首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nutrient cycling within three Pinus sylvestris stands was studied in eastern Finland. The aim of the study was to determine annual fluxes and distribution of N, P, K, Ca, Mg, Zn, Fe, B, and Al in the research stands. Special emphasis was put on determining the importance of different fluxes, especially the internal cycle within the trees in satisfying the tree nutrient requirements for biomass production. The following nutrient fluxes were included, input; free precipitation and throughfall, output; percolation through soil profile, biological cycle; nutrient uptake from soil, retranslocation within trees, return to soil in litterfall, release by litter decomposition. The distribution of nutrients was determined in above- and belowground tree compartments, in ground and field vegetation, and in soil.The nitrogen use efficiencies were 181, 211 and 191 g of tree aboveground dry matter produced per g of N supplied by uptake and retranslocation in the sapling, pole stage and mature stands, respectively. Field vegetation was more efficient in nitrogen use than trees. Stand belowground/aboveground and fine root/coarse root biomass ratios decreased with tree age. With only slightly higher fine root biomass, almost three times more nitrogen had to be taken-up from soil for biomass production in the mature stand than in the sapling stand.The annual input-output balances of most nutrients were positive; throughfall contained more nutrients than was lost in mineral soil leachate. The sulphate flux contributed to the leaching of cations, especially magnesium, from soil in the mature stand.Retranslocation supplied 17–42% of the annual N, P and K requirements for tree aboveground biomass production. Precipitation and throughfall were important in transferring K and Mg, and also N in the sapling stand. Litterfall was an important pathway for N, Ca, Mg and micro nutrients, especially in the oldest stands.  相似文献   

2.
During forest succession, litterfall nutrient fluxes increase significantly. The higher inputs of organic matter and nutrients through litterfall affects positively soil fertility and the species composition, which are essential components in forest restoration and management programs. In the present study, the input of nutrients to the forest soil via litterfall components was estimated for two sites of different development stages, in an early successional alluvial rain forest in Brazil. Litterfall returned to the soil, in kg/ha, ca. 93 N, 79 Ca, 24 K, 15 Mg, 6 P, 1.7 Mn, 0.94 Fe, 0.18 Zn, 0.09 Cu and 11.2 Al, in the site where trees were more abundant and had higher values of basal area. In the other area, where trees where less abundant and values of basal area were comparatively low, litterfall returned < 50% of those amounts to the forest soil, except for Al. The amount of Al that returned to the soil was similar in both areas due to the high contribution of Tibouchina pulchra (82% of Al returned). Comparatively, high proportion of three dominant native tree species (Myrsine coriacea, T. pulchra and Cecropia pachystachya) explained better litter nutrient use efficiency (mainly N and P) in the site with the least advanced successional stage. Although litterfall of these species show lower nutrient concentrations than the other tree species, their nutrient fluxes were high in both sites, indicating a certain independence from soil essential nutrients. Such feature of the native species is very advantageous and should be considered in forest restoration programs.  相似文献   

3.
自养机制的形成是人工林可持续经营的目标之一.本研究通过混交模拟杉木人工林不同恢复阶段林分,观察比较发现从退化的杉木林阶段到地带性树种比例较低的混交林、地带性树种比例较高的混交林和地带性树种纯林阶段凋落量、N、P、K、Ca和Mg5种元素的归还量逐渐增加,特别是5种养分元素的循环速率也不断增大,其中N、Mg的循环速率由杉木纯林的0.1左右增大到火力楠纯林的0.5以上,与此同时林分土壤有机质含量和养分含量也不断增加,表明退化杉木人工林在恢复过程中随着林内地带性火力楠树种混交比例的增加,林分的自养机制逐渐获得重建.从杉木人工林可持续经营角度来看,杉阔混交比例的确定应以林分自养机制的形成和土壤养分状况的改善为标准.  相似文献   

4.
天然枫桦红松林凋落量动态及养分归还量   总被引:1,自引:0,他引:1       下载免费PDF全文
三年定位研究表明小兴安岭天然枫桦红松林年均凋落量有5.8t/ha(干重)。凋落量的季节变化格局是随着气候变冷有一明显秋季凋落高峰期(9—10月)。凋落物每年养分的归还量:Ca、N、K、Mg、P,相应为67.0、56.9、14.8、9.5、和6.6kg/ha,总计155.0kg/ha。据测定阔叶树落叶养分含量明显高于所有针叶的含量。尽管阔叶树的年凋落量仅占该混交林的年总凋落量的三分之一,阔叶树落叶仍有相当高的养分比例(43.4%)归还土壤。因此,红松林分的经营管理中,保留适当比重的阔叶树有利于土壤改良和促进林分生长。  相似文献   

