首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two pathways to osteoclastogenesis, RANKL-mediated and CD98-mediated osteoclastogenesis, have recently been reported. RANKL, OCIF, and TIMP-3 mRNAs are not found in monocytes freshly isolated or incubated with anti-FRP-1/CD98hc antibody. RANK, TACE, and M-CSF mRNAs can be detected in these cells. Interestingly, the expressed amount of RANK mRNA increases by cultivation of monocytes with anti-CD98hc antibody and maximal expression is observed in osteoclast-like cells. CD98-mediated cell aggregation and multinucleated giant cell formation are blocked by OCIF. OCIF also suppressed the CD98-mediated induction of Sp1 and c-src mRNAs in monocytes. Soluble RANK shows no effect on CD98-mediated cell aggregation and multinucleated giant cell formation. When blood monocytes were incubated with RANKL and M-CSF, c-src and Sp1 mRNAs were first found in blood monocytes incubated with these cytokines for 7 days. On the contrary, c-src mRNA could be detected 3 h after treatment of blood monocytes with anti-CD98hc mAb. LAT-1 mRNA was not found, and the expression levels of Y(+)LAT-1 and Y(+)LAT-2 mRNAs were not changed in monocytes stimulated without or with anti-CD98hc mAb or RANKL and M-CSF. An inhibitory mAb directed against CD98hc, HBJ 127, shows a suppressive effect on RANKL-mediated cell aggregation and cell fusion. Thus, there is cross-talk between these two pathways.  相似文献   

2.
When anti-CD98 mAb 6-1-13, 4-5-1, or 38-2-2 was added to the culture fluids of monocytes, extensive cell aggregation and polykaryocyte formation were induced. These multinucleated giant cells were tartrate-resistant acid phosphatase (TRAP) positive. On the other hand, when monocytes were incubated with another anti-CD98 mAb, HBJ 127, polykaryocyte formation was not detected, although extensive cell aggregation was induced. When HBJ 127 and 6-1-13 were simultaneously added to the culture fluids, anti-CD98 mAb-induced cell fusion was inhibited almost completely. HBJ 127 suppressed formation of 6-1-13-induced cell fusion in a dose-dependent manner. If, however, HBJ 127 was added after incubation of monocytes with mAb 6-1-13 for 6 h, an appreciable degree of TRAP-positive polykaryocyte formation was found. The bindings of 6-1-13 and HBJ 127 were not mutually competed. When monocytes were incubated with 6-1-13 or HBJ 127, 6-1-13 induced c-src mRNA, while HBJ 127 did not. Furthermore, when monocytes were incubated with both 6-1-13 and HBJ 127, c-src mRNA could not be detected, showing that HBJ 127 suppresses c-src expression. Therefore, CD98-mediated osteoclast formation can be regulated by modification of CD98 system.  相似文献   

3.
Monocytes-macrophages are converted to multinucleated giant cells by stimulation with various cytokines, and osteoclasts are the multinucleated giant cells derived from a monocyte-macrophage lineage. However, at present, the fusion peptides have not been clearly identified in monocytes-macrophages. The ADAM are a family of transmembrane glycoproteins that have a role in various biological functions. Interestingly, fertilin-alpha, ADAM9, and ADAM11 have potential fusion peptides. In this study, which ADAM was specifically expressed in monocytes stimulated with anti-CD98 antibody or RANKL and which factor(s) was functioning in monocytes as a fusion protein were investigated. ADAM1, 8, 10, 12, 15, 17, 20, and 21 mRNAs are expressed in blood monocytes incubated with control antibody, anti-FRP-1/CD98 antibody, or RANKL + M-CSF, while ADAM2, 7, 11, 13, 19, 23, 29, and 30 mRNAs could not be detected in these blood monocytes. Expression of ADAM9 and ADAM10 mRNAs are enhanced by either RANKL + M-CSF or anti-CD98 antibody. The expression of ADAM9 and ADAM10 is also induced in blood monocytes by anti-CD98 mAb. An anti-ADAM9 antibody enhances CD98-mediated cell aggregation, while it blocks CD98-mediated and RANKL-mediated multinucleated giant cell formation. A hydroxamate-based metalloprotease inhibitor, SI-27, which is found to suppress ADAM9 activity, suppresses multinucleated giant cell formation. New protein synthesis is necessary for the expression of ADAM9 mRNA and genistein suppresses induction of ADAM9 mRNA. This is the first report that ADAM9 is involved in monocyte fusion, such as CD98-mediated and RANKL-mediated cell fusion of blood monocytes. Furthermore, AMAM9 is one candidate for a fusion peptide in blood monocytes.  相似文献   

