首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Vasil'ev IuM 《Ontogenez》2007,38(2):120-125
A brief review of the cytoskeleton dynamic structure in cells of two types: fibroblasts and epitheliocytes. Differences have been described between the functions of y-actin filaments and beta-actomyosin bundles. Tubulogenesis and angiogenesis have been considered as consequences of partial epitheliomesenchymal transformation and neoplastic transformation as a consequence of gamma-actomyosin bundles disturbance.  相似文献   

2.
Complete and incomplete transitions of epitheliocytes into cells of mesenchymal type, so-called epithelial-mesenchymal transitions (EMT), take place in many types of normal morphogenesis and in epithelial carcinogenesis. Connective tissue cells (fibroblasts) also undergo considerable morphological changes during normal morphogenesis and carcinogenesis, but their dynamics are less known. It is suggested that EMT and fibroblast dynamics may have some common step that is some united precursor cell type. The program for normal EMT can be activated in the course of multistep progression of epithelial carcinogenesis; this activation can be supported by cell selection as it provides a basis for dissemination of neoplastic cells from original tumor.  相似文献   

3.
The large GTPase dynamin assembles into higher order structures that are thought to promote endocytosis. Dynamin also regulates the actin cytoskeleton through an unknown, GTPase-dependent mechanism. Here, we identify a highly conserved site in dynamin that binds directly to actin filaments and aligns them into bundles. Point mutations in the actin-binding domain cause aberrant membrane ruffling and defective actin stress fibre formation in cells. Short actin filaments promote dynamin assembly into higher order structures, which in turn efficiently release the actin-capping protein (CP) gelsolin from barbed actin ends in vitro, allowing for elongation of actin filaments. Together, our results support a model in which assembled dynamin, generated through interactions with short actin filaments, promotes actin polymerization via displacement of actin-CPs.  相似文献   

4.
5.
It was shown that mouse embryo fibroblasts and human foreskin diploid fibroblasts of AGO 1523 line cultivated on specially prepared substrates with narrow (15 ± 3 m) linear adhesive strips were elongated and oriented along the strips, but the mean lengths of the fibroblasts of each type on the strips differed from those on the standard culture substrates. In contrast to the normal fibroblasts, the length of mouse embryonic fibroblasts with inactivated gene-suppressor Rb responsible for negative control of cell proliferation (MEF Rb-/-), ras-transformed mouse embryonic fibroblasts (MEF Rb-/-ras), or normal rat epitheliocytes of IAR2 line significantly exceeded those of the same cells on the standard culture substrates. The results of experiments with the drugs specifically affecting the cytoskeleton (colcemid and cytochalasin D) suggest that the constant mean length of normal fibroblasts is controlled by a dynamic equilibrium between two forces: centripetal tension of contractile actin-myosin microfilaments and centrifugal force generated by growing microtubules. This cytoskeletal mechanism is disturbed in MEF Rb-/- or MEF Rb-/-ras, probably, because of an impaired actin cytoskeleton and also in IAR2 epitheliocytes due to the different organization of the actin-myosin system in these cells, as compared to that in the fibroblasts.  相似文献   

6.
Stromelysin-3 (ST3; Basset, P., J.P. Bellocq, C. Wolf, I. Stoll, P. Hutin, J.M. Limacher, O.L. Podhajcer, M.P. Chenard, M.C. Rio, P. Chambon. 1990. Nature. 348:699–704) is a matrix metalloproteinase (MMP) expressed in mesenchymal cells located close to epithelial cells, during physiological and pathological tissue remodeling processes. In human carcinomas, high ST3 levels are associated with a poor clinical outcome, suggesting that ST3 plays a role during malignant processes. In this study we report the ST3 gene inactivation by homologous recombination. Although ST3 null mice (ST3−/−) were fertile and did not exhibit obvious alterations in appearance and behavior, the lack of ST3 altered malignant processes. Thus, the suppression of ST3 results in a decreased 7,12-dimethylbenzanthracene-induced tumorigenesis in ST3−/− mice. Moreover, ST3−/− fibroblasts have lost the capacity to promote implantation of MCF7 human malignant epithelial cells in nude mice (P < 0.008). Finally, we show that this ST3 paracrine function requires extracellular matrix (ECM)-associated growth factors. Altogether, these findings give evidence that ST3 promotes, in a paracrine manner, homing of malignant epithelial cells, a key process for both primary tumors and metastases. Therefore, ST3 represents an appropriate target for specific MMP inhibitor(s) in future therapeutical approaches directed against the stromal compartment of human carcinomas.  相似文献   

