首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During acute experiments on awake cats the response of 98 neurons belonging to the head and tail of the caudate nucleus to direct electrical stimulation of the optic tract and presentation of photic stimuli was investigated using extracellular recording techniques. Of the test neurons 34.6% responded to stimulation of the optic tract and 36.2% to optic stimulation. Long latency (over 40 msec for the optic tract and over 80 msec for visual stimulation) excitatory responses prevailed in both cases. A small number of cells responded to optic tract stimulation with short latencies of 5–14 msec. Both types of stimulation were presented during investigations of 58 units of which eight were found to respond to both stimuli. The latter varied in their reaction to different stimuli and their response pattern. Findings are discussed in relation to the possible pathways by which visual information reaches the cortical structure under study.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 476–485, July–August, 1986.  相似文献   

2.
During chronic experiments on unanesthetized cats neuronal response in the caudate nucleus to the presentation of local photic stimuli and electrical stimulation of the specific (field 17) and the association (Clare-Bishop) areas were compared. Stimulation of the Clare-Bishop area proved more effective than stimulating field 17 for neurons of the caudate nucleus; a response was produced in 47% of test neurons in comparison with 8% of units only in the specific area. Lower average values were observed for latency of neuronal response to stimulation of the Clare-Bishop area. An insignificant number of caudate nucleus neurons were activated as a result of stimulation of both cortical areas. A comparison between the response of one set of neurons to electrical cortical and visual stimulation showed that cells responding to visual stimulation were more highly activated by stimulating the Clare-Bishop area than by stimulation of field 17. This type of neuron predominated in the caudate nucleus. A discussion follows of the possible involvement of the Clare-Bishop area in shaping neuronal response to visual stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 619–627, September–October, 1985.  相似文献   

3.
Responses of 251 neurons in the anterior part of the middle suprasylvian gyrus to stimulation of primary sensory (auditory, visual, somatosensory) areas and also to acoustic, visual, and somatosensory stimuli were studied in acute experiments on cats anesthetized with chloralose (40 mg/kg) and pentobarbital (20 mg/kg). Three groups of neurons were distinguished by their responses to stimulation of the primary sensory areas: those responding by an increased firing rate (117) or by inhibition (35) and those not responding (99). Responses of 193 neurons to stimulation of the peripheral afferent systems were analyzed. Neurons of the parietal associative cortex responded more frequently to cortical stimulation than to peripheral. By the duration of the latent period of their response to cortical stimulation the neurons were divided into three groups: those with short (less than 20 msec), medium (20–30 msec), and long latent periods (over 30 msec). The first group was the largest.Kemerovo State Medical Institute. Translated from Neirofiziologiya, Vol. 4, No. 5, pp. 524–530, September–October, 1972.  相似文献   

4.
Extracellular and intracellular unit responses of thepars principalis of the medial geniculate body to stimulation of the first (AI), second (AII), and third (AIII) auditory cortical areas were studied in cats immobilized with D-tubocurarine. In response to auditory cortical stimulation both antidromic (45–50%) and orthodromic (50–55%) responses occurred in the geniculate neurons. The latent period of the antidromic responses was 0.3–2.5 msec and of the orthodromic 2.0–18.0 msec. Late responses had a latent period of 30–200 msec. Of all neurons responding antidromically to stimulation of AII, 63% responded antidromically to stimulation of AI also, confirming the hypothesis that many of the same neurons of the medial geniculate body have projections into both auditory areas. Orthodromic responses of geniculate neurons consisted either of 1 or 2 spikes or of volleys of 8–12 spikes with a frequency of 300–600/sec. It is suggested that the volleys of spikes were discharges of inhibitory neurons. Intracellular responses were recorded in the form of antidromic spikes, EPSPs, EPSP-spike, EPSP-spike-IPSP, EPSP-IPSP, and primary IPSP. Over 50% of primary IPSP had a latent period of 2.0–4.0 msec. It is suggested that they arose through the participation of inhibitory interneurons located in the medial geniculate body.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 1, pp. 5–12, January–February, 1976.  相似文献   

