首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Luu TC  Bhattacharya P  Chan WK 《FEBS letters》2008,582(21-22):3167-3173
Cyclophilin-40 (CyP40) promotes the formation of the gel shift complex that contains the aryl hydrocarbon receptor (AhR), AhR nuclear translocator (Arnt) and dioxin response element (DRE) using baculovirus expressed proteins. Here we reported that CyP40 plays a role in the AhR signaling. When the CyP40 content in MCF-7 cells is reduced, up-regulation of cyp1a1 and cyp1b1 by 3-methylchloranthrene (3MC) is also reduced, suggesting that CyP40 is essential for maximal AhR function. The CyP40 region containing amino acids 186-215, but not the peptidyl-prolyl cis-trans isomerase and tetratricopeptide repeat domains, is essential for forming the AhR/Arnt/DRE complex. CyP40 is found in the cell nucleus after 3MC treatment and appears to promote the DRE binding form of the AhR/Arnt heterodimer.  相似文献   

3.
Halogenated and polycyclic aromatic hydrocarbons induce diverse biochemical responses through the transformation of a cytosolic aryl hydrocarbon receptor (AhR). In mouse hepatoma Hepa-1c1c7 cells, curcumin, a yellow pigment of Curcuma longa, did not inhibit the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced translocation of the AhR into the nucleus, but rather accelerated it. In the nucleus, curcumin inhibited the TCDD-induced heterodimerization of the AhR with an AhR nuclear translocator (Arnt), an essential partner for the transformation, and also dose-dependently inhibited the TCDD-evoked phosphorylation of both the AhR and Arnt. Moreover, curcumin significantly inhibited the TCDD-induced activation of protein kinase C (PKC), which is involved in the transformation, decreased the TCDD-induced DNA-binding activity of the AhR/Arnt heterodimer, and downregulated CYP1A1 expression. In a cell-free system, curcumin inhibited the binding of 3-methylcholanthrene, an AhR agonist, to the receptor. These results indicate that curcumin is able to bind to the AhR as a ligand, but suppresses its transformation by inhibiting the phosphorylation of AhR and Arnt, probably by PKC.  相似文献   

4.
Functional role of AhR in the expression of toxic effects by TCDD   总被引:30,自引:0,他引:30  
Cytochrome P450 1A1 (CYP1A1) is one of the xenobiotic metabolizing enzymes (XMEs), which is induced by polycyclic aromatic hydrocarbons (PAHs). The most potent inducer of CYP1A1 is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In addition, TCDD induces a broad spectrum of biochemical and toxic effects, such as teratogenesis, immunosuppression and tumor promotion. Most, if not all, of the effects caused by TCDD and other PAHs are known to be mediated by AhR (aryl hydrocarbon receptor or dioxin receptor) which has a high binding affinity to TCDD. The liganded AhR translocates from cytoplasm to nuclei where it switches its partner molecule from Hsp90 to Arnt. Thus formed AhR/Arnt heterodimer binds a specific DNA sequence designated XRE in the promoter region of the target genes including CYP1A1, UDP-glucuronosyl transferase and others to enhance their expression. Although it remains to be studied how AhR is involved in the other TCDD-induced biological effects such as teratogenesis and immunosuppression than induction of XMEs, it is believed that these adverse TCDD effects are caused by untimely activation of gene expression by ligand-activated AhR in the biological process. We summarize the present knowledge about functional role of AhR in TCDD-induced biological effects.  相似文献   

5.
6.
7.
8.
9.
E F Yao  M S Denison 《Biochemistry》1992,31(21):5060-5067
We have utilized gel retardation analysis and DNA mutagenesis to examine the specific interaction of transformed guinea pig hepatic cytosolic TCDD.AhR complex with a dioxin-responsive element (DRE). Sequence alignment of the mouse CYPIA1 upstream DREs has identified a common invariant "core" consensus sequence of TNGCGTG flanked by several variable nucleotides. Competitive gel retardation analysis using a series of DRE oligonucleotides containing single or multiple base substitutions has allowed identification of those nucleotides important for TCDD.AhR.DRE complex formation. A putative TCDD.AhR DNA-binding consensus sequence of GCGTGNNA/TNNNC/G has been derived. The four core nucleotides, CGTG, appear to be critical for TCDD-inducible protein-DNA complex formation since their substitution decreased AhR binding affinity by 100-800-fold; the remaining conserved bases are also important, albeit to a lesser degree (3-5-fold). The 5'-ward thymine, present in the invariant core sequence of all the DREs identified to date, appears not to be involved in DNA binding of the AhR. The results obtained here indicate that although the primary interaction of the TCDD.AhR complex with the DRE occurs with the conserved "core" sequence, nucleotides flanking the core also contribute to the specificity of DRE binding.  相似文献   

