首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Epidermal growth factor receptor (EGFR) signaling is initiated by ligand binding followed by homodimerization and rapid receptor autophosphorylation. Monitoring EGFR phosphorylation was achieved by measuring translocation and binding of an enhanced yellow fluorescent protein (EYFP)-labeled phosphotyrosine-binding domain (PTB) to enhanced cyan fluorescent protein (ECFP)-tagged EGFR using fluorescence lifetime imaging microscopy or sensitized emission measurements. To simplify dynamic phosphorylation pattern measurements in cells, FLAME, a ratiometric sensor containing both EGFR-ECFP and PTB-EYFP in one molecule, was designed and examined in COS7 cells. Epidermal growth factor (EGF) treatment demonstrated rapid and reversible changes in the EYFP/ECFP fluorescence emission ratios, due to binding of the PTB domain to its consensus binding sites upon phosphorylation at the cell periphery, whereas perinuclear regions failed to respond to EGF but were responsive to tyrosine kinase inhibition. Long-term EGF treatment resulted in accumulation of dephosphorylated receptor in the perinuclear region due to active dephosphorylation occurring at intracellular sites. This indicates that the sensor closely approaches the true dynamics of tyrosine kinase autophosphorylation and dephosphorylation. Phosphatase inhibition by pervanadate resulted in an irreversible response in all cellular compartments. These data show that EGFR is under tonic phosphatase suppression maintaining the receptor in an unphosphorylated (silent) state and is dephosphorylated at endomembranes after ligand-mediated endocytosis.  相似文献   

2.
The epidermal growth factor receptor (EGFR) kinase catalyzes phosphorylation of tyrosines in its C terminus and in other cellular targets upon epidermal growth factor (EGF) stimulation. Here, by using peptides derived from EGFR autophosphorylation sites and cellular substrates, we tested the hypothesis that ligand may function to regulate EGFR kinase specificity by modulating the binding affinity of peptide sequences to the active site. Measurement of the steady-state kinetic parameters, K(m) and k(cat), revealed that EGF did not affect the binding of EGFR peptides but increased the binding affinity for peptides corresponding to the major EGFR-mediated phosphorylation sites of the adaptor proteins Gab1 (Tyr-627) and Shc (Tyr-317), and for peptides containing the previously identified optimal EGFR kinase substrate sequence EEEEYFELV (3-7-fold). Conversely, EGF stimulation increased k(cat) approximately 5-fold for all peptides. Thus, ligand changed the relative preference of the EGFR kinase for substrates as evidenced by EGF increases of approximately 5-fold in the specificity constants (k(cat)/K(m)) for EGFR peptides, whereas approximately 15-40-fold increases were observed for other peptides, such as Gab1 Tyr-627. Furthermore, we demonstrate that EGF (i) increased the binding affinity of EGFR to Gab1 Tyr-627 and Shc Tyr-317 sites in purified GST fusion proteins approximately 4-6-fold, and (ii) EGF significantly enhanced the phosphorylation of these sites, relative to EGFR autophosphorylation, in cell lysates containing the full-length Gab1 and Shc proteins. Analysis of peptides containing amino acid substitutions indicated that residues C-terminal to the target tyrosine were critical for EGF-stimulated increases in substrate binding and regulation of kinase specificity. To our knowledge, this represents the first demonstration that ligand can alter specificity of a receptor kinase toward physiologically relevant targets.  相似文献   

