首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, Pseudomonas putida was shown to degrade (+)-camphor, and cleavage of the first ring of the bicyclic structure involved two monooxygenases (a hydroxylase and a ring oxygen-inserting enzyme), a dehydrogenase, and spontaneous cleavage of an unstable oxygenation product (lactone). Cleavage of the second ring was not demonstrated but was assumed also to occur by ring oxygen insertion, since the predicted oxygenation product was extracted from whole-cell incubation systems. Our investigation established that metabolism of the first ring cleavage intermediate, 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid, occurred through the sequential action of two inducible enzymes, a coenzyme A ester synthetase and an oxygenase. The oxygenase was purified to homogeneity and had a molecular weight of 106,000. This enzyme carried a single molecule of flavin adenine dinucleotide and consisted of two identical subunits. Iron was not present at a significant level. The oxygenase was specific for NADPH as the electron donor and absolutely specific for the coenzyme A ester of 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid as the substrate. The reaction stoichiometry was compatible with this enzyme being a monooxygenase, and a mass spectral analysis of the methyl ester of the product confirmed the insertion of a single oxygen atom. The enzyme appeared to be analogous to, although distinct from. 2,5-diketocamphane 1,2-monooxygenase in catalyzing a "biological Baeyer-Villiger" reaction with the formation of a lactone. Structural analogy suggested that this lactone, like the first, was also unstable and susceptible to spontaneous ring opening, although this was not experimentally established.  相似文献   

2.
A steroid monooxygenase of Cylindrocarpon radicicola was found to catalyze oxygenative lactonization of 17-ketosteroid, androstenedione, to yield D-homo-17 alpha-oxasteroid, testololactone, i.e., the androstenedione monooxygenase reaction, in addition to catalyzing the progesterone monooxygenase reaction. The reaction product was identified by TLC, GLC, and mass spectrometry. The oxygenation proceeded with unitary stoichiometry for 17-ketosteroid, NADPH, and molecular oxygen, indicating that it is a typical monooxygenase reaction of the external electron donor type. The enzyme catalyzed successively the side chain cleavage reaction of 17 alpha-hydroxy-20-ketosteroid to produce its 17-keto derivative and the lactonization of the product. The effects of pH and of the concentration of substrate steroids on the androstenedione monooxygenase reaction were different from those on the progesterone monooxygenase reaction. Progesterone is a strong and competitive inhibitor of the lactonization of 17-ketosteroids. The steroid monooxygenase is concluded to have the activities of both oxygenative esterification of 20-ketosteroids and oxygenative lactonization of 17-ketosteroids.  相似文献   

3.
A soluble cyclohexanone monooxygenase was purified 16.1-fold to homogeneity from a Xanthobacter sp. grown upon cyclohexane as sole source of carbon and energy. The native enzyme is a 50-kDa single polypeptide chain associated with FMN rather than FAD as flavin prosthetic group in a 1:1 stoichiometric relationship. The monooxygenase catalyses the transformation of cyclohexanone to the lactone 1-oxa-2-oxocycloheptane in an oxygen ring insertion reaction. Only related cycloalkanone substrates are accepted for oxygenation, no activity is shown towards straight-chain alkanones. Enzyme activity is strongly inhibited by sulphydryl-reactive agents, but is relatively insensitive to metal chelators, electron transport inhibitors and the metal ions Fe3+ and Cu2+. Cyclohexanone monooxygenase has Km values for cyclohexanone and NADPH of less than 0.5 microM and 12.5 microM respectively. Kinetic investigations under steady-state conditions demonstrate that the flavoprotein prosthetic group, FMN, is involved in the monooxygenase catalytic mechanism. The systematic name for the enzyme is cyclohexanone, NADPH:oxygen oxidoreductase (6-hydroxylating, 1,2-lactonizing) (EC 1.14.13.22).  相似文献   