5.
 该研究以浙江天童常绿阔叶林及退化群落的凋落物特征为内容,探讨了养分归还和土壤养分动态之间的联系。结果显示:1)常绿阔叶林退化显 著降低了凋落物的年凋落量,从成熟常绿阔叶林的13.03 Mg·hm-2下降到灌丛的6.38 Mg·hm-2。2)凋落物氮含量在成熟群落至灌丛阶段下降显 著,而磷含量无明显递减规律;氮磷归还量均随常绿阔叶林退化显著下降。 3)凋落物特征(年均值)与土壤养分的相关分析表明,土壤氮磷含 量与凋落物凋落量间呈显著线性正相关;土壤氮含量与凋落物氮含量间无显著线性关系,而与氮归还量呈显著线性正相关(p<0.05);土壤总磷 含量与凋落物磷含量和磷归还量间均呈显著线性正相关( 磷含量:p<0.01; 磷归还量: p<0.001);土壤无机氮含量与凋落物各特征间无显著相关 关系;土壤氮素硝化速率与凋落物凋落量和氮归还量间呈显著线性正相关(凋落物凋落量:p<0.01; 氮归还量: p<0.005),而与凋落物氮含量无 显著线性关系,与之相比,土壤氮素矿化速率与凋落物特征间均不存在显著线性关系。可以认为,在常绿阔叶林退化过程中,由于不同植物在 养分归还特征上的差异,导致了养分归还量的下降,从而使土壤养分库的物质来源减少,但是,群落结构简化而导致的非生物要素的改变,对 控制土壤生物过程发挥着更大的作用。  相似文献   

6.
杉楠混交与人工杉木林自养机制的恢复   总被引:10,自引:3,他引:10  
自养机制的形成是人工林可持续经营的目标之一。本研究通过混交模拟杉木人工林不同恢复阶段林分,观察比较发现从退化的杉木林阶段到地带性树种比例较低的混交林、地带性树种比例较高的混交林和地带性树种纯林阶段凋落量、N、P、K、Ca和Mg5种元素的归还量逐渐增加,特别是5种养分元素的循环速率也不断增大,其中N、Mg的循环速率由杉木纯林的0.1左右增大到火力楠纯林的0.5以上,与此同时林分土壤有机质含量和养分含  相似文献   

7.
《Annals of botany》1997,79(5):517-527
This paper deals with the pattern of nutrient cycling and nutrient use efficiency in four (1–4 years old) poplar (Populus deltoidesMarsh) plantations previously investigated for dry matter dynamics. The present plantations were planted at 3×5 m spacing after clear felling of natural sal (Shorea robustaDipterocarpaceae) mixed broad-leaved forests in central Himalayan Tarai. The nutrient concentrations (N, P and K) in different layers of vegetation were in the order: tree>shrub>herb; whereas the standing state of nutrients were in the order: tree>herb>shrub. Soil, litter and vegetation, respectively accounted for 81–96, 2–4 and 2–15% of the total nutrients in the system. Considerable reductions (trees, 50–68; shrubs, 35–40; and herbs 18–26%) in the concentration of nutrients in leaves occurred during senescence. The uptake of nutrients by the vegetation, and also by the different components, with and without adjustment for internal recycling, was calculated separately. Annual transfer of litter nutrients to the soil by vegetation was 91–148 N, 8–15 P and 70–99 K kg ha−1yr−1. The turnover rate for different nutrients ranged between 0.83 and 0.92 yr−1. The nutrient use efficiency of poplar plantations ranged from 151 to 174 kg ha−1yr−1for N, 1338 to 1566 kg ha−1yr−1for P, and 313 to 318 kg ha−1yr−1for K. Compared with low density eucalypt and older poplar stands, there was a higher proportion of nutrient retranslocation in present poplars, largely because of higher tissue nutrient concentrations. This indicates lower nutrient use efficiency as compared to eucalypt plantations. Compartment models for nutrient dynamics have been developed to represent the distribution of nutrient pools and net annual fluxes within the system.  相似文献   