3.
Compound 5 (Cpd 5), a synthetic K vitamin analogue, or 2-(2-mercaptoethanol)-3-methyl-1,4-naphthoquinone, is a potent inhibitor of epidermal growth factor (EGF)-induced rat hepatocyte DNA synthesis and induces EGF receptor (EGFR) tyrosine phosphorylation. To understand the cellular responses to Cpd 5, its effects on the EGF signal transduction pathway were examined and compared to those of the stimulant, EGF. Cpd 5 induced a cellular response program that included the induction of EGFR tyrosine phosphorylation and the activation of the mitogen-activated protein kinase (MAPK) cascade. EGFR tyrosine phosphorylation was induced by Cpd 5 in a time- and dose-dependent manner. Coimmunoprecipitation studies demonstrated that both EGF and Cpd 5 induced tyrosine phosphorylation of EGFR was associated with increased amounts of adapter proteins Shc and Grb2, and the Ras GTP-GDP exchange protein Sos, indicating the formation of functional EGFR complexes. Although EGFR phosphorylation was induced both by the stimulant EGF and the inhibitor Cpd 5, the timing and intensity of activation by EGF and Cpd 5 were different. EGF activated EGFR transiently, whereas Cpd 5 induced an intense and sustained activation. Cpd 5-altered cells had a decreased ability to dephosphorylate tyrosine phosphorylated EGFR, providing evidence for an inhibition of tyrosine phosphatase activity. Both EGF and Cpd 5 caused an induction of phospho-extracellular response kinase (ERK), which was also more sustained with Cpd 5. Moreover, whereas Cpd 5 induced a striking translocation of phosphorylated ERK from cytosol to the nucleus, no significant nuclear translocation occurred after stimulation with EGF. The data suggest that this novel compound causes growth inhibition through antagonism of EGFR phosphatases and consequent induction of EGFR and ERK phosphorylation. This is supported by experiments with PD 153035 and PD 098059, antagonists of phosphorylation of EGFR and MAP kinase kinase (MEK), respectively, which both antagonized Cpd 5-induced phosphorylation and the inhibition of DNA synthesis. These results imply a mechanism of cell growth inhibition associated with intense and prolonged protein tyrosine phosphorylation. Protein tyrosine phosphatases may thus be a novel target for drugs designed to inhibit cell growth.  相似文献   

4.
Dimerization of epidermal growth factor receptor (EGFR) leads to the activation of its tyrosine kinase. To elucidate whether dimerization is responsible for activation of the intracellular tyrosine kinase domain or just plays a role in the stabilization of the active form, the activated status of wild-type EGFR moiety in the heterodimer with kinase activity-deficient mutant receptors was investigated. The kinase activity of the wild-type EGFR was partially activated by EGF in the heterodimer with intracellular domain deletion (sEGFR) or ATP binding-deficient mutant (K721A) EGFRs, while the wild-type EGFR in the heterodimer of wild-type and phosphate transfer activity-deficient mutant receptor D813N could be fully activated. After treatment with EGF, the ATP binding affinity and the V(max) of the wild-type EGFR increased. In the presence of sEGFR, a similar increase in the affinity for ATP was observed, but V(max) did not change. A two-step activation mechanism for EGFR was proposed: upon binding of EGF, the affinity for ATP increased and then, as a result of interaction between the neighboring tyrosine kinase domain, V(max) increased.  相似文献   

5.
During the past decade, our knowledge of molecular mechanisms involved in growth factor signaling has proliferated almost explosively. However, the kinetics and control of information transfer through signaling networks remain poorly understood. This paper combines experimental kinetic analysis and computational modeling of the short term pattern of cellular responses to epidermal growth factor (EGF) in isolated hepatocytes. The experimental data show transient tyrosine phosphorylation of the EGF receptor (EGFR) and transient or sustained response patterns in multiple signaling proteins targeted by EGFR. Transient responses exhibit pronounced maxima, reached within 15-30 s of EGF stimulation and followed by a decline to relatively low (quasi-steady-state) levels. In contrast to earlier suggestions, we demonstrate that the experimentally observed transients can be accounted for without requiring receptor-mediated activation of specific tyrosine phosphatases, following EGF stimulation. The kinetic model predicts how the cellular response is controlled by the relative levels and activity states of signaling proteins and under what conditions activation patterns are transient or sustained. EGFR signaling patterns appear to be robust with respect to variations in many elemental rate constants within the range of experimentally measured values. On the other hand, we specify which changes in the kinetic scheme, rate constants, and total amounts of molecular factors involved are incompatible with the experimentally observed kinetics of signal transfer. Quantitation of signaling network responses to growth factors allows us to assess how cells process information controlling their growth and differentiation.  相似文献   