4.
The role of leukocyte function-associated Ag-1 (LFA-1) in intercellular adhesion is well documented. Previously, we demonstrated that the LFA-1 molecule (CD11a/CD18) can also regulate the induction of proliferation of peripheral blood T cells. In these studies, we observed opposite effects of antibodies against CD11a (LFA-1-alpha-chain) or CD18 (LFA-1-beta-chain). Here, we determined the effects of anti-CD11a and anti-CD18 mAb on proliferation of cloned influenza virus-specific T cells. Anti-CD18 mAb had similar inhibiting effects on the proliferative response of T cell clones induced by immobilized anti-CD3 mAb as it had on the response of peripheral blood T cells. In contrast to its costimulatory effect on resting peripheral blood T cells, anti-CD11a mAb did not increase the proliferation of cloned T cells. Similar differences in effects of anti-CD11a and anti-CD18 mAb were observed when proliferation of the T cell clones was induced by immobilized anti-TCR mAb. When proliferation was induced by influenza virus presented by monocytes as APC, both anti-CD11a and anti-CD18 mAb inhibited T cell proliferation. However, when EBV-transformed B cells were used as APC, neither anti-CD11a nor anti-CD18 mAb inhibited proliferation. These results demonstrate that the effects of antibodies against CD11a (LFA-1-alpha) or CD18 (LFA-1-beta) on T cell proliferation depend on 1) the stage of activation of the T cells, 2) the activation stimulus and its requirement for intercellular adhesion involving LFA-1, and 3) the type of cell used to present Ag.  相似文献   

5.
Murine anti-CD14 mAb which recognize different CD14 epitopes induced marked homotypic adhesion of normal human monocytes. Induction of aggregation by anti-CD14 mAb required Mg2+, occurred at an optimal temperature of 37 degrees C, but not at 4 degrees C, and exhibited a kinetics which differed from adhesion triggered by IFN-gamma and anti-CD43 mAb. Monocyte adhesion induced by anti-CD14 mAb required neither Fcy gamma R engagement nor cross-linking of CD14, because adhesion was induced by F(ab)'2 fragments, as well as by monovalent F(ab) fragments of anti-CD14 mAb. mAb to CD11a, CD18, and intercellular adhesion molecule-1 (ICAM-1), but not antibodies to CD11b and CD11c, inhibited monocyte adhesion induced by CD14 engagement. These results indicate that CD14-dependent adhesion is mediated by lymphocyte function-associated Ag-1/ICAM-1 interactions. This was confirmed by the absence of aggregation in anti-CD14-stimulated cells from a patient with leukocyte adhesion deficiency. Monocyte adhesion upon CD14 engagement was blocked by an inhibitor of protein kinases, sphingosine. This suggests that protein kinases play a role in the intracellular signaling pathway(s) which couple CD14 to lymphocyte function-associated Ag-1/ICAM-1.  相似文献   