8.
This paper elucidates nutrient dynamics in 5- to 8-year-oldpoplar (Populus deltoides) clone D121 plantations previouslyinvestigated for dry matter dynamics. The nutrient concentrationin different layers of the vegetation were in the order: tree> shrub > herb, whereas the standing state of nutrientswere in the order: tree > herb > shrub. Soil, litter andvegetation, respectively, accounted for 80-89, 2-3 and 9-16%of the total nutrients in the system. Considerable reductions(trees 42-54, shrubs 31-37 and herbs 15-23%) in concentrationof nutrients in leaves occurred during senescence. The uptakeof nutrients by the vegetation and also by the different components,with and without adjustment for internal recycling, has beencalculated separately. Annual transfer of litter nutrient tothe soil by vegetation was 113·7-137·6 N, 11·6-14·6P and 80·1-83·2 K kg ha-1 year-1. Turnover rateand time for different nutrients ranged between 0·72-0·89year-1 and 1·12-1·39 years, respectively. Thehigh turnover rate of litter on the forest floor indicates thegreater productivity of the stands, which was due to the higherdry matter dynamics and nutrient release for the growing vegetation.The nutrient use efficiency in poplar plantations ranged from159-175 for N, 1405-1569 for P and 295-332 for K. Compared withEucalyptus, there was a higher proportion of nutrient retranslocationin poplars largely because of higher tissue nutrient concentrations;this indicates lower nutrient use efficiency as compared tothe eucalypt plantation. Compartment models for nutrient dynamicshave been developed to represent the distribution of nutrientpools and net annual fluxes within the system.Copyright 1995,1999 Academic Press Populus deltoides plantations (Clone D121), nutrient retranslocation, net nutrient uptake, nutrient use efficiency, nutrient cycling, nutrient pool, nutrient fluxes  相似文献   

9.
The weathering of soil minerals in forest ecosystems increases nutrient availability for the trees. The rate of such weathering and its relative contribution to forest tree nutrition, is a major issue when evaluating present and potential forest stand productivity and sustainability. The current paper examines the weathering rate of plagioclase with and without Douglas-fir or Scots pine seedlings, in a laboratory experiment at pH 3–4 and 25 °C. All nutrients, with the exception of Ca, were supplied in sufficient amounts in a nutrient solution. The objective of the experiment was to evaluate the potential of trees to mobilise Ca from the mineral plagioclase that contained 12% of Ca. Amounts of nutrients supplied in the nutrient solution, amounts accumulated in the living tissue of the seedlings and amounts leached from the experimental vessels, were measured. A weathering balance, accounting for leached + accumulated − supplied amounts, was established. Bio-induced weathering, defined as the weathering increase in the presence of trees, relative to the weathering rate without trees (geochemical weathering; control vessels), under the present experimental conditions, explained on average, 40% of total weathering (biological + geochemical). These conditions appeared more beneficial to Scots pine (higher relative growth rate, higher Ca incorporation) than to Douglas-fir.  相似文献   

10.
Summary The seasonal pattern and quantity of litterfall were studied during a two-year period in two unthinned stands ofPinus caribaea Morelet var. hondurensis Barr. and Golf. in Nigeria. Although pine needles were cast continuously throughout the year, the peak period of litterfall occurred in the dry months of March and April. Mean values of annual litterfall were 3068 and 3665 kg/ha in the two stands aged 7–9 and 9–11 years respectively. Nutrient returns in litterfall in the stands had mean values of 15.0, 0.6, 17.3, 18.2 and 6.3 kg/ha of N, P, K, Ca and Mg respectively. Comparatively low amounts of N and P returned in litterfall were attributed to soil deficiencies of the two elements.Measurements of ground litter showed considerable dry matter accumulation (11378 kg/ha) in the litter layers. Estimates of litter decomposition rate and recycling time showed that it would take 3 to 4 years for the organic matter in annual litterfall to decompose completely as contrasted to about 2 to 5 months often reported under mixed nautral savanna vegetation in the same climatic environment. Similar estimates of nutrient recycling time also showed that between 2 to 4 years were required to mineralize nutrient elements in the annual litterfall; the relative mobilities of the elements were in the order K>Mg>P>NCa.  相似文献   