6.
Okadaic acid, a potent tumor promoter and inhibitor of phosphoserine/threonine protein phosphatases 1 and 2A, produces a large increase in epidermal growth factor (EGF) receptor phosphorylation in several cell types. The increases are limited to phosphoserine and phosphothreonine residues. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a distinct tumor promoter and protein kinase C activator, also induces serine/threonine phosphorylation of the EGF receptor and is known to modulate receptor functions. Comparison of okadaic acid and TPA influences on the EGF receptor show significant differences. Okadaic acid did not promote phosphorylation of Thr-654, a major site of TPA-induced phosphorylation. However, other sites of phosphorylation were similar for the two tumor promoters. In vitro experiments with purified protein phosphatase 2A demonstrate the insensitivity of Thr-654 phosphorylation, which regulates EGF receptor function, to dephosphorylation by this okadaic acid-sensitive protein phosphatase. In contrast to TPA, okadaic acid did not attenuate the tyrosine kinase activity or ligand binding capacity of the EGF receptor. However, okadaic acid did produce a decrease in EGF-stimulated inositol phosphate formation in a manner distinct from that of TPA.  相似文献   

7.
Prostaglandins (PGs) such as PGE2 enhance proliferation in many cells, apparently through several distinct mechanisms, including transactivation of the epidermal growth factor (EGF) receptor (EGFR) as well as EGFR-independent pathways. In this study we found that in primary cultures of rat hepatocytes PGE2 did not induce phosphorylation of the EGFR, and the EGFR tyrosine kinase blockers gefitinib and AG1478 did not affect PGE2-stimulated phosphorylation of ERK1/2. In contrast, PGE2 elicited EGFR phosphorylation and EGFR tyrosine kinase inhibitor-sensitive ERK phosphorylation in MH1C1 hepatoma cells. These findings suggest that PGE2 elicits EGFR transactivation in MH1C1 cells but not in hepatocytes. Treatment of the hepatocytes with PGE2 at 3 h after plating amplified the stimulatory effect on DNA synthesis of EGF administered at 24 h and advanced and augmented the cyclin D1 expression in response to EGF in hepatocytes. The pretreatment of the hepatocytes with PGE2 resulted in an increase in the magnitude of EGF-stimulated Akt phosphorylation and ERK1/2 phosphorylation and kinase activity, including an extended duration of the responses, particularly of ERK, to EGF in PGE2-treated cells. Pertussis toxin abolished the ability of PGE2 to enhance the Akt and ERK responses to EGF. The results suggest that in hepatocytes, unlike MH1C1 hepatoma cells, PGE2 does not transactivate the EGFR, but instead acts in synergism with EGF by modulating mitogenic mechanisms downstream of the EGFR. These effects seem to be at least in part G(i) protein-mediated and include upregulation of signaling in the PI3K/Akt and the Ras/ERK pathways.  相似文献   

8.
Nitric oxide (NO*) strongly inhibits the proliferation of human A431 tumour cells. It also inhibits tyrosine phosphorylation of a 170-kDa band corresponding to the epidermal growth factor receptor (EGFR) and induces the phosphorylation at tyrosine residue(s) of a 58-kDa protein which we have denoted NOIPP-58 (nitric oxide-induced 58-kDa phosphoprotein). The NO*-induced phosphorylation of NOIPP-58 is strictly dependent on the presence of EGF. Phosphorylation of NOIPP-58 and inhibition of the phosphorylation of the band corresponding to EGFR are both cGMP-independent processes. We also demonstrate that the p38 mitogen-activated protein kinase (p38MAPK) pathway is activated by NO* in the absence and presence of EGF, whereas the activity of the extracellular signal-regulated protein kinase 1/2 (ERK1/2) and the c-Jun N-terminal kinase 1/2 (JNK1/2) pathways are not significantly affected or are slightly decreased, respectively, on addition of this agent. Moreover, we show that the p38MAPK inhibitor, SB202190, induces rapid vanadate/peroxovanadate-sensitive dephosphorylation of prephosphorylated EGFR and NOIPP-58. We propose that the dephosphorylation of both NOIPP-58 and EGFR are mediated by a p38MAPK-controlled phosphotyrosine-protein phosphatase (PYPP). Activation of the p38MAPK pathway during nitrosative stress probably prevents the operation of this PYPP, allowing NOIPP-58, and in part EGFR, to remain phosphorylated and therefore capable of generating signalling events.  相似文献   