10.
11.
12.
13.
14.
At a low-oxygen tension, cells increase the expression of several genes (such as erythropoietin, the vascular endothelial growth factor, and glycolytic enzymes) in order to adapt to hypoxic stress. A common transactivator, named the hypoxia-inducible factor 1 (HIF-1) activates these genes. HIF-1 is a heterodimeric transactivator that is composed of alpha and beta subunits. HIF-1 activity is primarily determined by the hypoxia-induced stabilization of the alpha subunit, whereas the HIF-1beta subunit is expressed constitutively. Our previous observation implied that the MEK-1/p42/p44 MAPK pathway is involved in the hypoxia-induced transactivation ability, but not in the stabilization and DNA binding of HIF-1alpha. In this paper, we dissected the transactivation domain of HIF-1alpha in more detail, and tested the correlation between specific domains of HIF-1alpha and specific signaling pathways. We designed several fusion proteins that contain deletion mutants of HIF-1alpha that is linked to the DNA binding domain of the yeast protein Gal4. By using the Gal4-driven reporter system, we tested the transactivation activities of the Gal4/HIF-1alpha fusion proteins in Hep3B cells. Our findings suggest that tyrosine kinases, the MEK-1/p42/p44 MAPK pathway, but not the PI-3 kinase/Akt pathway, are involved in the hypoxia-induced transactivation of HIF-1alpha. We have shown that the functional transactivation activities are located at both 522-649 and 650-822 amino acids of HIF-1alpha. Treatment of PD98059, a MEK-1 inhibitor, blocked the hypoxia-induced transactivation abilities of both the 522-649 and 650-822 amino acids of the C-terminal half of HIF-1alpha. This implies that the MEK-1/p42/p44 MAPK signaling pathway cannot distinguish between the two hypoxia-induced transactivation domains.  相似文献   

15.
16.
17.
The aryl hydrocarbon receptor (AhR) mediates many toxic effects of environmental pollutants. AhR also interacts with multiple growth factor-driven signaling pathways. In the course of examining effects of growth factors on proliferation of human colon cancer cells, we identified cross talk between AhR and the epidermal growth factor receptor (EGFR). In the present work, we explored underlying signal transduction mechanisms and functional consequences of this interaction. With the use of two human colon cancer cell lines, H508 and SNU-C4, we examined the effects of AhR ligands including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on cell proliferation and activation of EGFR, ERK1/2, and Src kinases. In colon cancer cells, 5-day incubation with TCDD stimulated a twofold dose-dependent increase in cell proliferation that was detectable with 1 nM and maximal with 30 nM TCDD. TCDD induced dose- and time-dependent phosphorylation of EGFR (Tyr845) and ERK1/2; maximal phosphorylation was observed 5 to 10 min after addition of 30 nM TCDD. Both TCDD-induced ERK1/2 phosphorylation and cell proliferation were abolished by AhR small interfering RNA, AhR-specific inhibitor CH223191, Src kinase inhibitor PP2, neutralizing antibodies against matrix metalloproteinase 7, heparin-binding-EGF-like growth factor and EGFR, EGFR inhibitors (AG1478 and PD168393), and MEK1 inhibitor PD98059. Coimmunoprecipitation experiments revealed that AhR forms a protein complex with Src and regulates Src activity by phosphorylating Src (Tyr416) and dephosphorylating Src (Tyr527). These data support novel observations that, in human colon cancer cells, Src-mediated cross talk between aryl hydrocarbon and EGFR results in ERK1/2 activation, thereby stimulating cell proliferation.  相似文献   