11.
不同坡位对琉球松人工林凋落物及其养分归还量的影响   总被引:8,自引:0,他引:8  
对日本冲绳岛北部不同坡位的琉球松人工林凋落物量及其养分归还量进行了为期3年的观测研究,结果表明,琉球松成林年凋落物量为6.54~8.05Mg·hm^-2·年^-1,其凋落高峰出现在6、7月份.台风干扰对年凋落物量及其季节动态影响显著.凋落物不同组分的养分含量差异明显.年均养分归还总量为113.4~154.6kg·hm^-2·年^-1,其中氮素归还量最大,占42.2%;各养分归还量的大小依次为N>Ca>K>Mg>Na>P.两调查林分由于立地条件的显著差异,年均凋落物量及其相应的养分归还量亦存在明显差异.在立地条件较好的下坡,林分P1的年均凋落物量达8.05Mg·hm^-2·年^-1,高于立地条件相对较差的上坡的林分P2的23.1%;其相应的年养分归还量为:N66、04,P1.63,K17.42,Ca48.31,Mg14.65和N。6、57kg·hm^-2·年^-1,分别高于林分P2的39.7%、48.8%、39.4%、32.9%、24.8%和49.3%.两林分凋落物的养分利用效率分别是N为122和138,P为4934和5945,K为462和523,林分P1明显低于林分P2,这与林分P2的立地条件较差相关.可见,所调查的琉球松林是一种高效的养分利用系统。  相似文献   

12.
为了解雷州半岛地区桉树人工林凋落物量和养分归还特征,对不同林龄人工林凋落物量和养分动态连续12个月进行监测。结果表明,桉树人工林的凋落物总量为5 a9 a7 a,5 a生桉树人工林的凋落物总量显著高于7和9 a生林分,且7和9 a生林分间没有显著差异。不同林龄桉树人工林凋落物总量具有明显的季节变化,均呈双峰型,峰值出现在雨季初期和末期。林分结构因子同凋落物量相关性不显著,但气候因子中的月均温与凋落物量存在显著正相关关系。不同林龄桉树人工林的养分年循环量由凋落物量和凋落物养分含量共同决定,氮、磷、钾元素的养分年归还总量为9 a7 a5 a,且彼此间达到显著差异。凋落物养分元素归还高峰期集中在雨季前后,以冬季养分归还量较低。因此,为增加桉树人工林产量且利于人工林地力恢复,桉树人工林应适当增加种植年限,且采伐季节选择在冬季。  相似文献   

13.
Parasitic plants are increasingly becoming the focus of research in many ecosystems. They have been shown to alter litterfall properties and decomposition rates in environments where they occur. Despite this recognition, the role of mistletoes in nutrient cycling in semi-arid savanna remains poorly understood. We investigated the litter input, element returns, and associated below-canopy soil nutrient concentrations of three mistletoe species (Erianthemum ngamicum, Plicosepalus kalachariensis, and Viscum verrucosum) that parasitize Acacia karroo trees in a semi-arid savanna, southwest Zimbabwe. Element concentrations in mistletoe leaf litter were enriched relative to the host. Litterfall from mistletoes significantly increased overall litterfall by up to 173 %, with E. ngamicum and P. kalachariensis having greater litterfall than their host trees. Associated with these changes in litterfall was an increase in element returns and the below-canopy soil nutrient concentrations. The increase in nutrient returns was due to both the effect of enriched mistletoe litter and increased volumes of litterfall beneath host trees. Litterfall, element returns, and the below-canopy soil nutrient concentrations were significantly influenced by mistletoe density, with higher values at high mistletoe density. Overall, E. ngamicum and P. kalachariensis had greater influence on litterfall, element returns, and soil nutrient concentrations than V. verrucosum. These findings are consistent with current understanding of enhanced nutrient cycling in the presence of parasitic plants particularly in nutrient-poor ecosystems. We conclude that the introduction of nutrients and associated increase in resource heterogeneity play an important role in determining ecosystem structure and function in semi-arid savannas.  相似文献   