7.
For the beta(2)-adrenergic receptor (beta(2)AR), published evidence suggests that an intact actin cytoskeleton is required for the endocytosis of receptors and their proper sorting to the rapid recycling pathway. We have characterized the role of the actin cytoskeleton in the regulation of beta(2)AR trafficking in human embryonic kidney 293 (HEK293) cells using two distinct actin filament disrupting compounds, cytochalasin D and latrunculin B (LB). In cells pretreated with either drug, beta(2)AR internalization into transferrin-positive vesicles was not altered but both agents significantly decreased the rate at which beta(2)ARs recycled to the cell surface. In LB-treated cells, nonrecycled beta(2)ARs were localized to early embryonic antigen 1-positive endosomes and also accumulated in the recycling endosome (RE), but only a small fraction of receptors localized to LAMP-positive late endosomes and lysosomes. Treatment with LB also markedly enhanced the inhibitory effect of rab11 overexpression on receptor recycling. Dissociating receptors from actin by expression of the myosin Vb tail fragment resulted in missorting of beta(2)ARs to the RE, while the expression of various CART fragments or the depletion of actinin-4 had no detectable effect on beta(2)AR sorting. These results indicate that the actin cytoskeleton is required for the efficient recycling of beta(2)ARs, a process that likely is dependent on myosin Vb.  相似文献   

8.
9.
Understanding the ultrastructural response of cells to the freezing process is important for designing cryopreservation strategies for cells and tissues. The cellular structures of attached cells are targets of cryopreservation-induced damage. Specific fluorescence staining was used to assess the status of the actin filaments (F-actin) of murine osteoblasts attached to hydroxyapatite discs and plastic coverslips for a two-step freezing process. The F-actin of dead cells was depolymerized and distorted in the freezing process, whereas that of live cells had little change. The results suggest that the cytoskeleton may support the robustness of cells during cryopreservation. The present study helps to investigate the damage mechanism of attached cells during the freezing process.  相似文献   

10.
The specific cell architecture of prorocentroid dinoflagellates is reflected in the internal cell structure, particularly, in cytoskeleton organization. Cytoskeleton arrangement in a Prorocentrum minimum cell was investigated using fluorescent labeling approaches, electron‐microscopy and immunocytochemical methods. The absence of cortical microtubules was confirmed. Phalloidin – tetramethylrhodamine isothiocyanate conjugate staining demonstrated that F‐actin forms a dense layer in the cortical region of the cell; besides, it was detected in the ‘archoplasmic sphere’ adjacent to the nucleus. In some cells the rest of the cytoplasm and the nucleus were also slightly stained. In dividing cells, F‐actin was mainly distributed in the cortical region and in the cleavage furrow. Fluorescent deoxyribonuclease I staining demonstrated more evenly distributed cytoplasmic non‐polymerized actin; the basis of the nuclear actin pool is monomeric actin. It concentrates in the nucleoplasm and forms a meshwork around chromosomes. The significant amount of G‐actin is apparently localized in the P. minimum nucleolus. Assumed involvement of F‐actin in the process of stress‐induced ecdysis – cell cover shedding – was examined. A sharp decrease in the level of ecdysis was observed after treatment with actin‐depolymerizing agent latrunculin B. The fluorescent staining of treated cells demonstrated disturbance of the actin cytoskeleton and disappearance of the cortical F‐actin layer. Our results support the recent data on the actin involvement in fundamental nuclear processes: cytoplasmic F‐actin appears to participate in cell shape determination, cell cover rearrangement and development. Actin may play a substitute role in the absence of cortical microtubules, representing the cytoskeletal basis of P. minimum cell architecture.  相似文献   

11.
This review focuses on recent advances in the understanding of the organization and roles of actin filaments, and associated myosin motor proteins, in regulating the structure and function of the axon shaft. ‘Patches’ of actin filaments have emerged as a major type of actin filament organization in axons. In the distal axon, patches function as precursors to the formation of filopodia and branches. At the axon initial segment, patches locally capture membranous organelles and contribute to polarized trafficking. The trapping function of patches at the initial segment can be ascribed to interactions with myosin motors, and likely also applies to patches in the more distal axon. Finally, submembranous rings of actin filaments were recently described in axons, which form an actin‐spectrin cytoskeleton, likely contributing to the maintenance of axon integrity. Continued investigation into the roles of axonal actin filaments and myosins will shed light on fundamental aspects of the development, adult function and the repair of axons in the nervous system.

