首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of cyclosporin A (CyA) on the activation processes of cloned murine cytotoxic T lymphocytes (CTL) have been examined. With the use of Day 7 resting cloned CTL it was possible to separate the functions of lymphokine production (macrophage-activating factor, MAF) and interleukin 2 (IL-2)-induced proliferation of these cells. The effect of CyA on each of these activities was analyzed independently. CyA was found to inhibit both receptor-mediated MAF production in response to stimulation with antigen and lectin and MAF production in response to non-receptor-mediated stimulation (by anti-Thy-1 antibodies, ionophore, and phorbol ester). Further, CyA was observed to inhibit the re-entry of these resting CTL into the cell cycle upon stimulation with IL-2. The effect of CyA on MAF production did not appear to be due to inhibition of the signal-transducing mechanism involved in this process (i.e., inositol lipid hydrolysis, calcium mobilization, and protein phosphorylation). The action of CyA on the IL-2-induced proliferation was not due to inhibition of IL-2 receptor expression or the binding of IL-2 to its receptor. Thus, CyA appeared to mediate its suppressive effects on MAF production and IL-2-induced proliferation through an action on some later step(s) in the signal pathways of these activities.  相似文献   

2.
It is well-established that activated T cells proliferate in response to interleukin 2 (IL 2) and produce various soluble lymphokines such as macrophage-activating factor (MAF) in response to antigen. Prior to investigating the molecular events involved in signaling the initiation of these responses in cloned murine cytotoxic T lymphocytes (CTL), we determined whether these responses could occur independently, and we established for each response the time during which signal transducing mechanisms may function. It was found that this cloned CTL population was in a resting state (G1 phase of cell cycle) 7 days after stimulation with antigen plus IL 2. At this time, the incubation of these resting CTL with IL 2 for 4 to 6 hr resulted in a maximal proliferative response that was not accompanied by the production of MAF. Conversely, the incubation of resting CTL with antigen or lectin (in the absence of IL 2) for at least 8 hr resulted in the maximal production of MAF at 24 hr without inducing a proliferative response. In addition, antigen or lectin, but not IL 2, triggered an immediate (less than 1 min) and sustained (at least 8 hr) mobilization of intracellular calcium. The kinetics of this calcium response paralleled the minimum time (8 hr) that was required for resting CTL to interact with either antigen or lectin in order to produce maximal titers of MAF. These results indicate that proliferation and lymphokine (MAF) production in cloned murine CTL are independent events. In these resting CTL, the signal mechanisms that mediate the production of lymphokines are most likely restricted to the initial 8 hr of stimulation by antigen or lectin and involve the rapid and prolonged mobilization of cytoplasmic calcium. Proliferative signals, however, are probably complete within 4 to 6 hr after stimulation by IL 2 and do not involve readily demonstrable fluxes of cytoplasmic calcium, as determined by the fluorescent calcium probe Quin 2.  相似文献   

3.
PHA stimulation of both freshly isolated and IL-2-dependent cultured T cells induced a rapid rise in intracytoplasmic calcium concentration. Chelation of extracellular calcium with EGTA resulted in a failure of PHA to induce a rise in intracytoplasmic calcium, resulting in the fresh T cells in an inhibition of IL-2 production, IL-2 receptor expression, and proliferation. However, cultured T cells grown in recombinant IL-2 were able to re-express IL-2 receptors and proliferate in response to PHA stimulation in the presence of EGTA. Thus the PHA-induced signal for expression of IL-2 receptors and T-cell proliferation differs in fresh and cultured T cells and required extracellular calcium in fresh but not in cultured T cells.  相似文献   

4.
We have shown previously that stimulation of cloned murine T lymphocytes via the TCR inhibits their responsiveness to rIL-2. Signaling via the TCR is believed to result in a variety of biochemical events that include a rise in intracellular free calcium and activation (translocation) of protein kinase C. These two signals also can be generated by calcium ionophores, such as ionomycin, and by activators of protein kinase C, such as PMA. We report here that treatment of cloned murine T lymphocytes with PMA, ionomycin, or the combination led to a dose-dependent inhibition of IL-2-dependent proliferation but did not inhibit lymphokine secretion. Concentrations of PMA and ionomycin that maximally inhibited proliferation stimulated maximal lymphokine secretion and increased mitochondrial activity as assessed by measurement of cleavage of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium-bromide. Furthermore, PMA, ionomycin, the combination, or immobilized anti-CD3 mAb added after 12 to 16 h of culture with IL-2 could inhibit proliferation. These results demonstrate that PMA and ionomycin mimic stimulation of the TCR by high concentrations of immobilized anti-TCR mAb in that proliferation is inhibited and lymphokine secretion is induced. In addition, PMA or ionomycin could independently inhibit proliferation of some cells. These findings suggest that alternative mechanisms exist to regulate proliferation. Either increased levels of intracellular calcium or the physiologic events corresponding to those induced by PMA can inhibit IL-2-dependent replication of T lymphocytes.  相似文献   