9.
We have analyzed the spatial-temporal regulation of epidermal growth factor receptor (EGFR) phosphorylation by the orphan erbB2 receptor. It is shown that EGFR association with erbB2 is sufficient to prolong and enhance the net phosphorylation of EGFR, independent of the kinase activity of erbB2. This enhanced EGFR signaling was rather caused by erbB2-mediated retention of phosphorylated EGFR at the plasma membrane (PM), thereby preventing EGFR dephosphorylation and signal termination by endomembrane-bound protein tyrosine phosphatases (PTPs). EGF-induced EGFR internalization was indeed blocked in the presence of high levels of erbB2 or if cbl binding of EGFR was impaired. This erbB2-mediated blockage of the entry of activated EGFR into clathrin-coated vesicles could be alleviated by antibody-mediated disruption of the interaction between EGFR and erbB2. These results identify erbB2-mediated dominant trapping of phosphorylated EGFR at the PM as a mechanism that prolongs EGFR signaling, by sequestration of activated EGFR away from intracellular sites of high PTP activity.  相似文献   

10.
Regulation of transmembrane signaling by receptor phosphorylation   总被引:65,自引:0,他引:65  
At least two major effects of receptor phosphorylation have been identified--regulation of receptor function, and regulation of receptor distribution. In many cases where phosphorylation directly alters the functions of receptors, this appears to be in a negative direction. Such decreases in receptor activity may reflect reduced ability to interact with biochemical effectors (e.g., the beta-adrenergic receptor, rhodopsin), reduced affinity for binding agonist ligands (EGF,IGF-I, insulin receptors) or reduced enzymatic activity (e.g., tyrosine kinase activity of the insulin or EGF receptor). In all instances, these negative modulations are associated with phosphorylation of serine and/or threonine residues of the receptor proteins. In contrast, the tyrosine kinase receptors also appear to be susceptible to positive modulation by phosphorylation. With these receptors, autophosphorylation of tyrosine residues may lead to enhanced protein-tyrosine kinase activity of the receptors and increased receptor function. In addition, the subcellular distribution of a receptor may be regulated by its phosphorylation status (e.g., the beta-adrenergic receptor, receptors for insulin, EGF, IGF-II, and transferrin). The emerging paradigm is that receptor phosphorylation may in some way promote receptor internalization into sequestered compartments where dephosphorylation occurs. The molecular and cellular mechanisms involved in translating changes in receptor phosphorylation into changes in receptor distribution remain to be elucidated. Moreover, the biological role of receptor internalization may be quite varied. Thus, in the case of the beta-adrenergic receptor, it may serve primarily as a mechanism for bringing the phosphorylated receptors into contact with intracellular phosphatases that dephosphorylate and resensitize it. By contrast, for the transferrin receptor and other receptors involved in receptor-mediated endocytosis, the internalization presumably functions to carry some specific ligand or metabolite into the cell. The role of phosphorylation in regulating receptor function dramatically extends the range of regulatory control of this important covalent modification.  相似文献   

11.
Epidermal growth factor (EGF) binding to its receptor causes rapid phosphorylation of the clathrin heavy chain at tyrosine 1477, which lies in a domain controlling clathrin assembly. EGF-mediated clathrin phosphorylation is followed by clathrin redistribution to the cell periphery and is the product of downstream activation of SRC kinase by EGF receptor (EGFR) signaling. In cells lacking SRC kinase, or cells treated with a specific SRC family kinase inhibitor, EGF stimulation of clathrin phosphorylation and redistribution does not occur, and EGF endocytosis is delayed. These observations demonstrate a role for SRC kinase in modification and recruitment of clathrin during ligand-induced EGFR endocytosis and thereby define a novel effector mechanism for regulation of endocytosis by receptor signaling.  相似文献   