4.
Aspergillus flavus isolates produce only aflatoxins B1 and B2, while Aspergillus parasiticus and Aspergillus nomius produce aflatoxins B1, B2, G1, and G2. Sequence comparison of the aflatoxin biosynthesis pathway gene cluster upstream from the polyketide synthase gene, pksA, revealed that A. flavus isolates are missing portions of genes (cypA and norB) predicted to encode, respectively, a cytochrome P450 monooxygenase and an aryl alcohol dehydrogenase. Insertional disruption of cypA in A. parasiticus yielded transformants that lack the ability to produce G aflatoxins but not B aflatoxins. The enzyme encoded by cypA has highest amino acid identity to Gibberella zeae Tri4 (38%), a P450 monooxygenase previously shown to be involved in trichodiene epoxidation. The substrate for CypA may be an intermediate formed by oxidative cleavage of the A ring of O-methylsterigmatocystin by OrdA, the P450 monooxygenase required for formation of aflatoxins B1 and B2.  相似文献   

5.
NADPH-dependent oxygen utilization by liver microsomal fractions was stimulated by the addition of increasing concentrations of butylated hydroxyanisole concomitant with the inhibition of benzphetamine N-demethylase activity. The apparent conversion of monooxygenase activity to an oxidase-like activity in the presence of the antioxidant was correlated with the partial recovery of the reducing equivalents from NADPH in the form of increased hydrogen peroxide production. The progress curve of liver microsomal NADPH oxidase activity in the presence of butylated hydroxyanisole displayed a lag phase indicative of the formation of a metabolite capable of uncoupling the monooxygenase activity. Ethyl acetate extracts of microsomal reaction mixtures obtained in the presence of butylated hydroxyanisole, oxygen, and NADPH stimulated the NADPH oxidase activity of either liver microsomes or purified NADPH-cytochrome c (P-450) reductase. Using high performance liquid chromatography, gas chromatography, and mass spectrometry techniques, two metabolites of butylated hydroxyanisole, namely t-butylhydroquinone and t-butylquinone, were identified. The quinone metabolite and/or its 1-electron reduction product interact with the flavoprotein reductase to directly link the enzyme to the reduction of oxygen which results in an inhibition of the catalytic activity of the cytochrome P-450-dependent monooxygenase.  相似文献   

6.
The effects of various antimycotic reagents and some other reagents on a cytochrome P-450-linked monooxygenase system were investigated with respect to the activities of NADPH-ferricyanide reductase. NADPH-cytochrome c reductase of NADPH-adreno-ferredoxin reductase from NADPH to cytochrome c via adreno-ferredoxin, NADPH-cytochrome P-450-phenylisocyanide complex reductase, and the cholesterol side chain cleavage of the cytochrome P-450scc-linked monooxygenase system. No reagents inhibited the NADPH-ferricyanide reductase activity. Only cloconazole inhibited about 50% of NADPH-cytochrome c reductase activity. Cloconazole, econazole, clotrimazole, etomidate and ketoconazole inhibited both NADPH-cytochrome P-450-phenylisocyanide complex reductase and the side chain cleavage activity of cholesterol of the cytochrome P-450scc-linked monooxygenase system. Cloconazole, econazole, etomidate and ketoconazole behaved like non-competitive inhibitors for NADPH-cytochrome P-450-phenylisocyanide reductase activities and their Ki values were 10(-4)-10(-6) M. Cloconazole was a non-competitive inhibitor of NADPH-cytochrome c reductase and its Ki value was 8.3 x 10(-4) M. Cloconazole, clotrimazole, econazole, etomidate, ketoconazole and mitotane completely inhibited the side chain cleavage activity of cholesterol.  相似文献   