5.
Activity of neurons of the globus pallidus was recorded extracellularly during stimulation of the caudate nucleus. It is demonstrated that background activity (BA) of most neurons of the globus pallidus is depressed under these conditions, which is regarded as a manifestation of inhibition of the investigated neurons. The period of BA depression varied in different cells from 60 to 500 msec. In some cases this period was preceded by emergence of an action potential with a latent period of 10–20 msec. In addition to inhibition of the activity of globus pallidus neurons during stimulation of the caudate nucleus, it was possible to record evoked responses of the given neurons in the form of group discharges with a latent period of 18–40 msec and single action potentials with a latent period of 50–100 msec. The neurons that reacted with a shorter latent period were localized at the lateral limit of the globus pallidus, whereas neurons with other kinds of responses were distributed in the globus pallidus comparatively evenly.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 2, pp. 202–209, September–October, 1969.  相似文献   

6.
Unitary responses of the caudate nucleus to stimulation of various parts of it were investigated by extracellular recording. Latent periods of response discharges varied from 3.5 to 40 msec. Most neurons were excited by stimulation of the most rostral part of the head of the caudate nucleus. Irrespective of the site of stimulation, in most cases responses consisted of initial excitation in the form of one or, less frequently, two discharges followed by a period of depression of spontaneous activity. Recovery of activity took place gradually, without postinhibitory facilitation. No afterdischarges or periodic repetitions of spikes were observed after the initial response. Repetitive stimulation of the caudate nucleus showed that the neurons of this nucleus reproduce frequencies of stimulation badly above 30/sec, and under these circumstances in many cases they continued to discharge on average at a frequency of 5–15/sec. The results are examined from the standpoint of participation of the caudate nucleus in the formation of spindle activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 497–506, September–October, 1976.  相似文献   

7.
The response of caudate nucleus neurons to presentation of photic stimuli located at varying distances from the fovea centralis was investigated in awake cats. Stimulation of different sites on the visual field below the fovea produced dissimilar reactions in 25 of the 35 (or 71%) of these neurons responding to photic stimulation. This divergence of response indicates that in 6 of these cells (or 17%) the receptive fields in the test area of the visual field bordered on the central area of the latter and 6 neurons (17%) showed reduced sensitivity to the effects of stimuli nearer to the periphery than to the center of the visual field, while 13 units (37%) were receiving qualitatively different information from various sites on the field of vision. On the basis of our findings we deduced that caudate nucleus neurons are involved in the analysis of visual sensory signals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 241–250, March–April, 1986.  相似文献   

8.
Spike response was investigated in 104 neurons of the nucleus reticularis thalami (R) and adjoining thalamic nuclei to acoustic, tactile, and visual stimuli during chronic experiments on cats. Of the test neurons, 29% responded to acoustic stimulation and 11% showed no preference in relation to different acoustic stimuli. Minimum latencies of response to sounds measured 12–37 msec in excitatory and 18–27 msec in inhibitory cells. Duration of excitation produced by acoustic stimuli reached 50–250 msec; inhibition lasted 27–190 msec. Most cells belonging to this nucleus were excited by different stimuli; the proportion of inhibitory neurons did not exceed 4–10%.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 451–461, July–August, 1989.  相似文献   

9.
Stimulation of the head of the caudate nucleus in cats anesthetized with chloralose and pentobarbital evoked spike responses of the Purkinje cells and other cerebellar cortical neurons in the paramedian lobes, lobulus simplex, and the tuber of the vermis. Phasic responses in the form of simple discharges (on account of activation of the neurons through mossy fibers) appeared mainly after a latent period of 5–12 and 14–20 msec; the latent period of responses consisting of complex discharges (on account of activation of Purkinje cells through climbing fibers) was 5–6, 9–22 msec, or more. Depending on the latent period, the spike responses differed in their rhythm of generation. In response to stimulation of the caudate nucleus with a frequency of 4–6/sec recruiting responses were found. An inhibitory pause was an invariable component of the tonic responses. During stimulation of the globus pallidus responses of the same types (phasic and tonic) appeared as during stimulation of the caudate nucleus, but they differed in the distribution of the neurons by latent period of spike responses. The minimal latent period was 4 msec. Recruiting also was observed during repetitive stimulation of the globus pallidus. During stimulation of the substantia nigra Pukinje cells activated by climbing fibers responded. Evoked complex discharges appeared after a stable latent period of 8.5±0.3 msec. Arguments are put forward regarding the role of the substantia nigra, the globus pallidus, nuclei of the inferior olive, and also the thalamic nuclei in the mechanism of caudato-cerebellar oligosynaptic and polysynaptic connections.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 375–384, July–August, 1978.  相似文献   