12.
Previous studies demonstrated that ionizing radiation activates the epidermal growth factor receptor (EGFR), as measured by Tyr autophosphorylation, and induces transient increases in cytosolic free [Ca2+], [Ca2+]f. The mechanistic linkage between these events has been investigated in A431 squamous carcinoma cells with the EGFR Tyr kinase inhibitor, AG1478. EGFR autophosphorylation induced by radiation at doses of 0.5-5 Gy or EGF concentrations of 1-10 ng/ml is inhibited by >75% at 100 nM AG1478. Activation of EGFR enhances IP3 production as a result of phospholipase C (PLC) activation. At the doses used, radiation stimulates Tyr phosphorylation of both, PLCgamma and erbB-3, and also mediates the association between erbB-3 and PLCgamma not previously described. The increased erbB-3 Tyr phosphorylation is to a significant extent due to transactivation by EGFR as >70% of radiation- and EGF-induced erbB-3 Tyr phosphorylation is inhibited by AG 1478. The radiation-induced changes in [Ca2+]f are dependent upon EGFR, erbB-3 and PLCgamma activation since radiation stimulated IP3 formation and Ca2+ oscillations are inhibited by AG1478, the PLCgamma inhibitor U73122 or neutralizing antibody against an extracellular epitope of erbB-3. These results demonstrate that radiation induces qualitatively and quantitatively similar responses to EGF in stimulation of the plasma membrane-associated receptor Tyr kinases and immediate downstream effectors, such as PLCgamma and Ca2+.  相似文献   

13.
G protein-coupled receptor (GPCR) kinases (GRKs) are key regulators of GPCR function. Here we demonstrate that activation of epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase family, stimulates GRK2 activity and transregulates the function of G protein-coupled opioid receptors. Our data showed that EGF treatment promoted DOR internalization induced by DOR agonist and this required the intactness of GRK2-phosphorylation sites in DOR. EGF stimulation induced the association of GRK2 with the activated EGFR and the translocation of GRK2 to the plasma membrane. After EGF treatment, GRK2 was phosphorylated at tyrosyl residues. Mutational analysis indicated that EGFR-mediated phosphorylation occurred at GRK2 N-terminal tyrosyl residues previously shown as c-Src phosphorylation sites. However, c-Src activity was not required for EGFR-mediated phosphorylation of GRK2. In vitro assays indicated that GRK2 was a direct interactor and a substrate of EGFR. EGF treatment remarkably elevated DOR phosphorylation in cells expressing the wild-type GRK2 in an EGFR tyrosine kinase activity-dependent manner, whereas EGF-stimulated DOR phosphorylation was greatly decreased in cells expressing mutant GRK2 lacking EGFR tyrosine kinase sites. We further showed that EGF also stimulated internalization of mu-opioid receptor, and this effect was inhibited by GRK2 siRNA. These data indicate that EGF transregulates opioid receptors through EGFR-mediated tyrosyl phosphorylation and activation of GRK2 and propose GRK2 as a mediator of cross-talk from RTK to GPCR signaling pathway.  相似文献   

14.
The tyrosine phosphorylated epidermal growth factor receptor (EGFR) initiates numerous cell signaling pathways. Although EGFR phosphorylation levels are ultimately determined by the balance of receptor kinase and protein tyrosine phosphatase (PTP) activities, the kinetics of EGFR dephosphorylation are not well understood. Previous models of EGFR signaling have generally neglected PTP activity or computed PTP activity by considering data that do not fully reveal the kinetics and compartmentalization of EGFR dephosphorylation. We developed a compartmentalized, mechanistic model to elucidate the kinetics of EGFR dephosphorylation and the coupling of this process to phosphorylation-dependent EGFR endocytosis. Model regression against data from HeLa cells for EGFR phosphorylation response to EGFR activation, PTP inhibition, and EGFR kinase inhibition led to the conclusion that EGFR dephosphorylation occurs at the plasma membrane and in the cell interior with a timescale that is smaller than that for ligand-mediated EGFR endocytosis. The model further predicted that sufficiently rapid dephosphorylation of EGFR at the plasma membrane could potentially impede EGFR endocytosis, consistent with recent experimental findings. Overall, our results suggest that PTPs regulate multiple receptor-level phenomena via their action at the plasma membrane and cell interior and point to new possibilities for targeting PTPs for modulation of EGFR dynamics.  相似文献   