5.
When L3T4+ cloned murine helper T lymphocytes (HTL) are stimulated with antigen or immobilized anti-T cell receptor (TCR) monoclonal antibodies (mAb) at concentrations which are optimal for proliferation, anti-L3T4 mAb inhibits activation as measured by proliferation and lymphokine production. Under similar conditions, IL 2-independent proliferation of Lyt-2+ cloned murine cytolytic T lymphocytes (CTL) stimulated by anti-TCR mAb is inhibited by anti-Lyt-2 antibodies. Proliferation of cloned HTL and CTL cells stimulated by IL 2 is not affected by the anti-L3T4 and anti-Lyt-2 mAb. The inhibition of TCR-induced activation of the T cell clones is not due to interference with the binding of the anti-TCR mAb. Stimulation of the TCR has been proposed to induce lymphokine secretion and proliferation by T cells through a pathway involving the activation of protein kinase C and the stimulation of an increase in the concentration of intracellular free calcium. However, proliferation of T cells stimulated by PMA (which activates protein kinase C) plus the calcium ionophore A23187 (which increases the concentration of intracellular free calcium) is not affected by mAb reactive with the Lyt-2 or L3T4 structures. If TCR stimulation does indeed activate T cells by activating protein kinase and increasing intracellular free calcium, then our data suggest that anti-L3T4 and anti-Lyt-2 mAb inhibit TCR-driven proliferation at some step before the activation of protein kinase C and the stimulation of a rise in intracellular free calcium concentration. Our results suggest that anti-L3T4 and anti-Lyt-2 mAb interfere with early biochemical processes induced by stimulation of the TCR. In HTL, which proliferate via an autocrine pathway, anti-L3T4 mAb appears to inhibit proliferation by interfering with signaling events involved in lymphokine production. Inhibition of IL 2-independent proliferation of Lyt-2+ cells by anti-Lyt-2 mAb appears to occur by a different mechanism. The precise molecular basis for the interference of each cell type has not yet been characterized.  相似文献   

6.
We have analyzed the effect of cyclosporin-A (CsA) on the proliferative and cytotoxic responses induced by mixed-lymphocyte cultures (MLC-s) on low and high density T lymphocytes. Allogeneic stimulation had a different impact on the two subsets. Proliferative and cytotoxic responses were inversely correlated; i.e., high density cells proliferated but exerted low levels of cytotoxicity while the lytic activity of the low density subset was stronger and the proliferation was weak. CsA impaired the proliferative and cytotoxic responses of the high density T lymphocytes but influenced less markedly the response of the low density cells. In both subsets CsA inhibited the MLC-induced interleukin 2 (IL-2) production. The generation of specific cytotoxicity was markedly suppressed by CsA, whereas the generation of anomalous activity was less affected. Addition of exogenous IL-2 to the CsA-containing cultures fully restored the proliferation and the generation of nonspecific cytotoxicity. In contrast, addition of interferon gamma (IFN-gamma) restored neither of these responses. However, for complete restoration of the stimulation-specific cytotoxicity, addition of both lymphokines was required. Taken together these results suggest that the CsA-induced suppression of the lymphokine production has different consequences in the low and high density subsets; the expression of anomalous and specific cytotoxicities require different signals; CsA interferes with several steps in the T-cell activation.  相似文献   