10.
Unit responses of the first (SI) somatosensory area of the cortex to stimulation of the second somatosensory area (SII), the ventral posterior thalamic nucleus, and the contralateral forelimb, and also unit responses in SII evoked by stimulation of SI, the ventral posterior thalamic nucleus, and the contralateral forelimb were investigated in experiments on cats immobilized with D-tubocurarine or Myo-Relaxin (succinylcholine). The results showed a substantially higher percentage of neurons in SII than in SI which responded to an afferent stimulus by excitation brought about through two or more synaptic relays in the cortex. In response to cortical stimulation antidromic and orthodromic responses appeared in SI and SII neurons, confirming the presence of two-way cortico-cortical connections. In both SI and SII intracellular recording revealed in most cases PSPs of similar character and intensity, evoked by stimulation of the cortex and nucleus in the same neuron. Latent periods of orthodromic spike responses to stimulation of nucleus and cortex in 50.5% of SI neurons and 37.1% of SII neurons differed by less than 1.0 msec. In 19.6% of SI and 41.4% of SII neurons the latent period of response to cortical stimulation was 1.6–4.7 msec shorter than the latent period of the response evoked in the same neuron by stimulation of the nucleus. It is concluded from these results that impulses from SI play an important role in the afferent activation of SII neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 351–357, July–August, 1976.  相似文献   

11.
Responses of 141 neurons of the caudate nucleus to acoustic stimuli — tones (500 and 2000 Hz) and clicks of different frequency (0.2 and 0.8/sec) and intensity (75, 80, 95 dB) — were recorded extracellularly in chronic experiments on cats. The responses recorded showed great variability with respect to character (phasic, tonic), structure (one or two phases of excitation), latent periods (from 7.5 to 300.0 msec), and burst discharge frequency (from 90 to 800 spikes/sec). Analysis of averaged poststimulus histograms and graphs of the dynamics of the responses showed that responses of 74% of neurons were much better expressed if less frequent stimuli were used: The regularity of the responses and the number of spikes in each response increased. Responses of neurons also increased and acquired a more distinct temporal structure if the intensity of the clicks increased. The character of responses to clicks and tones differed qualitatively in 17% of neurons studied: Phasic excitation arose in response to clicks, tonic changes in spike activity to tones. The particular features of responses of caudate neurons to acoustic stimulation with different parameters are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 6, pp. 588–595, November–December, 1980.  相似文献   

12.
Responses of rabbit visual cortical neurons to single and repetitive intracortical electrical stimulation were investigated. The stimulating electrode was located 0.7–1.2 mm away from the recording electrode. Response thresholds to single stimulation were as a rule 150–180 µA, whereas to series of stimuli they were 30–60 µA. The latent period to the first spike averaged 5–15 msec but the probability of the initial discharge was very low, namely 3–6%. With an increase in current intensity the duration of the initial inhibitory pause was increased in half of the neurons responding to it, whereas in the rest it was unchanged. After presentation of series of stimuli spontaneous activity was enhanced for a short time (4–6 sec). In about half of the cells the same kinds of discharge dynamics were observed in response to repetitive stimulation (frequency 0.25 Hz) as in responses to light, but more neurons with sensitization of discharge and fewer "habituating" neurons took part in responses to electrical stimulation. It is postulated that stimulation of a given point of the visual cortex evokes excitation of a local neuron hypercolumn and inhibition of neighboring cell columns.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 15, No. 4, pp. 412–419, July–August, 1983.  相似文献   