15.
In tumor cells, high phosphorylation levels of receptor tyrosine kinases may occur in the absence of exogenous ligands due to autocrine signaling or enhanced tyrosine kinase activity. Here we show that the phosphorylation state of the endogenous epidermal growth factor receptor (EGFR) can be quantitatively imaged in tumor cells and tissues by detecting fluorescence resonance energy transfer between fluorophores conjugated to antibodies against the receptor and phosphotyrosine, respectively. Five different human colorectal cell lines were analyzed for activity and expression of EGFR. All cell lines exhibited basal EGFR phosphorylation under serum starvation conditions. Phosphorylation levels increased after stimulation with EGF or pervanadate, dependent on the level of basal EGFR phosphorylation in the respective cell lines. This basal activity correlated inversely with receptor expression. Using the acceptor photobleaching fluorescence resonance energy transfer imaging approach, a significantly higher phosphorylation state of EGFR was also found in resected human colorectal tumor samples as compared with adjacent healthy tissue. Imaging of EGFR phosphorylation may thus serve as a valuable tool to investigate the role of receptor tyrosine kinase activity in malignant cell growth.  相似文献   

16.
Upregulated epidermal growth factor (EGF) receptor (EGFR) expression and EGFR-induced signaling have been correlated with progression to invasion and metastasis in a wide variety of carcinomas, but the mechanism behind this is not well understood. We show here that, in various human carcinoma cells that overexpress EGFR, EGF treatment induced rapid tyrosine dephosphorylation of focal adhesion kinase (FAK) associated with downregulation of its kinase activity. The downregulation of FAK activity was both required and sufficient for EGF-induced refractile morphological changes, detachment of cells from the extracellular matrix, and increased tumor cell motility, invasion, and metastasis. Tumor cells with downregulated FAK activity became less adherent to the extracellular matrix. However, once cells started reattaching, FAK activity was restored by activated integrin signaling. Moreover, this process of readhesion and spreading could not be abrogated by further EGF stimulation. Interruption of transforming growth factor alpha-EGFR autocrine regulation with an EGFR tyrosine kinase inhibitor led to a substantial increase in FAK tyrosine phosphorylation and inhibition of tumor cell invasion in vitro. Consistent with this, FAK tyrosine phosphorylation was reduced in cells from tumors growing in transplanted, athymic, nude mice, which have an intact autocrine regulation of the EGFR. We suggest that the dynamic regulation of FAK activity, initiated by EGF-induced downregulation of FAK leading to cell detachment and increased motility and invasion, followed by integrin-dependent reactivation during readhesion, plays a role in EGF-associated tumor invasion and metastasis.  相似文献   

17.
Little is known about lung carcinoma epidermal growth factor (EGF) kinase pathway signaling within the context of the tissue microenvironment. We quantitatively profiled the phosphorylation and abundance of signal pathway proteins relevant to the EGF receptor within laser capture microdissected untreated, human non-small cell lung cancer (NSCLC) (n = 25) of known epidermal growth factor receptor (EGFR) tyrosine kinase domain mutation status. We measured six phosphorylation sites on EGFR to evaluate whether EGFR mutation status in vivo was associated with the coordinated phosphorylation of specific multiple phosphorylation sites on the EGFR and downstream proteins. Reverse phase protein array quantitation of NSCLC revealed simultaneous increased phosphorylation of EGFR residues Tyr-1148 (p < 0.044) and Tyr-1068 (p < 0.026) and decreased phosphorylation of EGFR Tyr-1045 (p < 0.002), HER2 Tyr-1248 (p < 0.015), IRS-1 Ser-612 (p < 0.001), and SMAD Ser-465/467 (p < 0.011) across all classes of mutated EGFR patient samples compared with wild type. To explore which subset of correlations was influenced by ligand induction versus an intrinsic phenotype of the EGFR mutants, we profiled the time course of 115 cellular signal proteins for EGF ligand-stimulated (three dosages) NSCLC mutant and wild type cultured cell lines. EGFR mutant cell lines (H1975 L858R) displayed a pattern of EGFR Tyr-1045 and HER2 Tyr-1248 phosphorylation similar to that found in tissue. Persistence of phosphorylation for AKT Ser-473 following ligand stimulation was found for the mutant. These data suggest that a higher proportion of the EGFR mutant carcinoma cells may exhibit activation of the phosphatidylinositol 3-kinase/protein kinase B (AKT)/mammalian target of rapamycin (MTOR) pathway through Tyr-1148 and Tyr-1068 and suppression of IRS-1 Ser-612, altered heterodimerization with ERBB2, reduced response to transforming growth factor beta suppression, and reduced ubiquitination/degradation of the EGFR through EGFR Tyr-1045, thus providing a survival advantage. This is the first comparison of multiple, site-specific phosphoproteins with the EGFR tyrosine kinase domain mutation status in vivo.  相似文献   