7.
L-Buthionine-(S,R)-sulfoximine (BSO) specifically depletes GSH synthesis by inactivating gamma-glutamylcysteine synthetase, whereas 2-ME augments intracellular GSH concentration. These reagents were used to examine GSH regulation of the proliferation and function of human PBL in response to IL-2 or OKT-3 mAb directed at the CD3 T cell Ag. 2-ME enhanced both IL-2-induced proliferation of PBL and CD3- large granular lymphocytes (LGL) and OKT-3 mAb-induced proliferation of CD3+ T cells. BSO partially suppressed activation-induced proliferation in CD3- LGL and CD3+ T cells and totally inhibited the positive co-proliferative regulation by 2-ME in these cells. By contrast, neither BSO nor 2-ME appeared to affect the activation-dependent differentiation of cytotoxic lymphocytes. The absence of effect of 2-ME or BSO on activation-induced PBL NK activity and T cell cytotoxic potential was supported by their negligible effect on the induction of two different markers of activated cytotoxic lymphocytes, namely pore-forming protein gene expression and benzoyloxycarbonyl-1-L-lysine thiobenzylester-esterase activity. BSO inhibition of CD3- LGL proliferation accounted for the inhibitory effects of BSO on both IFN-gamma production in IL-2-stimulated PBL cultures and IL-2-induced PBL lymphokine activated killer activity. The modulatory effects of 2-ME and BSO on lymphocyte proliferation regardless of phenotype (LGL vs T cell) or stimulation (IL-2, via CD3, lectin, etc.) and the functional differentiation of cytotoxic lymphocytes independent of proliferation suggests that these cells share a common site of GSH regulation close to or at the level of DNA synthesis.  相似文献   

8.
The regulation of IL-2 gene expression during T cell activation and proliferation has been investigated in primary cultures of purified human peripheral blood T cells. Prior results indicated that stimulation of T cells by anti-CD28 mAb plus PMA could induce IL-2 expression and T cell proliferation that was entirely resistant to cyclosporine. The present studies examined whether CD28 augments IL-2 expression by a unique pathway or merely acts at a point common to CD3-induced proliferation but distal to the effects of cyclosporine. The induction of maximal IL-2 gene expression required three signals provided by phorbol ester, calcium ionophore, and anti-CD28 mAb. Stimulation of cells by optimal amounts of calcium ionophore and PMA induced IL-2 mRNA that was completely suppressed by cyclosporine. The addition of anti-CD28 to T cells stimulated with PMA plus calcium ionophore induced a 5- to 100-fold increase in IL-2 gene expression and secretion that was resistant to cyclosporine. The CD28 signal was able to increase steady state IL-2 mRNA levels even in cells treated with maximally tolerated amounts of calcium ionophore and PMA. The three-signal requirement did not reflect differential regulation of lymphokine gene expression between the CD4 and CD8 T cell subsets or differences in the kinetics of IL-2 mRNA expression. The signal provided by CD28 is distinct from that of CD3 because although anti-CD28 plus PMA-induced proliferation is resistant to cyclosporine, anti-CD3 or anti-CD3 plus PMA-induced IL-2 expression is sensitive. Thus, these studies show that three biochemically distinct signals are required for maximal IL-2 gene expression. Furthermore, these studies suggest that lymphokine production in T cells is not controlled by an "on/off" switch, but rather, that CD28 regulates a distinct intracellular pathway which modulates the level of IL-2 production on a per cell basis. The observation that CD28 stimulation results in IL-2 concentrations that exceed 1000 U/m1 in tissue culture supernatants suggests that a role in vivo for CD28 might be to amplify immune responses initiated by the CD3/T cell receptor complex. Finally, the observation that CD28 interacts with the signals provided by PMA and calcium ionophore shows that the function of CD28 is not merely to act as a scaffold to stabilize or enhance signalling through the CD3/TCR complex.  相似文献   

9.
The activation of an apo-cytochrome c-specific T cell clone was found to differ, depending on the antigen-presenting cell population. Whereas total syngeneic spleen cells and bone marrow macrophages could be shown to trigger proliferation, IL 2, and MAF production by the T cell clone, a B cell lymphoma only induced MAF secretion. Further studies demonstrated that this effect was not due to a different antigen processing by the B lymphoma or to limiting amounts of Ia and antigen molecules on the B lymphoma cell surface. The dissociation of induction of MAF production from IL-2 production/proliferation found with the different antigen-presenting cells indicates strongly that molecules other than Ia and antigen may be required for the complete functional activation of antigen-specific T cell clones.  相似文献   