  相似文献   


12.
During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo‐dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre‐ and post‐synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system.  相似文献   

13.
Multiple roles of the cytoskeleton in autophagy   总被引:1,自引:0,他引:1  
Autophagy is involved in a wide range of physiological processes including cellular remodeling during development, immuno‐protection against heterologous invaders and elimination of aberrant or obsolete cellular structures. This conserved degradation pathway also plays a key role in maintaining intracellular nutritional homeostasis and during starvation, for example, it is involved in the recycling of unnecessary cellular components to compensate for the limitation of nutrients. Autophagy is characterized by specific membrane rearrangements that culminate with the formation of large cytosolic double‐membrane vesicles called autophagosomes. Autophagosomes sequester cytoplasmic material that is destined for degradation. Once completed, these vesicles dock and fuse with endosomes and/or lysosomes to deliver their contents into the hydrolytically active lumen of the latter organelle where, together with their cargoes, they are broken down into their basic components. Specific structures destined for degradation via autophagy are in many cases selectively targeted and sequestered into autophagosomes. A number of factors required for autophagy have been identified, but numerous questions about the molecular mechanism of this pathway remain unanswered. For instance, it is unclear how membranes are recruited and assembled into autophagosomes. In addition, once completed, these vesicles are transported to cellular locations where endosomes and lysosomes are concentrated. The mechanism employed for this directed movement is not well understood. The cellular cytoskeleton is a large, highly dynamic cellular scaffold that has a crucial role in multiple processes, several of which involve membrane rearrangements and vesicle‐mediated events. Relatively little is known about the roles of the cytoskeleton network in autophagy. Nevertheless, some recent studies have revealed the importance of cytoskeletal elements such as actin microfilaments and microtubules in specific aspects of autophagy. In this review, we will highlight the results of this work and discuss their implications, providing possible working models. In particular, we will first describe the findings obtained with the yeast Saccharomyces cerevisiae, for long the leading organism for the study of autophagy, and, successively, those attained in mammalian cells, to emphasize possible differences between eukaryotic organisms.  相似文献   

14.
Actin microfilament (MF) organization and remodelling is critical to cell function. The formin family of actin binding proteins are involved in nucleating MFs in Arabidopsis thaliana. They all contain formin homology domains in the intracellular, C‐terminal half of the protein that interacts with MFs. Formins in class I are usually targeted to the plasma membrane and this is true of Formin1 (AtFH1) of A. thaliana. In this study, we have investigated the extracellular domain of AtFH1 and we demonstrate that AtFH1 forms a bridge from the actin cytoskeleton, across the plasma membrane and is anchored within the cell wall. AtFH1 has a large, extracellular domain that is maintained by purifying selection and that contains four conserved regions, one of which is responsible for immobilising the protein. Protein anchoring within the cell wall is reduced in constructs that express truncations of the extracellular domain and in experiments in protoplasts without primary cell walls. The 18 amino acid proline‐rich extracellular domain that is responsible for AtFH1 anchoring has homology with cell‐wall extensins. We also have shown that anchoring of AtFH1 in the cell wall promotes actin bundling within the cell and that overexpression of AtFH1 has an inhibitory effect on organelle actin‐dependant dynamics. Thus, the AtFH1 bridge provides stable anchor points for the actin cytoskeleton and is probably a crucial component of the signalling response and actin‐remodelling mechanisms.  相似文献   

15.
Hyperthermia induces several cellular responses leading to morphological changes, cell detachment and death. Loss of integrins from the cell surface after acute heat-treatment may block several physiological signalling pathways, but whether the assembly network between integrin and cytoskeletal actin is perturbed during hyperthermic treatment is unknown. In this study we tested this hypothesis by evaluating cell morphology, protein cytoskeletal profile and integrin CD11a content in both adherent and floating SK-N-MC human neuroblastoma cells. Morphological and cytometric analyses confirmed that hyperthermia is an effective apoptotic trigger, revealing the typical chromatin margination, cell shape changes and 7-AAD incorporation. After hyperthermia, cytoskeletal proteins showed an increase of high-molecular-weight aggregates and a significant decrease of both actin and CD11a content with respect to control cells. The integrin CD11a and membrane-bound actin alterations found in detached floating neuroblastoma cells recovered after heat-shock may cause the cytoskeletal abnormalities related to the observed surface cell rounding/blebbing and anoikis, early events of hyperthermia-induced programmed cell death.  相似文献   