7.
Enzymatic method for measuring the absolute value of oxygen concentration   总被引:1,自引:0,他引:1  
An enzymatic method for measuring the absolute concentration of oxygen in aqueous solutions, using 4-hydroxybenzoate 3-monooxygenase and glucose oxidase, is described. The monooxygenase is used for quantitative oxidation of 4-hydroxybenzoate and NADPH with oxygen into 3,4-dihydroxybenzoate and NADP+; the amount of oxygen can be measured as the amount of NADPH decreased by the reaction. The monooxygenase reaction is performed in a syringe, a closed system. After the completion of the monooxygenase reaction, glucose oxidase is added to the assay solution to consume the oxygen from the atmosphere; this enables us to measure the NADPH concentration in the solution spectrophotometrically in an open system and to check the anaerobicity of closed systems. The oxygen concentrations at 25 degrees C of oxygen-saturated and air-saturated water were 1.10 and 0.23 mM, respectively. The value for argon-bubbled water was zero within the experimental error; this justifies the assay system. Thus, it is shown that a sample containing 8 microM-1.1 mM oxygen can be measured by this method.  相似文献   

8.
Secologanin synthase, an enzyme catalyzing the oxidative cleavage of the cyclopentane ring in loganin to form secologanin, was detected in microsomal preparations from cell suspension cultures of Lonicera japonica. The reaction required NADPH and molecular oxygen, and was blocked by carbon monoxide as well as by several other cytochrome P450 inhibitors, indicating that the reaction was mediated by cytochrome P450. Of the substrates examined, only specificity for loganin was demonstrated. A possible reaction mechanism is described.  相似文献   

9.
Aspergillus flavus isolates produce only aflatoxins B1 and B2, while Aspergillus parasiticus and Aspergillus nomius produce aflatoxins B1, B2, G1, and G2. Sequence comparison of the aflatoxin biosynthesis pathway gene cluster upstream from the polyketide synthase gene, pksA, revealed that A. flavus isolates are missing portions of genes (cypA and norB) predicted to encode, respectively, a cytochrome P450 monooxygenase and an aryl alcohol dehydrogenase. Insertional disruption of cypA in A. parasiticus yielded transformants that lack the ability to produce G aflatoxins but not B aflatoxins. The enzyme encoded by cypA has highest amino acid identity to Gibberella zeae Tri4 (38%), a P450 monooxygenase previously shown to be involved in trichodiene epoxidation. The substrate for CypA may be an intermediate formed by oxidative cleavage of the A ring of O-methylsterigmatocystin by OrdA, the P450 monooxygenase required for formation of aflatoxins B1 and B2.  相似文献   

10.
The genes for the alkane-inducible monooxygenase system of the yeast Candida tropicalis, namely a cytochrome P450alk (P450alk) and a NADPH cytochrome P450 oxidoreductase (NCPR) gene, were transferred in Saccharomyces cerevisiae. The P450alk gene was expressed in this host with the help of the yeast alcohol dehydrogenase I (ADHI) promoter and terminator, whereas the NCPR gene could be expressed with its own structural elements. The presence of P450alk in S. cerevisiae microsomal fractions resulted in a new acquired lauric acid terminal hydroxylation activity. Moreover, the same activity, coupled with the appearance of 12-hydroxylauric acid derivatives, could be obtained by the addition of lauric acid to intact cells expressing P450alk. The coordinate expression of the P450alk and NCPR genes in S. cerevisiae elevated the turnover rate of the P450alk monooxygenase activity about 2-fold.  相似文献   

11.
Ecdysone 20-monooxygenase, an enzyme which converts ecdysone to ecdysterone (the major moulting hormone of insects) has been characterized in cell-free preparations of tissues from African migratory locust. The product of the reaction has been identified as ecdysterone on the basis of several microchemical derivatization and chromatographic methods. Ecdysone 20-monooxygenase activity is located primarily in the microsomal fraction which also carries NADPH cytochrome c reductase and cytochrome P-450, as shown by sucrose density gradient centrifugation. Optimal conditions for the ecdysone 20-monooxygenase assay have been determined. The enzyme has a Km for ecdysone of 2.7 x 10(-7) M and is competitvely inhibited by ecdysterone (Ki = 7.5 x 10(-7) M). Ecdysone 20-monooxygenase is a typical cytochrome P-450 linked monooxygenase: the reaction requires O2 and is inhibited by CO, an effect partially reversed by white light. The enzyme is effectively inhibited by several specific monooxygenase inhibitors and by sulfhydryl reagents, but not by cyanide ions. Ecdysone elicits a type I difference spectrum when added to oxidized microsomes. NADPH acts as preferential electron donor. The transfer of reducing equivalents proceeds through NADPH cytochrome c (P-450) reductase: ecdysone 20-monooxygenase is inhibited by cytochrome c. Both NADPH cytochrome c reductase and ecdysone 20-monooxygenase are inhibited by NADP+ and show a similar Km for NADPH. The Malpighian tubules have the highest specific activity of ecdysone 20-monooxygenase, while fat body contain most of the cytochrome P-450 and NADPH cytochrome c reductase.  相似文献   