18.
MCF-7 human breast cancer cells express the aryl hydrocarbon receptor (AhR), and treatment with AhR agonists such as 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) inhibits estrogen receptor (ER)-mediated responses. This study investigates physical and functional interactions of the AhR complex with a prototypical coactivator (estrogen receptor associating protein 140, ERAP 140) and corepressor (silencing mediator for retinoic acid and thyroid hormone receptor, SMRT) for ER and other members of the nuclear receptor superfamily. The AhR, AhR nuclear translocator (Arnt), and AhR/Arnt proteins were coimmunoprecipitated with 35S-ERAP 140 and 35S-SMRT and, in gel mobility shift assays, AhR/Arnt binding to 32P-dioxin response element (DRE) was enhanced by ERAP-140 and inhibited by SMRT; supershifted bands were not observed. In transactivation assays, coactivator and corepressor proteins enhanced or inhibited AhR-mediated gene expression; however, these responses varied with the amount of coactivator/corepressor expression. These results confirmed functional and physical interactions of AhR/Arnt with ERAP 140 and SMRT in breast cancer cells.  相似文献   

19.
We delineate a mechanism by which dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin or TCDD)-mediated formation of the aryl hydrocarbon receptor (AhR) DNA binding complex is disrupted by a single mutation at the conserved AhR tyrosine 9. Replacement of tyrosine 9 with the structurally conservative phenylalanine (AhRY9F) abolished binding to dioxin response element (DRE) D, E, and A and abrogated DRE-driven gene induction mediated by the AhR with no effect on TCDD binding, TCDD-induced nuclear localization, or ARNT heterodimerization. The speculated role for phosphorylation at tyrosine 9 was also examined. Anti-phosphotyrosine immunoblotting could not detect a major difference between the AhRY9F mutant and wild-type AhR, but a basic isoelectric point shift was detected by two-dimensional gel electrophoresis of AhRY9F. However, an antibody raised to recognize only phosphorylated tyrosine 9 (anti-AhRpY9) confirmed that AhR tyrosine 9 is not a phosphorylated residue required for DRE binding. Kinase assays using synthetic peptides corresponding to the wild-type and mutant AhR residues 1-23 demonstrated that a tyrosine at position 9 is important for substrate recognition at serine(s)/threonine(s) within this sequence by purified protein kinase C (PKC). Also, compared with AhRY9F, immunopurified full-length wild-type receptor was more rapidly phosphorylated by PKC. Furthermore, co-treatment of AhR-deficient cells that expressed AhRY9F and a DRE-driven luciferase construct with phorbol 12-myristate 13-acetate and TCDD resulted in a 30% increase in luciferase activity compared with AhRY9F treated with TCDD alone. Overall, AhR tyrosine 9, which is not a phosphorylated residue itself but is required for DNA binding, appears to play a crucial role in AhR activity by permitting proper phosphorylation of the AhR.  相似文献   

20.
Stimulation of rat peritoneal neutrophils with staurosporine (64 nM) induced production of macrophage inflammatory protein-2 (MIP-2) and phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase/MAP kinase (ERK/MAPK). The staurosporine-induced MIP-2 production at 4 h was inhibited by the highly specific p38 MAPK inhibitor SB 203580 and the MAPK/ERK kinase (MEK-1) inhibitor PD 98059 in a concentration-dependent manner. By treatment with SB 203580 (1 microM) or PD 98059 (50 microM), the staurosporine-induced increase in the levels of mRNA for MIP-2 was only partially lowered, although the staurosporine-induced MIP-2 production was completely inhibited. Consistent with the inhibition by the protein synthesis inhibitor cycloheximide, SB 203580 and PD 98059 inhibited MIP-2 production at 4 h either when added simultaneously with staurosporine or 2 h after stimulation with staurosporine. In contrast, the DNA-dependent RNA polymerase inhibitor actinomycin D did not inhibit MIP-2 production at 4 h when it was added 2 h after staurosporine stimulation. Dot blot analysis demonstrated that treatment with SB 203580 or PD 98059 down-regulates the stability of MIP-2 mRNA. These results suggested that p38 MAPK and ERK/MAPK pathways are involved in translation of MIP-2 mRNA to protein and stabilization of MIP-2 mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号