10.
The phospholipid metabolism of cloned murine cytotoxic T lymphocytes (CTL) was examined under conditions in which the induction of proliferation by interleukin 2 (IL 2) and the stimulated production of lymphokine (macrophage-activating factor (MAF] by concanavalin A (Con A) and specific antigen occurred independently of each other. Activation of the CTL by either of the latter two stimuli resulted in changes in the metabolism of phosphatidylinositol (PI) that were early (less than 2.5 min), specific, and prolonged (6 to 8 hr). These changes were primarily characterized by an increase in phosphatidic acid (PA) and PI, with a decrease in phosphatidylinositol-4,5-bisphosphate. The duration of these phospholipid responses, particularly PA and PI, approximated the minimum time of CTL-stimulus interaction required to produce maximal titers of MAF. No changes were observed in other major classes of phospholipids during 8 hr of continuous stimulation. Stimulation with an irrelevant antigen had no effect on CTL phospholipid metabolism. In contrast to specific antigen or Con A, the T cell growth factor IL 2 failed to elicit specific and early biosynthetic responses from PA and PI. Instead, there were nonspecific biosynthetic responses from all major phospholipid classes (including phosphatidylcholine and phosphatidylethanolamine, as well as PA and PI) which occurred between 1 and 6 hr after IL 2 stimulation. Both 1,2-diacylglycerol (DAG) and inositol phosphates (IP), the hydrolytic products of PI turnover, were produced in response to MAF-inducing stimuli, but neither were detected in response to the proliferative stimulus IL 2. Together, these results indicate that the hydrolysis of PI and the concomitant production of the putative second messengers DAG and IP are involved in signaling the production of lymphokines (MAF) by CTL. On the other hand, the failure of IL 2 to elicit a full-spectrum PI response suggests that signals mediating CTL proliferation may utilize an alternate and still undefined pathway.  相似文献   

11.
12.
In previous studies of chimeric animals, we found that fetal intrathymic T cell precursors give rise to phenotypically abnormal peripheral T cell populations. Because most peripheral T lymphocytes in newborn mice are the progeny of fetal T cell precursors, this result led to the hypothesis that neonatal and adult T cells differ in their functional capacities. To investigate this issue, the responses of neonatal and adult T cells to anti-CD3 antibody and TCR-independent stimulation were compared. When stimulated with soluble anti-CD3 antibody in the presence of adult accessory cells, neonatal T cell proliferation was markedly decreased compared with that of adult T cells. This reduction in proliferation was associated with both quantitative and qualitative differences in lymphokine production. At 48 h of stimulation with anti-CD3 antibody, neonatal T cells produced at least 10-fold less IL-2 than adult T cells. This apparently accounted for their reduced proliferation because the addition of exogenous IL-2 restored their proliferation to the levels achieved by adult T cells. In striking contrast to adult T cells, neonatal T cells secreted large amounts of IL-4 upon primary stimulation in vitro. The differences between neonatal and adult T cells in proliferation and lymphokine production were shown to be specific for CD3-mediated stimulation. In the presence of phorbol ester and calcium ionophore, neonatal and adult T cells showed equivalent proliferation and IL-2 production. Under these conditions, IL-4 production by neonatal or adult T cells was essentially undetectable. Thus, in response to TCR-independent stimulation, freshly isolated neonatal and adult T cells show similar functional responses. However, when stimulation occurs via the CD3 components of the TCR, the responses of neonatal T cells resemble those of primed T cells from adult animals.  相似文献   

13.
We have investigated the synergistic effects of phorbol ester and calcium ionophore on human T lymphocyte proliferation and the expression of the proliferation-related genes, c-myc, c-fos, interleukin 2 receptors (IL-2R) and interleukin 2 (IL-2). Incubation of T lymphocytes with both the phorbol ester, phorbol 12,13-dibutyrate (PDB), and the calcium ionophore, ionomycin, leads to the expression of a series of proliferation-related genes, followed by T cell proliferation. In contrast, stimulation of T cells sequentially with PDB and then ionomycin did not induce mitogenesis, demonstrating that simultaneous exposure to both agents is necessary for proliferation. Exposure of T cells to both agents together for different time periods resulted in a proliferative response in proportion to the duration of the exposure, with more than 6 hr required for maximum proliferation. In contrast, a 1-hr exposure to both drugs was sufficient for maximum expression of c-fos or c-myc proto-oncogene mRNA. The expression of IL-2R and the production of IL-2 were also dependent on the duration of simultaneous exposure to both phorbol ester and calcium ionophore. Levels of IL-2 mRNA became detectable at 1 hr and peaked at 3 hr after stimulation. The induction of IL-2 mRNA occurred only in the presence of both agents and became undetectable within 2 hr after the drugs were removed. In contrast, the expression of IL-2R mRNA became detectable at 1 hr, but was maintained even after the drugs were removed and reached a peak at 24 hr. Both IL-2 and IL-2R mRNA accumulated in proportion to the duration of the exposure. Augmentation of cell proliferation by exogenous IL-2 was observed in T cells exposed to the drugs for less than 3 hr. These data demonstrated that the induction of maximum expression of the nuclear proto-oncogenes c-myc and c-fos was not sufficient for PDB-ionomycin-induced T cell proliferation. The level of IL-2 mRNA accumulation and resultant IL-2 secretion is one of the limiting factors for proliferation of T cells exposed to the drugs for less than 3 hr, but not for longer exposures. Additional events such as accumulation of IL-2R mRNA and protein triggered by a long exposure to the drugs were obligatory for obtaining maximum proliferation.  相似文献   