14.
不同密度樟子松人工林土壤碳氮磷化学计量特征   总被引:4,自引:0,他引:4  
以科尔沁沙地不同密度(490、750、1550、1930、2560株·hm^-2)樟子松人工林(栽植于1980年)为研究对象,分析林分密度对土壤碳、氮、磷浓度及其计量比的影响,研究林分密度与土壤养分状况的关系。结果表明:随着樟子松林密度增加,各土层(0~10、10~20和20~40 cm)土壤有机碳、全氮、全磷浓度和C∶N呈先增加后降低趋势,而土壤有效磷浓度呈先降低后增加趋势。土壤有机碳浓度在490株·hm^-2密度小于其他密度,而有效磷浓度大于其他密度;土壤C∶P和N∶P在2560株·hm^-2密度显著大于其他密度。各密度樟子松林土壤有机碳、全氮、全磷和有效磷浓度在0~10 cm土层显著大于10~20和20~40cm土层,樟子松人工林土壤养分具有表聚性。通过典范对应分析发现,密度对樟子松林土壤养分影响的主要因子是土壤有机碳、全氮和全磷,且密度为1550株·hm^-2时土壤有机碳、全氮、全磷和碱解氮浓度较高,而C∶P和N∶P较低。因此,当樟子松人工林密度为1550株·hm^-2时,土壤养分浓度较高,林木生长较好,为最佳经营密度。  相似文献   

15.
Aims The purpose of this study is to investigate the characteristics of nutrient cycling in Cunninghamia lanceolata plantations with different ages, and to provide scientific basis for the management of high-yield plantations in China. Methods In this study, we used the ecological data of the past 25 years in Hunan Huitong Ecological Station and analyzed the nutrient cycling characteristics of the C. lanceolata plantation forests with different ages according to the law of tree growth and the dynamics of nutrient uptake. Important findings For most nutrients, their concentrations ranked in order as leaf > twig > bark > root > stem for all C. lanceolata trees with any ages. When the tree age was less than 12 years, nutrient concentrations increased with age, while they decreased with age when the tree was more than 12 years old. The changes in average annual nutrient uptake with age showed two peaks. Nutrient return gradually increases with age. For the same age, the nutrient use efficiency followed the order of phosphorus (P) > potassium (K) > nitrogen (N) > magnesium (Mg) > calcium (Ca). After the stand was closed, the nutrient utilization efficiency increases with the growth and development of trees. The cycling intensity of Ca and Mg was greater than that of N and P at the same stand age. The changes in nutrient cycling intensity with age varying curve with stand age acted as parabolic curve. Utilization of N, P and K was longer than displayed a parabolic shape for all elements. The utilization time of each element got shorter with increasing stand age. These results suggested that the nutrient uptake in different growth stages was not only controlled by the quantity of biomass, but also affected by the difference in nutrient concentration between previous and current stages. The nutrient cycling processes were jointly controlled by the mechanisms of nutrient redistribution and storage in Cunninghamia lanceolata, during the growth and development stages, and the nutrient use efficiency during different growth stages. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

16.
落叶松人工林凋落物与土壤肥力变化的研究   总被引:47,自引:5,他引:47  
以东北东部山区帽儿山实验林场落叶松人工林作为研究对象,从林地凋落量、林地凋落物归还量、凋落物层现存量以及土壤理化性质的变化等方面,研究了经抚育间伐后不同年龄阶段同一落叶松林分土壤肥力的变化以及间伐与未间伐林分土壤理化性质的差异.结果表明,落叶松人工林凋落量和以凋落物形式归还于林地的营养元素呈现出随年龄增加而增长的总趋势.经抚育间伐后,由于阔叶树种的引入使凋落物的组成结构发生变化,凋落物层的分解率逐步提高,加速了凋落物中营养物质的释放和归还,减缓了凋落物积累与分解的矛盾,提高了落叶松人工林的土壤肥力.15年间土壤有机质、全N和全P2O5平均值分别增长了352.00%、225.53%和34.96%.间伐后的落叶松人工林土壤的理化性质得到不同程度的改善.  相似文献   

17.
Litterfall is a fundamental process in the nutrient cycle of forest ecosystems and a major component of annual net primary production (NPP). Despite its importance for understanding ecosystem energetics and carbon accounting, the dynamics of litterfall production following disturbance and throughout succession remain poorly understood in boreal forest ecosystems. Using a replicated chronosequence spanning 209 years following fire and 33 years following logging in Ontario, Canada, we examined the dynamics of litterfall production associated with stand development, overstory composition type (broadleaf, mixedwood, and conifer), and disturbance origin. We found that total annual litterfall production increased with stand age following fire and logging, plateauing in post-fire stands approximately 98 years after fire. Neither total annual litterfall production nor any of its constituents differed between young fire- or logging-originated stands. Litterfall production was generally higher in broadleaf stands compared with mixedwood and conifer stands, but varied seasonally, with foliar litterfall highest in broadleaf stands in autumn, and epiphytic lichen litterfall highest in conifer stands in spring. Contrary to previous assumptions, we found that the contribution of litterfall production to net primary production increased with stand age, highlighting the need for modeling studies of net primary productivity to account for the effects of stand age on litterfall dynamics.  相似文献   