13.
In acute experiments on cats anesthetized with thiopental (30–40 mg/kg, intraperitoneally) and immobilized with D-tubocurarine (1 mg/kg) responses of 145 neurons of the reticular and 158 neurons of the ventral anterior nuclei of the thalamus to electrical stimulation of the centrum medianum were investigated. An antidromic action potential appeared after a latent period of 0.3–2.0 msec in 4.1% of cells of the reticular nucleus and 4.4% of neurons of the ventral anterior nucleus tested in response to stimulation. The conduction velocity of antidromic excitation along axons of these neurons was 1.7–7.6 m/sec. Neurons responding with an antidromic action potential to stimulation both of the centrum medianum and of other formations were discovered, electrophysiological evidence of the ramification of such an axon. Altogether 53.8% of neurons of the reticular nucleus and 46.9% of neurons of the ventral anterior nucleus responded to stimulation of the centrum medianum by orthodromic excitation. Among neurons excited orthodromically two groups of cells were distinguished: The first group generated a discharge consisting of 6–12 action potentials with a frequency of 130–640 Hz (the duration of discharge did not exceed 60 msec), whereas the second responded with a single action potential. Inhibitory responses were observed in only 0.7% of neurons of the reticular nucleus and 4.4% of the ventral anterior nucleus tested. Afferent influences from the relay nuclei of the thalamus, lateral posterior nucleus, and motor cortex were shown to converge on neurons responding to stimulation of the centrum medianum.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 36–45, January–February, 1980.  相似文献   

14.
Responses of 98 auditory cortical neurons to electrical stimulation of the medial geniculate body (MGB) were recorded (45 extracellulary, 53 intracellularly) in experiments on cats immobilized with tubocurarine. Responses of the same neurons to clicks were recorded for comparison. Of the total number of neurons, 75 (76%) responded both to MGB stimulation and to clicks, and 23 (24%) to MGB stimulation only. The latent period of extracellularly recorded action potentials of auditory cortical neurons in response to clicks varied from 7 to 28 msec (late responses were disregarded), and that to MGB stimulation varied from 1.5 to 12.5 msec. For EPSPs these values were 8–13 and 1–4 msec respectively. The latent period of IPSPs arising in response to MGB stimulation varied from 2.2 to 6.5 msec; for 34% of neurons it did not exceed 3 msec. The difference between the latent periods of responses to clicks and to MGB stimulation varied for different neurons from 6 to 21 msec. Responses of 11% of neurons to MGB stimulation, recorded intracellularly, consisted of sub-threshold EPSPs, while responses of 23% of neurons began with an EPSP which was either followed by an action potential and subsequent IPSP or was at once cut off by an IPSP; 66% of neurons responded with primary IPSPs. Neurons responding to MGB stimulation by primary IPSPs are distributed irregularly in the depth of the cortex: there are very few in layers III and IV and many more at a depth of 1.6–2 mm. Conversely, excited neurons are predominant in layer III and IV, and they are few in number at a depth of 1.6–2 mm. It is concluded that the afferent volley reaching the auditory cortex induces excitation of some neurons therein and, at the same time, by the principle of reciprocity, induces inhibition of others. This afferent inhibition takes place with the participation of inhibitory interneurons, and in some cells the inhibition is recurrent. The existence of reciprocal relationships between neurons in different layers of the auditory cortex is postulated.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 23–31, January–February, 1972.  相似文献   

15.
Responses of caudate neurons to stimulation of the anterior sigmoid and various parts of the suprasylvian gyrus were studied in acute experiments on cats. The experiments consisted of two series: on animals with an intact thalamus and on animals after preliminary destruction of the nonspecific thalamic nuclei. Stimulation of all cortical areas tested in intact animals evoked complex multicomponent responses in caudate neurons with (or without) initial excitation, followed by a phase of inhibition and late activation. The latent periods of the initial responses to stimulation of all parts of the cortex were long and averaged 14.5–25.5 msec. Quantitative and qualitative differences were established in responses of the caudate neurons to stimulation of different parts of the cortex. Considerable convergence of cortical influences on neurons of the caudate nucleus was found. After destruction of the nonspecific thalamic nuclei all components of the complex response of the caudate neurons to cortical stimulation were preserved, and only the time course of late activation was modified.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 464–471, September–October, 1980.  相似文献   

16.
A microelectrode investigation was made of responses of 72 physiologically identified neurons of the ventral posterior (VP) and 116 neurons of the ventral lateral (VL) thalamic nuclei to electrical stimulation of the reticular (R) thalamic nucleus. Mainly those neurons of VP and VL (73.7 and 86.2% respectively) which responded to stimulation of the first motor area and nucleus interpositus of the cerebellum responded to stimulation of R; 19.8% of VL neurons tested responded to stimulation of R by an antidromic action potential with latent period of 0.5–2.0 msec and 46.6% of neurons responded by orthodromic excitation; 23% of orthodromic responses had a latent period of 0.9–3.5 msec and 77% a latent period of 4.0–21.0 msec; 19.8% of VL neurons tested were inhibited. Among IPSPs recorded only one was monosynaptic (1.0 msec) and the rest polysynaptic. It is postulated that both R neurons are excitatory and that the inhibition which develops in VL neurons during stimulation of R are connected mainly with activation of inhibitory interneurons outside the reticular nucleus.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 477–485, September–October, 1977.  相似文献   