14.
Interleukin-10 (IL-10) is widely known as an immunosuppressive cytokine by virtue of its ability to inhibit macrophage-dependent antigen presentation, T-cell proliferation, and Th1 cytokine secretion. However, several studies have challenged the perception of IL-10 solely as an immunosuppressive cytokine. As part of an investigation on potentiation of the cytotoxic activity of human papillomavirus E7-specific CD8(+) cytotoxic T lymphocytes (CTL) for adoptive transfusions to cervical cancer patients, we found that IL-10 in combination with IL-2, unlike several other combinations, including IL-2 with IL-12, gamma interferon (IFN-gamma), tumor necrosis factor alpha, and transforming growth factor beta, was able to consistently increase cytotoxicity. This augmentation in cytotoxic activity correlated with a significant increase in the cytoplasmic accumulation of perforin as detected by fluorescence-activated cell sorter. Surface expression of both the alpha and beta chains of the CD8 heterodimeric coreceptor and CD56 molecules was increased by exposure of CTL to IL-10. More importantly, we found that administration of IL-10 in combination with IL-2 after antigen stimulation consistently increased the intracellular expression of Th1 cytokines (i.e., IFN-gamma and IL-2) compared to results for control CD8(+) T cells cultured in IL-2 alone. In kinetic studies, proliferation, intracellular perforin levels, cytotoxic activity, and IFN-gamma expression were consistently elevated in CTL cultures containing IL-10 compared to control cultures, both at early and late time points following stimulation. In contrast, intracellular IL-2 expression was consistently increased only at early time points following stimulation with autologous tumor cells or solid-phase anti-CD3 antibody. Taken together, these data support the use of IL-10 in combination with IL-2 for the in vitro expansion and potentiation of tumor-specific CTL for clinical use in the therapy of cancer.  相似文献   

15.
The calcium ionophore, A23187, when used alone was found to induce proliferation of murine T cells, at concentrations of 0.5-1 mM. This response required the presence of syngeneic splenic adherant cells (SAC) as a source of accessory cells. Interestingly, only CD4+ T cells but not CD8+ T cells or B cells responded to the calcium ionophore by proliferation. The inability of CD8+ T cells or B cells to respond was not related to decreased elevation in the intracellular ionized calcium [Ca2+]i concentration induced by the ionophore, because activated CD4+ T, CD8+ T and B cells all exhibited similar elevation in [Ca2+]i. The inability of CD8+ T cells to respond to calcium ionophore was probably due to insufficient production of autocrine growth factors, such as IL-2, inasmuch as the addition of exogenous IL-2 could completely restore the CD8+ T cell responsiveness. Also, exogenous rIL-1 could partially restore purified T cell response to calcium ionophore, whereas, rIL-6 failed to do so. IL-2, but not IL-4, acted as an autocrine growth factor for T cells responding to the calcium ionophore in the presence of SAC, since, antibodies against IL-2 or IL-2 receptor (IL-2R) but not against IL-4, could inhibit the T cell proliferation. Furthermore, exogenous rIL-2 but not rIL-4 supported the proliferation of T cells to calcium ionophore in the absence of accessory cells. Our results suggest that murine lymphocytes exhibit heterogeneity in their proliferative responsiveness to calcium ionophore and that this may not depend on the early activation signal such as the elevation in [Ca2+]i) induced by the ionophore but may depend on subsequent signals which regulate endogenous growth factor production.  相似文献   