6.
Antigenic modulation was defined as the down-regulation of a cell surface antigen expression induced by exposure to specific antibody. We investigated the modulation of CD4 surface expression in human peripheral blood lymphocytes incubated in vitro with anti-CD4 monoclonal antibodies (mAbs). Modulation of surface CD4 was achieved at 37 degrees C, but not at 4 degrees C, with five different murine anti-CD4 mAbs of IgG1 and IgG2a subclasses, with different epitope specificities. Modulation was dose dependent with a maximum at nonsaturating mAb concentration. It was reversible upon culture in mAb-free medium. It was accelerated and amplified in the presence of monocytes or after cross-linking of anti-CD4 mAbs. It could be induced with solid phase anti-CD4 mAbs, but not with soluble F(ab')2 fragments. Its magnitude was identical on all CD4+ lymphocytes. It was associated with a moderate down-regulation of CD2 and CD3 but not of CD8 and HLA class I surface expression. Modulation was slightly augmented by addition of inhibitors of the endosome/lysosome pathway but not by protein synthesis inhibitors. The anti-CD4 mAb initially bound to cell surface was no longer detectable after 24 hr of culture. Most of surface CD4 proteins complexed with antibody were rapidly internalized and transiently replaced by CD4 from an intracytoplasmic pool and then no longer were expressed. CD4 mRNA was moderately decreased in cells incubated with anti-CD4 mAb while beta-actin and beta 2-microglobulin mRNAs remained at stable levels. It was concluded that down-regulation of CD4 surface expression induced by anti-CD4 mAb concerned only a part of CD4 molecules and was associated with a decreased synthesis. The delay required to achieve maximal modulation is likely to reflect exhaustion of the intracytoplasmic recycling pool of CD4 molecules.  相似文献   

7.
We have recently shown that engagement of the human monocytic Ag CD14 by murine mAb induces lymphocyte function-associated antigen-1/intercellular adhesion molecule-1-dependent homotypic adhesion. To determine whether CD14 plays a role in monocyte-T cell interactions, we tested the effect of anti-CD14 mAb on the proliferation of human T cells. Our results show that anti-CD14 mAb strongly inhibited T cell proliferation induced by Ag, anti-CD3 mAb, and mitogenic lectins. Inhibition by anti-CD14 mAb was epitope-dependent and required physical contact between monocytes and T cells. CD14 engagement did not affect IL-2R expression or IL-2 synthesis but induced a state of unresponsiveness that was not IL-2 specific; proliferation of anti-CD3-activated T cell blasts in response to both IL-2 and IL-4 was abrogated by addition of monocytes preincubated with anti-CD14 mAb. Inhibition of T cell proliferation after engagement of CD14 on monocytes was likely to result from delivery of a negative signal to T cells, rather than from disruption of a costimulatory monocyte-derived signal, because incubation of monocytes with anti-CD14 mAb also inhibited monocyte-independent T cell proliferation induced by PMA and ionophore. These results, together, point to a role of CD14 in the monocyte-dependent regulation of T cell proliferation.  相似文献   

8.
Src family non-receptor tyrosine kinases are involved in signaling pathways which mediate cell growth, differentiation, transformation and tissue remodeling in various organs. In an effort to elucidate functional involvement of p60c-Src (c-Src) in spermatogenesis, the postnatal changes in c-src mRNA and c-Src protein together with kinase activity and subcellular localization were examined in mouse testes. c-src mRNA levels in testes increased during the first 2 weeks of postnatal development (PND). Following a decrease at puberty (PND 28), the c-src mRNA levels re-increased at adulthood (PND 50). Src kinase activity of testes was low at PND 7 but sharply increased prepubertally (PND 15) and highest at adulthood. Upon Western blotting, the level of c-Src protein was the highest in prepubertal testes but rather decreased in adult testes at PND 50. In adult testes, ubiquitination of c-Src proteins was apparent compared with immature one at PND 7, suggesting active turnover of c-Src by ubiquitination. In immature testes, c-Src immunoreactivity was largely found in the cytoplasm of the Sertoli cells. By contrast, in pubertal and adult testes intense immunoreactivity was localized at the adluminal and basal cytoplasm of Sertoli cells bearing elongated spermatids and early germ cells, respectively. The immunoreactivity of c-Src in the Leydig cells was increased during pubertal development, suggesting the functional involvement of c-Src in differentiated adult Leydig cells. Throughout postnatal development, some spermatogonia and spermatocytes showed intensive c-Src immunoreactivity compared with other germ cells, suggesting a possible role of c-Src in germ cell death. Taken together, it is suggested that c-Src may participate in the remodeling of the seminiferous epithelia and functional differentiation of Leydig cells during the postnatal development of mouse testes.  相似文献   