12.
A new member of class IV of cytochrome P450 monooxygenases was identified in Rhodococcus ruber strain DSM 44319. As the genome of R. ruber has not been sequenced, a P450-like gene fragment was amplified using degenerated primers. The flanking regions of the P450-like DNA fragment were identified by directional genome walking using polymerase chain reaction. The primary protein structure suggests a natural self-sufficient fusion protein consisting of ferredoxin, flavin-containing reductase, and P450 monooxygenase. The only flavin found within the enzyme was riboflavin 5′-monophosphate. The enzyme was successfully expressed in Escherichia coli, purified and characterized. In the presence of NADPH, the P450 monooxygenase showed hydroxylation activity towards polycyclic aromatic hydrocarbons naphthalene, indene, acenaphthene, toluene, fluorene, m-xylene, and ethyl benzene. The conversion of naphthalene, acenaphthene, and fluorene resulted in respective ring monohydroxylated metabolites. Alkyl aromatics like toluene, m-xylene, and ethyl benzene were hydroxylated exclusively at the side chains. The new enzyme’s ability to oxidize such compounds makes it a potential candidate for biodegradation of pollutants and an attractive biocatalyst for synthesis.  相似文献   

13.
Sonic disrupted mitoplasts from 3-methylcholanthrene (MCA) treated rats can catalyze the formation of benzo(a)pyrene (BaP) adducts with calf thymus DNA in the presence of an NADPH generating system. The mitoplasts used in this study contained less than 1% microsomal marker enzymes: rotenone insensitive NADPH cytochrome c reductase and glucose-6-phosphatase. The rates of BaP metabolism and DNA adduct formation per nanomole cytochrome P-450 were different for MCA induced mitochondrial and microsomal enzymes. The major B(a)P DNA adducts formed in incubations with lysed mitoplasts were derived from reaction of 9-OH-B(a)P-4,5 oxide with deoxyguanosine. The results suggest a potential role of mitochondrial monooxygenase activity in the covalent binding of B(a)P to mitochondrial DNA.  相似文献   

14.
Cells of Pseudomonas sp. strain HBP1 grown on 2-hydroxy- or 2,2'-dihydroxybiphenyl contain NADH-dependent monooxygenase activity that hydroxylates 2,2'-dihydroxybiphenyl. The product of this reaction was identified as 2,2',3-trihydroxybiphenyl by 1H nuclear magnetic resonance and mass spectrometry. Furthermore, the monooxygenase activity also hydroxylates 2,2',3-trihydroxybiphenyl at the C-3' position, yielding 2,2',3,3'-tetrahydroxybiphenyl as a product. An estradiol ring cleavage dioxygenase activity that acts on both 2,2',3-tri- and 2,2',3,3'-tetrahydroxybiphenyl was partially purified. Both substrates yielded yellow meta-cleavage compounds that were identified as 2-hydroxy-6-(2-hydroxyphenyl)-6-oxo-2,4-hexadienoic acid and 2-hydroxy-6-(2,3-dihydroxyphenyl)-6-oxo-2,4-hexadienoic acid, respectively, by gas chromatography-mass spectrometry analysis of their respective trimethylsilyl derivatives. The meta-cleavage products were not stable in aqueous incubation mixtures but gave rise to their cyclization products, 3-(chroman-4-on-2-yl)pyruvate and 3-(8-hydroxychroman-4-on-2-yl)pyruvate, respectively. In contrast to the meta-cleavage compounds, which were turned over to salicylic acid and 2,3-dihydroxybenzoic acid, the cyclization products are not substrates to the meta-cleavage product hydrolase activity. NADH-dependent salicylate monooxygenase activity catalyzed the conversions of salicylic acid and 2,3-dihydroxybenzoic acid to catechol and pyrogallol, respectively. The partially purified estradiol ring cleavage dioxygenase activity that acted on the hydroxybiphenyls also produced 2-hydroxymuconic semialdehyde and 2-hydroxymuconic acid from catechol and pyrogallol, respectively.  相似文献   