18.
Plant litter production and decomposition are two important processes in forest ecosystems, since they provide the main organic matter input to soil and regulate nutrient cycling. With the aim to study these processes, litterfall, standing litter and nutrient return were studied for three years in an oak forest (Quercus humboldtii), pine (Pinus patula) and cypress (Cupressus lusitanica) plantations, located in highlands of the Central Cordillera of Colombia. Evaluation methods included: fine litter collection at fortnightly intervals using litter traps; the litter layer samples at the end of each sampling year and chemical analyses of both litterfall and standing litter. Fine litter fall observed was similar in oak forest (7.5 Mg ha/y) and in pine (7.8 Mg ha/y), but very low in cypress (3.5 Mg ha/y). Litter standing was 1.76, 1.73 and 1.3 Mg ha/y in oak, pine and cypress, respectively. The mean residence time of the standing litter was of 3.3 years for cypress, 2.1 years for pine and 1.8 years for oak forests. In contrast, the total amount of retained elements (N, P, S, Ca, Mg, K, Cu, Fe, Mn and Zn) in the standing litter was higher in pine (115 kg/ha), followed by oak (78 kg/ha) and cypress (24 kg/ha). Oak forests showed the lowest mean residence time of nutrients and the highest nutrients return to the soil as a consequence of a faster decomposition. Thus, a higher nutrient supply to soils from oaks than from tree plantations, seems to be an ecological advantage for recovering and maintaining the main ecosystem functioning features, which needs to be taken into account in restoration programs in this highly degraded Andean mountains.  相似文献   

19.

Background and aims

Eucalyptus plantations cover 20 million hectares on highly weathered soils. Large amounts of nitrogen (N) exported during harvesting lead to concerns about their sustainability. Our goal was to assess the potential of introducing A. mangium trees in highly productive Eucalyptus plantations to enhance soil organic matter stocks and N availability.

Methods

A randomized block design was set up in a Brazilian Ferralsol soil to assess the effects of mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and mixed plantations (50A:50E) on soil organic matter stocks and net N mineralization.

Results

A 6-year rotation of mono-specific A. mangium plantations led to carbon (C) and N stocks in the forest floor that were 44% lower and 86% higher than in pure E. grandis stands, respectively. Carbon and N stocks were not significantly different between the three treatments in the 0–15?cm soil layer. Field incubations conducted every 4?weeks for the two last years of the rotation estimated net soil N mineralization in 100A and 100E at 124 and 64?kg?ha?1?yr?1, respectively. Nitrogen inputs to soil with litterfall were of the same order as net N mineralization.

Conclusions

Acacia mangium trees largely increased the turnover rate of N in the topsoil. Introducing A. mangium trees might improve mineral N availability in soils where commercial Eucalyptus plantations have been managed for a long time.  相似文献   

20.
In degraded tropical pastures, active restoration strategies have the potential to facilitate forest regrowth at rates that are faster than natural recovery, enhancing litterfall, and nutrient inputs to the forest floor. We evaluated litterfall and nutrient dynamics under four treatments: plantation (entire area planted), tree islands (planting in six patches of three sizes), control (same age natural regeneration), and young secondary forest (7–9‐yr‐old natural regeneration). Treatments were established in plots of 50 × 50 m at six replicate sites in southern Costa Rica and the annual litterfall production was measured 5 yr after treatment establishment. Planted species included two native timber‐producing hardwoods (Terminalia amazonia and Vochysia guatemalensis) interplanted with two N‐fixing species (Inga edulis and Erythrina poeppigiana). Litter production was highest in secondary forests (7.3 Mg/ha/yr) and plantations (6.3), intermediate in islands (3.5), and lowest in controls (1.4). Secondary forests had higher input of all nutrients except N when compared with the plantation plots. Inga contributed 70 percent of leaffall in the plantations, demonstrating the influence that one species can have on litter quantity and quality. Although tree islands had lower litterfall rates, they were similar to plantations in inputs of Mg, K, P, Zn, and Mn. Tree islands increased litter production and nutrient inputs more quickly than natural regeneration. In addition to being less resource intensive than conventional plantations, this planting design promotes a more rapid increase in litter diversity and more spatial heterogeneity, which can accelerate the rate of nutrient cycling and facilitate forest recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号