9.
10.
11.
The CD98 light chain (CD98LC) was copurified from HeLa S3 cells by an affinity chromatography using a mAb specific for the fusion regulatory protein-1 (FRP-1) which is identical to the CD98 heavy chain. On the basis of the N-terminal sequence (63 amino acids) of purified CD98LC polypeptide, we have cloned a PCR fragment (155 bp) from a HeLa S3 cDNA library and finally obtained a full cDNA clone encoding the CD98LC. Fluorescence in situ hybridization analysis using the cDNA assigned the CD98LC gene to the long arm of human chromosome 16 (16q24). The predicted amino acid sequence suggested that CD98LC is a protein with multiple transmembrane domains and is almost identical to the amino acid transporter E16. Resting monocytes and lymphocytes expressed CD98LC as analyzed by a newly isolated anti-CD98LC mAb, which showed cross-reactivity with insect Sf9 cells as well as with various mammalian cell lines.  相似文献   

12.
We have investigated the role of protein tyrosine phosphorylation in transmembrane signaling via the IgG receptors Fc gamma RI and Fc gamma RII in the human monocytic cell line THP-1. Fc gamma RI and Fc gamma RII were selectively engaged using the anti-Fc gamma RI mAb 197 (IgG2a) and the anti-Fc gamma RII mAb IV.3 (IgG2b). Addition to cells of mAb 197, but not addition of IgG2a mAb of irrelevant specificity, resulted in the rapid induction of cytoplasmic protein tyrosine phosphorylation as assessed by antiphosphotyrosine immunoblotting. A similar pattern of tyrosine phosphorylation was induced by mAb IV.3, but not by control IgG2b mAb. The induction of tyrosine phosphorylation by anti-Fc gamma R mAb was not dependent on antibody Fc region-FcR interactions, because tyrosine phosphorylation was also induced by cross-linked anti-Fc gamma RI F(ab')2 fragments and by cross-linked anti-Fc gamma RII Fab fragments. To investigate the relationship of Fc gamma R-induced tyrosine phosphorylation and activation of phospholipase C, which is known to follow Fc gamma R engagement, we assessed the effect of the tyrosine kinase inhibitor herbimycin A on Fc gamma R-induced Ca2+ flux. Herbimycin A strongly inhibited cellular Ca2+ flux induced by mAb 197, but did not inhibit Ca2+ flux induced by aluminum fluoride, suggesting that tyrosine phosphorylation may be important in regulating Fc gamma R-mediated activation of phospholipase C. Consistent with this, mAb 197 induced rapid phosphorylation of the gamma-1 isoform of phospholipase C. Finally, herbimycin A strongly inhibited the induction of TNF-alpha mRNA accumulation by Fc gamma R cross-linking. These results suggest that protein tyrosine phosphorylation may play an important role in the activation of phospholipase C and in the induction of monokine gene expression that follows engagement of Fc gamma R in human monocytes.  相似文献   