15.
Aerobic stopped-flow experiments have confirmed that component C is the methane monooxygenase component responsible for interaction with NADH. Reduction of component C by NADH is not the rate-limiting step for component C in the methane monooxygenase reaction. Removal and reconstitution of the redox centres of component C suggest a correlation between the presence of the FAD and Fe2S2 redox centres and NADH: acceptor reductase activity and methane monooxygenase activity respectively, consistent with the order of electron flow: NADH----FAD----Fe2S2----component A. This order suggests that component C functions as a 2e-1/1e-1 transformase, splitting electron pairs from NADH for transfer to component A via the one-electron-carrying Fe2S2 centre. Electron transfer has been demonstrated between the reductase component, component C and the oxygenase component, component A, of the methane monooxygenase complex from Methylococcus capsulatus (Bath) by three separate methods. This intermolecular electron transfer step is not rate-determining for the methane monooxygenase reaction. Intermolecular electron transfer was independent of component B, the third component of the methane monooxygenase. Component B is required to switch the oxidase activity of component A to methane mono-oxygenase activity, suggesting that the role of component B is to couple substrate oxidation to electron transfer, via the methane monooxygenase components.  相似文献   

16.
Nitrilotriacetate (NTA) is an important chelating agent in detergents and has also been used extensively in processing radionuclides. In Chelatobacter heintzii ATCC 29600, biodegradation of NTA is initiated by NTA monooxygenase that oxidizes NTA to iminodiacetate and glyoxylate. The NTA monooxygenase activity requires two component proteins, component A and component B, but the function of each component is unclear. We have cloned and sequenced a gene cluster encoding components A and B (nmoA and nmoB) and two additional open reading frames, nmoR and nmoT, downstream of nmoA. Based on sequence similarities, nmoR and nmoT probably encode a regulatory protein and a transposase, respectively. The NmoA sequence was similar to a monooxygenase that uses reduced flavin mononucleotide (FMNH2) as reductant; NmoB was similar to an NADH:flavin mononucleotide (FMN) oxidoreductase. On the basis of this information, we tested the function of each component. Purified component B was shown to be an NADH:FMN oxidoreductase, and its activity could be separated from that of component A. When the Photobacterium fischeri NADH:FMN oxidoreductase was substituted for component B in the complete reaction, NTA was oxidized, showing that the substrate specificity of the reaction resides in component A. Component A is therefore an NTA monooxygenase that uses FMNH2 and O2 to oxidize NTA, and component B is an NADH:FMN oxidoreductase that provides FMNH2 for NTA oxidation.  相似文献   

17.
An understanding of the mechanism of biological methane oxidation has been hampered by the lack of purified proteins. We describe here a purification protocol for the previously uncharacterized protein B of the soluble methane monooxygenase from the obligate methanotroph Methylococcus capsulatus (Bath). Soluble methane monooxygenase is a multicomponent enzyme consisting of a hydroxylase component, protein A, a reductase component, protein C, and protein B. All three proteins are required for monooxygenase activity. Protein B proves to be a low molecular weight (16,000) single subunit protein devoid of prosthetic groups. The protein is a powerful regulator of soluble methane monooxygenase activity, possessing the capacity to convert the enzyme from an oxidase to an oxygenase. Proteins A and C together catalyze the reduction of molecular oxygen to water, a reaction prevented by protein B. The uncoupling of soluble methane monooxygenase in this manner displays a number of novel features. First, the product of the uncoupled reaction is water, and second, the uncoupling is independent of substrate. Free hydrogen peroxide is not an intermediate in the reduction of oxygen by the incomplete methane monooxygenase enzyme complex. Finally, electron transfer can occur between protein C and protein A in the absence of protein B and protein B prevents the steady-state transfer of electrons in the absence of an oxidizable substrate, such as methane. It is demonstrated that oxygen reduction occurs at the active site of the hydroxylase component, protein A. A unifying mechanism, describing the interaction of the three proteins of soluble methane monooxygenase, is proposed.  相似文献   