16.
In this report we describe a novel pathway of human T cell activation and proliferation involving the CD5 surface Ag. The CD5-specific Cris1 mAb induces by itself monocyte-dependent proliferation of PBMC. Among a panel of CD5-specific mAb (Leu1, OKT1, LO-CD5a, F101-1C5, and F145GF3), only the F145GF3 mAb shared this property with Cris1. The analysis of the biochemical pathway involved in this activation showed the lack of detectable hydrolysis of inositol phosphates or early increments in the intracellular cytosolic calcium concentration, after triggering cells with the mitogenic CD5 mAb. However, stimulation with CD5 induces activation of protein kinase C, as measured by phosphorylation of a specific peptide substrate (peptide GS), which can be inhibited by a pseudosubstrate peptide inhibitor. Stimulation with CD5 mAb induces also tyrosine kinase activity, with a substrate pattern that differs from that induced after triggering lymphocytes through the TCR-CD3 complex. On the other hand the IL-2/IL-2R pathway seems involved in the CD5-mediated proliferation of PBMC because anti-IL-2R-specific mAb inhibits CD5-induced proliferation, and stimulation with mitogenic CD5 mAb induces production of IL-2 and expression of IL-2R alpha and beta chains. Therefore, the triggering of the CD5 Ag can induce IL-2- and monocyte-dependent human T cell proliferation by a biochemical pathway that differs, at least in the first stages, from the one that mediates TCR-CD3 complex-induced T cell activation.  相似文献   

17.
Movement of extracellular Ca2+ is required for the sustained increase in [Ca2+]i necessary for T cell activation. However, the mechanisms mediating mitogen-stimulated Ca2+ movement into T cells have not been completely delineated. To explore the possibility that a Na(+)-dependent Ca2+ (Na+/Ca2+) exchanger might play a role in the mitogen-induced increases in [Ca2+]i required for T cell activation, the effects of inhibitors of this exchanger were examined. Inhibitors of Na+/Ca2+ exchange suppressed the sustained increase in [Ca2+]i stimulated by ligation of the CD3-TCR complex, but did not affect mobilization of intracellular Ca2+ stores. Consistent with the importance of this prolonged increase in [Ca2+]i in T cell activation, Na+/Ca2+ exchange inhibitors, but not inhibitors of the Na+/H+ antiporter, inhibited DNA synthesis stimulated by immobilized anti-CD3 mAb. Inhibition only occurred when the agents were present during the first hours after stimulation. These agents also inhibited IL-2 production, but not expression of the IL-2R or of an early activation Ag, 4F2. Inhibition of IL-2 production did not account for the inhibition of T cell proliferation as addition of exogenous IL-2 or phorbol ester (PDB) did not overcome the inhibition. In contrast, activation pathways that are not thought to require an increase in [Ca2+]i such as IL-1 + PDB or engagement of CD28 in the presence of PDB were less sensitive to the suppressive effects of inhibitors of Na+/Ca2+ exchange. Thus, proliferation induced by these stimuli was not suppressed by low concentrations of these inhibitors and IL-2 production induced by mAb to CD28 + PDB was not inhibited by any concentration of inhibitors of Na+/Ca2+ exchange. These results suggest that stimulation of a Ca2+ transporter with the same spectrum of inhibition as the Na+/Ca2+ exchanger in other tissues mediates the sustained increase in [Ca2+]i required for T cell activation after CD3 ligation.  相似文献   