13.
Mice homozygous for the autosomal recessive lpr gene have a disorder that results in autoimmunity and massive accumulation of T lymphocytes lacking CD4 and CD8 surface markers. These abnormal T cells exhibit constitutive tyrosine phosphorylation of a component of the CD3-T-cell receptor complex. We compared membrane tyrosine phosphorylation in lpr/lpr CD4- CD8- T cells and control T cells, lpr membranes exhibited a 7.3-fold increase (n = 16) in tyrosine phosphorylation of a 60-kilodalton protein. The increase was correlated with the Lpr but not the CD4- CD8- phenotype in that p60 phosphorylation was not increased in membranes from normal CD4- CD8- thymocytes. To identify the p60 in lpr cells, we examined the activity of several T-cell tyrosine-specific protein kinases. p56lck phosphorylation was only slightly increased in lpr membranes (2.2-fold; n = 16). Phorbol ester treatment of intact T cells before membrane isolation caused p56lck to migrate as pp60lck; however, pp60lck could be clearly distinguished from the pp60 in lpr cells by two-dimensional gel electrophoresis. The pp60 from lpr cells exhibited several isoforms at pH approximately 6.3 to 6.5. Although on two-dimensional gels pp60c-src had a pI (6.4 to 6.8) within a similar region, p60c-src mRNA, protein, and kinase activities were not increased in lpr cells. In addition, staphylococcal V8 proteolytic cleavage of the lpr pp60 isolated on two-dimensional gels yielded two major fragments, a pattern distinct from that of pp60c-src. However, by using an antiserum against the C-terminal sequence of c-Src and other related kinases, including p59fyn, the pp60 could be immunoprecipitated in greater amounts from lpr than from control T cells. When pp59(fyn) was selectively immunoprecipitated from T-cell membranes with specific antisera, its molecular weight, proteolytic cleavage pattern, and behavior on two-dimensional gels were identical to those of the pp60 from lpr cells. We conclude that p59(fyn) phosphorylation is increased in membranes from lpr/lpr CD4(-) CD8(-) T cells and that the increase is correlated with constitutive tyrosine phosphorylation and perhaps with the expansion of this unusual T-cell population.  相似文献   

14.
15.
Expression and immunological significance of IFN-gamma, a pivotal cytokine in murine lupus, have not been clearly demonstrated in human systemic lupus erythematosus (SLE). In the present study we investigated the expression of IFN-gamma in peripheral blood T cells from patients with SLE and its role in the production of the soluble B lymphocyte stimulator (sBLyS). Peripheral blood T cells from patients with SLE expressed significantly larger amounts of IFN-gamma in response to stimulation with anti-CD3 mAb plus anti-CD28 mAb than those from normal controls as shown by three analytical methods, including ELISA, flow cytometry, and quantitative RT-PCR. The ratio of IFN-gamma-producing T cells to effector memory T cells in CD3(+)CD4(+) and CD3(+)CD8(+) populations in patients with SLE was significantly higher than that of normal controls. The T-box expressed in T cells (T-bet) mRNA/GATA-binding protein-3 (GATA-3) mRNA ratio was significantly higher in patients with SLE than in normal controls. T cell culture supernatants from patients with SLE contained significantly higher sBLyS-inducing activity than normal controls; this was almost completely inhibited by the addition of anti-human IFN-gamma mAb. Percentages of BLyS-expressing peripheral blood monocytes in patients with SLE were significantly higher than those of normal controls. Monocytes from patients with SLE produced significantly larger amounts of sBLyS in response to IFN-gamma than those from normal controls. Taken together, these data strongly indicate that the overexpression of IFN-gamma in peripheral blood T cells contributes to the immunopathogenesis of SLE via the induction of sBLyS by monocytes/macrophages, which would promote B cell activation and maturation.  相似文献   

