was collected at Caleta Chome, south-central Chile. Fissurella picta and F. costata had the highest prevalence of infection, whereas F. picta showed the greatest abundance of parasites, which increased with host shell length. However, the frequency of P. lintoni specimens with eggs in the uterus was greatest in F. costata. These results suggest that an increased rate of development of a parasite in the intermediate host may shorten the residence time necessary for maturation in the final host. Thus, faster development of the parasite in F. costata suggests the possibility that the parasites transmitted through this host species have shorter maturation times in clingfishes than individuals transmitted via other limpet species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号