16.
Summary— The amoebae of the myxomycete Physarum polycephalum are of interest in order to analyze the morphogenesis of the microtubule and microfilament cytoskeleton during cell cycle and flagellation. The amoebal interphase microtubule cytoskeleton consists of 2 distinct levels of organization, which correspond to different physiological roles. The first level is composed of the 2 kinetosomes or centrioles and their associated structures. The anterior and posterior kinetosomes forming the anterior and posterior flagella are morphologically distinguishable. Each centriole plays a role in the morphogenesis of its associated satellites and specific microtubule arrays. The 2 distinct centrioles correspond to the 2 successive maturation stages of the pro-centrioles which are built during prophase. The second level of organization consists of a prominent microtubule organizing center (mtoc 1) to which the anterior centriole is attached at least during interphase. This mtoc plays a role in the formation of the mitotic pole. These observations based on ultrastructural and physiological analyses of the amoebal cystoskeleton are now being extended to the biochemical level. The complex formed by the 2 centrioles and the mtoc 1 has been purified without modifying the microtubule-nucleating activity of the mtoc 1. Several microtubule-associated proteins have been characterized by their ability to bind taxol-stabilized microtubules. Their functions (e.g., microtubule assembly, protection of microtubules against dilution or cold treatment, phosphorylating and ATPase activities) are under investigation. These biochemical approaches could allow in vitro analysis of the morphogenesis of the amoebal microtubule cytoskeleton.  相似文献   

17.
Trypanosoma cruzi has a particular cytoskeleton that consists of asubpellicular network of microtubules and actin microfilaments. Therefore, it is anexcellent target for the development of new anti-parasitic drugs. Benzimidazole2-carbamates, a class of well-known broad-spectrum anthelmintics, have been shown toinhibit the in vitro growth of many protozoa. Therefore, to find efficientanti-trypanosomal (trypanocidal) drugs, our group has designed and synthesisedseveral benzimidazole derivatives. One, named JVG9(5-chloro-1H-benzimidazole-2-thiol), has been found to be effectiveagainst T. cruzi bloodstream trypomastigotes under both in vitroand in vivo conditions. Here, we present the in vitro effects observed by laserscanning confocal and scanning electron microscopy on T. cruzitrypomastigotes. Changes in the surface and the distribution of thecytoskeletal proteins are consistent with the hypothesis that the trypanocidalactivity of JVG9 involves the cytoskeleton as a target.  相似文献   

18.
19.
The herbicide paraquat (PQ) induces the selective necrosis of type I and type II alveolar pneumocytes. We investigated the effect of PQ on human lung A549 cells to determine the possible role of cytoskeleton in lung cytotoxicity. At 80 mol/L PQ, a concentration that did not affect cell viability, the organization of actin cytoskeleton network depended on incubation time with the herbicide. Microfilaments appeared less numerous in 30% of the cells treated for 1 h. After 24 h, all the treated cells displayed only short filaments in the periphery. The effect of PQ on actin cytoskeleton was irreversible. Moreover, no modification of microtubule network was observed in PQ-treated cells. Next, we studied the effect of PQ on Chang Liver, an epithelial cell line from human liver. These cells appeared less sensitive to the herbicide than A549, and no cytoskeletal alteration was observed. To verify whether actin filament modifications in A549 cells were related to intracellular alterations of ATP concentrations, nucleotide levels during incubation with PQ were determined. The intracellular levels of ATP were not different in control and treated cells. Our results indicate that PQ induces specifically an irreversible actin filament disorganization on A549 cells and that the observed effect is independent of intracellular concentration of ATP.Abbreviations BSA bovine serum albumin - IC50 concentration that produces 50% inhibitiition - PBS phosphate-buffered saline - PQ paraquat, 1,1-dimethyl-4,4-bipyridinium dichloride - SE standard error of the mean  相似文献   

20.
The NG2 chondroitin sulfate proteoglycan is a membrane-spanning molecule expressed by immature precursor cells in a variety of developing tissues. In tightly adherent cell lines with a flattened morphology, NG2 is organized on the cell surface in linear arrays that are highly co-localized with actin and myosin-containing stress fibers in the cytoskeleton. In contrast, microtubules and intermediate filaments in the cytoskeleton exhibit completely different patterns of organization, suggesting that NG2 may use microfilamentous stress fibers as a means of cytoskeletal anchorage. Consistent with this is the observation that cytochalasin D disrupts the organization of both stress fibers in the cytoskeleton and NG2 on the cell surface. Very similar linear cell surface arrays are also seen with three other cell surface molecules thought to interact with the actin cytoskeleton: the α5β1 integrin, the CD44 proteoglycan, and the L1 neuronal cell adhesion molecule. Since the cytoplasmic domains of these four molecules are dissimilar, it seems possible that cytoskeletal anchorage in each case may occur via different mechanisms. One indication of such differences can be seen in colchicine-treated cells which have lost their flattened morphology but still retain long actin-positive tendrils as remnants of the actin cytoskeleton. NG2 and α5β1 are associated with these tendrils while CD44 and L1 are not, suggesting that at least two subclasses of cell surface molecules exist which can interact with different subdomains of the actin cytoskeleton. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号