16.
Early events of TCR signaling are distinct in human Th1 and Th2 cells   总被引:4,自引:0,他引:4  
To study the requirements for activation of human Th1 and Th2 cells, soluble peptide/DR1 complexes were prepared from naturally expressed DR1 protein. When immobilized, this material induced T cell activation, as revealed by CD25 up-regulation. Unexpectedly, Th2 cells required a higher density of peptide/DR1 complexes than Th1 cells to initiate CD25 up-regulation. Similar findings were obtained with immobilized or soluble and cross-linked anti-CD3 mAb. In contrast, peptide/DR1 complexes displayed on the surface of nonprofessional APC similarly induced CD25 up-regulation in Th1 and Th2 cells. Signaling events distinguishing human Th1 and Th2 cells following TCR engagement by anti-CD3 mAb were then studied. It was observed that upon TCR triggering, the overall tyrosine phosphorylation profiles were fainter in Th2 than in Th1 clones. Similar results were obtained with Th1- and Th2-polarized polyclonal lines. Varying the dose of anti-CD3 mAb, the kinetics of activation, and coengagement of CD3 and CD28 failed to increase tyrosine phosphorylation in Th2 cells to levels reached in Th1 cells. In contrast, treatment with the tyrosine phosphatase inhibitor phenylarsine oxide resulted in similar tyrosine phosphorylation levels in Th2 and Th1 cells. These findings indicated that Th2 cells had an intrinsically lower TCR-induced tyrosine phosphorylation capacity than Th1 cells, which might be controlled by Th1- and Th2-specific phosphatase profiles. Finally, a weaker association was found between ZAP-70 and CD3zeta in Th2 than in Th1 cells after TCR engagement. Taken together, these results constituted evidence that early events in the TCR signaling cascades are distinct in human Th1 and Th2 cells.  相似文献   

17.
CD38 signaling, either induced by ligation with specific agonistic monoclonal antibody (mAb) or after interaction with CD31, its cognate counter-receptor, is involved in release of IL-1beta, IL-6, and IL-10 cytokines in resting human monocytes. CD38 ligation by the F(ab')(2) IB4 mAb did not induce signals relevant for cytokine secretion and the block of the Fcgamma receptor I (FcgammaRI) by anti-CD64 or FcgammaRII by anti-CD32 mAb did not inhibit CD38-mediated IL-1beta release. Dimerization or multimerization of the CD38 molecule by: (i) cross-linking of the receptor ligated by F(ab')(2) or by (ii) increasing CD38 expression by treating monocytes with IFNgamma were able to restore the truncated CD38-mediated signals involved in cytokine secretion. These data indicate that CD38 receptor-mediated signals operate directly suggesting a Fcgamma receptorial surface molecule independent activation pathway. The key element for the receptor mediated signaling is represented by surface density of CD38 on resting monocytes.  相似文献   

18.
We used flow cytometry to determine how LPS-binding protein (LBP) effects the binding of fluorescein-labeled LPS to human monocytes via receptor-dependent mechanisms. The addition of human, rabbit, mouse, or FCS strikingly increased the binding of LPS to monocytes compared with controls incubated in serum-free medium. This binding was totally prevented by preincubation of monocytes with MY4, an anti-CD14 mAb, or by enzymatic removal of CD14 from monocytes. Depletion of LBP from rabbit serum with anti-LBP antibodies also produced a similar suppression. Solutions of albumin did not support the enhanced binding observed in serum but the addition of purified rabbit LBP to albumin solutions resulted in binding similar to that observed in serum-containing medium. When type-specific anti-LPS mAb was added to human serum, LPS binding to monocytes occurred but was only partly inhibited by anti-CD14 mAb, suggesting that receptors other than CD14 (presumably Fc or complement receptors) were involved. Serum increased by 100- to 1000-fold the sensitivity of monocytes to the triggering by LPS resulting in TNF secretion. TNF secretion was inhibited by anti-CD14 mAb up to 100 ng/ml of LPS and by anti-LPS mAb up to 1 to 10 ng/ml. The inhibition of TNF secretion by anti-LPS mAb appeared to be the result of directing LPS to monocyte receptors other than CD14. In contrast, in medium containing normal as well as acute serum and in the absence of anti-LPS antibodies, the binding of LPS to monocytes and the triggering of TNF secretion appeared to be mediated mainly by interactions between CD14 and LBP-LPS complexes.  相似文献   