18.
Epidermal growth factor (EGF) receptor (EGFR) is involved in various basic biochemical pathways and is thus thought to play an important role in cell migration. We examined the effect of EGF on motility, migration, and morphology of a human adenocarcinoma cell line CAC-1. EGF treatment increased the motility of cervical adenocarcinoma cells and promoted migration of the cells on fibronectin and type IV collagen. EGF induced morphological changes with lamellipodia during EGFR-mediated motility. The results of an immunoprecipitation study showed that EGF up-regulated the expression of alpha2beta1-integrin in a dose-dependent manner. EGF-induced cell migration was blocked by alpha2beta1-integrin antibody. Our results also showed that EGF treatment stimulated the level of tyrosine dephosphorylation of FAK, which is required for EGF-induced changes in motility, migration, and cell morphology. A tyrosine kinase inhibitor (ZD1839) blocked EGF-induced changes in cervical adenocarcinoma cells. The results suggest that EGF promotes cell motility and migration and increases the expression of alpha2beta1-integrin, possibly by decreasing FAK phosphorylation.  相似文献   

19.
As fibroblasts near senescence, their responsiveness to external signals diminishes. This well-documented phenomenon likely underlies physiological deterioration and limited tissue regeneration in aging individuals. Understanding the underlying molecular mechanisms would provide opportunities to ameliorate these situations. A key stimulus for human dermal fibroblasts are ligands for the epidermal growth factor receptor (EGFR). We have shown earlier that EGFR expression decreases by about half in near senescent fibroblasts (Shiraha et al., 2000, J. Biol. Chem. 275 (25), 19343-19351). However, as the cell responses are nearly absent near senescence, other aging-related signal attenuation changes must also occur. Herein, we show that EGFR signaling as determined by receptor autophosphorylation is diminished over 80%, with a corresponding decrease in the phosphorylation of the immediate postreceptor adaptor Shc. Interestingly, we found that this was due at least in part to increased dephosphorylation of EGFR. The global cell phosphotyrosine phosphatase activity increased some threefold in near senescent cells. An initial survey of EGFR-associated protein tyrosine phosphatases (PTPases) showed that SHP-1 (PTPIC, HCP, SHPTP-1) and PTPIB levels are increased in parallel in these cells. Concomitantly, we also discovered an increase in expression of receptor protein tyrosine phosphatase alpha (RPTPalpha). Last, inhibition of protein tyrosine phosphatases by sodium orthovanadate in near senescent cells resulted in increased EGFR phosphorylation. These data support a model in which, near senescence, dermal fibroblasts become resistant to EGFR-mediated stimuli by a combination of receptor downregulation and increased signal attenuation.  相似文献   

20.
Human bronchial epithelial cells, both normal primary (NHBE) and the BEAS-2B line, respond to epidermal growth factor (EGF) by extruding lengthy filaments, or filapodia. The morphological transformation of BEAS-2B cells maximized at 48 h using 1-10 nM EGF. EGF-induced filapodia extension was inhibited by co-exposure to transforming growth factor beta, which did not affect tyrosine phosphorylation of the EGF receptor (EGFR). Inhibition was also effected by phorbol myristoyl acetate (PMA), which reduced the rate of EGFR tyrosine phosphorylation. Dibutyryl-cAMP had no effect, whereas the protein kinase inhibitor H-89 stimulated the EGF response. The ability to regulate cellular responses to EGF by hormonal and chemical approaches has implications for current investigations into the roles of EGF in lung growth, differentiation, and wound repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号