18.
Metabolism of polychlorinated dibenzo-p-dioxins by CYP1A subfamily was examined by using the recombinant yeast microsomes. In substrate specificity and reaction specificity, considerable species differences between rats and humans were observed in both CYP1A1- and CYP1A2-dependent metabolism of dioxins. Among four CYPs, rat CYP1A1 showed the highest activity toward dibenzo-p-dioxin (DD) and mono-, di-, and trichloroDDs. To reveal the mechanism of dioxin metabolism, we examined rat CYP1A1-dependent metabolism of 2-chloro-dibenzo-p-dioxin. In addition to hydroxylation at an unsubstituted position, hydroxylation with migration of a chloride substituent, hydroxylation with elimination of a chloride substituent, and cleavage of an ether linkage of the dioxin ring were observed. In particular, the cleavage of an ether linkage of the dioxin ring appeared most important for the detoxication of dioxins. Based on these results, the metabolic pathways of 2-chloro-dibenzo-p-dioxin by rat CYP1A1 were proposed. The metabolic pathways contain most of the metabolites observed in vivo using experimental animals, suggesting that P450 monooxygenase systems including CYP1A1 are greatly responsible for dioxin metabolism in vivo.  相似文献   

19.
Cell suspension cultures of Linum perenne L. Himmelszelt accumulate justicidin B as the main component together with glycosides of 7-hydroxyjusticidin B (diphyllin). A hypothetical biosynthetic pathway for these compounds is suggested. Justicidin B 7-hydroxylase (JusB7H) catalyzes the last step in the biosynthesis of diphyllin by introducing a hydroxyl group in position 7 of justicidin B. This enzyme was characterized from a microsomal fraction prepared from a Linum perenne Himmelszelt suspension culture for the first time. The hydroxylase activity was strongly inhibited by cytochrome c as well as other cytochrome P450 inhibitors like clotrimazole indicating the involvement of a cytochrome P450-dependent monooxygenase. JusB7H has a pH optimum of 7.4 and a temperature optimum of 26 degrees C. Justicidin B was the only substrate accepted by JusB7H with an apparent K(m) of 3.9+/-1.3 microM. NADPH is predominantly accepted as the electron donor, but NADH was a weak co-substrate. A synergistic effect of NADPH and NADH was not observed. The apparent K(m) for NADPH is 102+/-10 microM.  相似文献   

20.
A benzothiophene (BT) and dibenzothiophene (DBT) monooxygenase (TdsC), which catalyzes the oxidation of the sulfur atoms in BT and DBT molecules, was purified from Paenibacillus sp. strain A11-2. The molecular mass of the purified enzyme and its subunit were determined to be 200 kDa and 43 kDa by gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis, respectively, indicating a tetrameric structure. The N-terminal amino acid sequence of the purified TdsC completely matched the amino acid sequence deduced from the nucleotide sequence of the tdsC gene reported previously [Ishii et al. (2000) Biophys Biochem Res Commun 270:81-88]. The optimal temperature and pH for the TdsC reaction were 65 degrees C and pH 9, respectively. TdsC required NADH, FMN and TdsD, a NADH-dependent FMN oxidoreductase, for its activity, as was observed for TdsA. FAD, lumiflavin and/or NADPH had some effect on the maintenance of TdsC activity. A comparison of the substrate specificity of TdsC and DszC, the homologous monooxygenase purified from Rhodococcus erythropolis strain KA2-5-1, demonstrated a contrasting pattern towards alkylated DBTs and BTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号