18.
Activation of T lymphocytes leads to the production of the T cell growth factor IL-2 that regulates T cell proliferation. This activation is associated with several potential intracellular signalling events including increased activity of phospholipase C (PLC) and resultant increases in production of inositol phosphates and diacylglycerols. In addition, phosphorylation of specific intracellular proteins on serine, threonine, and tyrosine residues increases. The role of each of these events in IL-2 production is unclear. Using Western blotting with antiphosphotyrosine antibodies, we demonstrate that activation of murine T cells with mitogenic lectins or anti-CD3 antibodies leads to a rapid increase in tyrosine phosphorylation of proteins of 120, 72, 62, 55, and 40 kDa. Similar patterns of antiphosphotyrosine antibodies reactivity were observed in splenocytes, a T cell hybridoma, and a T lymphoma. Tyrosine phosphorylation was detectable within minutes of addition of mitogenic lectins and persisted for at least 6 h. Pretreatment of the cells with pertussis toxin did not inhibit tyrosine phosphorylation indicating that a pertussis toxin-sensitive G protein is not involved in signal transduction. Neither increasing cytosolic-free calcium nor activating protein kinase C mimicked the effects of mitogenic lectins suggesting that tyrosine phosphorylation was not a consequence of activation of PLC. This was confirmed by demonstrating that mitogenic lectins induced similar patterns of tyrosine phosphorylation in cells in which activation of the TCR leads to increased PLC activity and in cells in which PLC is not stimulated. To test whether tyrosine phosphorylation is linked to IL-2 secretion, we determined the effect of three specific tyrosine kinase inhibitors (tyrphostins) on tyrosine phosphorylation, IL-2 secretion, and cellular proliferation. The concentration dependence of inhibition of tyrosine phosphorylation and IL-2 production were similar. However, higher concentrations of the tyrphostins were required to inhibit constitutive proliferation of the T cell line indicating that inhibition of IL-2 secretion was not secondary to nonspecific toxic effects of the tyrphostins. Addition of the tyrphostins after mitogenic lectin decreased the amount of tyrosine phosphorylation and IL-2 secretion in parallel. This indicates that both tyrosine kinases and phosphatases are activated and that continuous tyrosine phosphorylation is likely required for IL-2 secretion. Therefore, tyrosine phosphorylation appears to represent an obligatory event in the transmembrane signaling processes that lead to IL-2 secretion.  相似文献   

19.
T cell activation via Leu-23 (CD69)   总被引:28,自引:0,他引:28  
The CD69 (Leu-23) activation Ag is a phosphorylated 28 to 32-kDa disulfide-linked homodimer that is rapidly induced after lymphocyte activation. CD69 is not present on the surface of peripheral blood resting T cells, but is constitutively expressed by CD3bright thymocytes. Activation of protein kinase C (PKC) by stimulation of the TCR/CD3 or by phorbol esters directly induces CD69 expression on T cells. In the attempt to elucidate the function of CD69 we investigated the ability of the CD69 glycoprotein to transmit an activation signal. Cross-linking of CD69 by mAb induced a prolonged elevation of intracellular [Ca2+], mostly due to an influx of extracellular Ca2+. This signal alone was unable to effectively activate PKC. When PKC was simultaneously activated by PMA, stimulation of CD69 induced IL-2 and IFN-gamma gene expression, enhancement of CD25 expression, and ultimately IL-2-dependent T cell proliferation. Both CD4+ and CD8+ peripheral T cells responded to CD69-mediated activation. Stimulation of CD69 induced proliferation of thymocytes as well as peripheral T cells, but both required independent PKC activation by PMA. Cyclosporin A, which does not prevent PKC-induced CD69 expression, completely suppressed CD69-induced IL-2 and IFN-gamma gene expression. Although the signal delivered by the CD69 initiates T cell proliferation, it is unable to trigger cytotoxicity programs in CD69+-activated T cells or T cell clones.  相似文献   

20.
We have investigated the induction of competence (IL-2 responsiveness) and progression in human T lymphocyte proliferation triggered by phorbol ester and calcium ionophore. The degree of proliferation induced with the phorbol ester, phorbol 12,13-dibutyrate (PDB) and the calcium ionophore ionomycin was dependent on the duration of exposure to these agents, with more than 6 h required for obtaining maximum proliferation. Following brief exposure to both agents for 30 min, which did not cause significant proliferation, T cells became competent to proliferate in response to exogenous interleukin 2 (IL-2). These competent T cells also progressed to DNA synthesis following incubation with PDB in the absence of ionomycin. Induction of competence to proliferate in response to either PDB or IL-2 was blocked by EGTA, suggesting that transmembrane Ca2+ flux was obligatory at this stage. Since other phorbol esters and synthetic diacylglycerols also stimulated DNA synthesis in competent cells, it is likely that progression was triggered by activation of protein kinase C. Following a brief exposure to PDB and ionomycin, subsequent incubation with PDB induced gene expression and secretion of IL-2 and augmented the expression of IL-2 receptors in the competent cells. Thus, we have demonstrated that Ca2+ mobilization is required for rendering T cells competent to express functional IL-2 receptors, to produce IL-2 in response to subsequent incubation with PDB, and that sustained activation of protein kinase C seems necessary for IL-2 production and subsequent progression of competent T cells to DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号