17.
Responses of caudate neurons to two kinds of visual stimuli, namely diffuse light and a more local stimulus (a slit of light), oriented in different directions on a screen, were studied in alert cats during natural fixation of the gaze. The number of neurons which responded to local stimulation was several times greater than the number responding to diffuse light. Besides on-responses to local stimulation, a more distinct phase of inhibition of activity during presentation of the stimulus and off-responses also appeared. The latent periods of responses to both kinds of stimulation were commensurate at 40–90 msec for most neurons. Differences in neuronal responses also were found on a change in orientation of the slit. The results are discussed from the standpoint of participation of the caudate nucleus in visual information analysis.  相似文献   

18.
Extracellular and intracellular responses of 183 neurons in the primary projection area of the somatosensory cortex to electrical and tactile stimulation of the skin on the contralateral fore limb and to stimulation of the ventro-posterolateral thalamic nucleus of the ipsilateral hemisphere were studied in chronic experiments on cats. Spike responses to afferent stimuli are subdivided into three types: initial with a latent period of under 60 msec; initial followed by late responses with a latent period of over 60 msec; late with a latent period of over 60 msec. In addition another group of neurons responding to peripheral stimuli in the interval between the initial and the late response was identified. In nearly all cases the initial responses to peripheral stimulation had the form of a series of spikes, unlike responses to thalamic stimulation. It is concluded from the durations of the latent periods of these responses that about 70% of neurons in the primary projection area are activated mono- and disynaptically in response to peripheral stimulation; consequently, the intracortical spread of excitation in this zone is restricted.  相似文献   

19.
The latent periods, amplitude, and duration of IPSPs arising in neurons in different parts of the cat cortex in response to afferent stimuli, stimulation of thalamocortical fibers, and intracortical microstimulation are described. The duration of IPSPs evoked in cortical neurons in response to single afferent stimuli varied from 20 to 250 msec (most common frequency 30–60 msec). During intracortical microstimulation of the auditory cortex, IPSPs with a duration of 5–10 msec also appeared. Barbiturates and chloralose increased the duration of the IPSPs to 300–500 msec. The latent period of 73% of IPSPs arising in auditory cortical neurons in response to stimulation of thalamocortical fibers was 1.2 msec longer than the latent period of monosynaptic EPSPs evoked in the same way. It is concluded from these data that inhibition arising in most neurons of cortical projection areas as a result of the arrival of corresponding afferent impulsation is direct afferent inhibition involving the participation of cortical inhibitory interneurons. A mechanism of recurrent inhibition takes part in the development of inhibition in a certain proportion of neurons. IPSPs arise monosynaptically in 2% of cells. A study of responses of cortical neurons to intracortical microstimulation showed that synaptic delay of IPSPs in these cells is 0.3–0.4 msec. The length of axons of inhibitory neurons in layer IV of the auditory cortex reaches 1.5 mm. The velocity of spread of excitation along these axons is 1.6–2.8 msec (mean 2.2 msec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 394–403, May–June, 1984.  相似文献   

20.
Neuronal response in the caudate nucleus to presentation of a wide variety of visual and other sensory stimuli was investigated in waking cats. Pronounced discrepancies in background activity of unknown origin as well as differing neuronal activity level were noted in adjacent sections of the nucleus. Of the neurons from which readings of response to sensory stimulation could be made, some reacted to presentation of exclusively visual and others to tactile stimuli; a third group responded to a combination of visual and somatic stimulation only. Response could only be produced in cells of all types by a high level of activity in the animal. Visual stimuli attracting the animal's interest proved to be the most effective form of stimulation. Ipsi- and contralateral sides of the animal's body were both represented in the caudate nucleus of each hemisphere. Neuronal response in the caudate nucleus may be compared with that produced by application of similar stimuli in cells belonging to different cortical areas.Institute for Research on Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 3–10, January–February, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号