19.
《The Journal of cell biology》1994,126(5):1277-1286
Intercellular adhesion molecule (ICAM)-3, a recently described counter- receptor for the lymphocyte function-associated antigen (LFA)-1 integrin, appears to play an important role in the initial phase of immune response. We have previously described the involvement of ICAM-3 in the regulation of LFA-1/ICAM-1-dependent cell-cell interaction of T lymphoblasts. In this study, we further investigated the functional role of ICAM-3 in other leukocyte cell-cell interactions as well as the molecular mechanisms regulating these processes. We have found that ICAM-3 is also able to mediate LFA-1/ICAM-1-independent cell aggregation of the leukemic JM T cell line and the LFA-1/CD18-deficient HAFSA B cell line. The ICAM-3-induced cell aggregation of JM and HAFSA cells was not affected by the addition of blocking mAb specific for a number of cell adhesion molecules such as CD1 1a/CD18, ICAM-1 (CD54), CD2, LFA-3 (CD58), very late antigen alpha 4 (CD49d), and very late antigen beta 1 (CD29). Interestingly, some mAb against the leukocyte tyrosine phosphatase CD45 were able to inhibit this interaction. Moreover, they also prevented the aggregation induced on JM T cells by the proaggregatory anti-LFA-1 alpha NKI-L16 mAb. In addition, inhibitors of tyrosine kinase activity also abolished ICAM-3 and LFA-1- mediated cell aggregation. The induction of tyrosine phosphorylation through ICAM-3 and LFA-1 antigens was studied by immunofluorescence, and it was found that tyrosine-phosphorylated proteins were preferentially located at intercellular boundaries upon the induction of cell aggregation by either anti-ICAM-3 or anti-LFA-1 alpha mAb. Western blot analysis revealed that the engagement of ICAM-3 or LFA-1 with activating mAb enhanced tyrosine phosphorylation of polypeptides of 125, 70, and 38 kD on JM cells. This phenomenon was inhibited by preincubation of JM cells with those anti-CD45 mAb that prevented cell aggregation. Altogether these results indicate that CD45 tyrosine phosphatase plays a relevant role in the regulation of both intracellular signaling and cell adhesion induced through ICAM-3 and beta 2 integrins.  相似文献   

20.
We have developed an in vitro system to assess the early stages of B cell activation induced by peripheral blood T helper cells. Peripheral blood mononuclear cells are cultured for 16 hr with anti-CD3 monoclonal antibody (mAb), T lymphocytes are then removed by sheep red blood cell rosette depletion, and expression of the B cell surface activation antigen CD23 (BLAST-2) is assessed by indirect immunofluorescence. Anti-CD3 mAb, but not a control anti-CD5 mAb, stimulates the expression of CD23 on 20-50% of peripheral blood B cells cultured with autologous T cells. T cell subset depletion studies show that the CD4+ T cell subset is responsible for anti-CD3-mediated induction of CD23 on autologous B cells. Anti-CD3-induced, T helper cell-dependent CD23 expression is not MHC-restricted, as allogeneic combinations of T and non-T cells, cultured in the presence of anti-CD3 antibody, also result in the expression of B cell CD23. Individuals whose monocyte Fc receptors bind murine IgG1 mAb poorly fail to trigger T cell proliferation in response to murine IgG1 anti-CD3 mAb and also fail to express B cell CD23 following culture of PBMC with IgG1 anti-CD3 mAb, while the usual expression of CD23 is seen after culture with IgG2a anti-CD3 mAb. The mechanism of anti-CD3-induced B cell activation was addressed in experiments using a two-chamber culture system. While little IL-4 activity was detected in anti-CD3-stimulated culture supernatants, optimal induction of CD23 was observed when T and B cells were cultured together in a single chamber. This suggests that under physiologic conditions, in which quantities of lymphokine may be limiting, close physical contact between the anti-CD3-activated Th cell and B cell may be required for CD23 expression. The anti-CD3-induced BLAST-2 assay will facilitate the analysis of Th cell-mediated B cell activation in any individual and should permit us to separately evaluate the roles of Th cells and B cells in the impaired immunoregulation characteristic of autoimmune disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号