首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sprague-Dawley rats were given treatments, known to decrease 22Na movement into choroid plexus and CSF, to investigate their effect on 22Na transfer across the cerebral capillaries. Acidic salts, acetazolamide, or amiloride was injected intraperitoneally into bilaterally nephrectomized rats, and the rate of 22Na uptake into parietal cortex, pons-medulla, and CSF was determined at 12, 18, and 24 min. Severe acidosis (arterial pH 7.2), produced by HCl injection, decreased the rate of 22Na entry into both brain regions and CSF by 25%, whereas mild acidosis (pH 7.3) from NH4Cl injection reduced brain entry by 18%, but CSF entry by only 10%. Like HCl acidosis, amiloride reduced transport into both brain and CSF by 22%. Penetration of 22Na into parietal cortex was unchanged by acetazolamide, but that into CSF was slowed 30%. Since uptake of 22Na into cortical regions is primarily movement of tracer across the cerebral capillaries when tracer uptake time is less than 30 min, the results indicate that both metabolic acidosis and amiloride decrease Na+ permeativity at the cerebral capillaries as well as at the choroid plexus. Acetazolamide, on the other hand, alters Na+ movement only across the choroidal epithelium.  相似文献   

2.
Abstract— The transport of two cyclohexitol stereoisomers, myo-inositol (inositol) and scyllo-inositol (scyllitol), from blood into the CNS in vivo and into the choroid plexus in vitro was studied. In vitro , the uptake of [3H]scyllitol or [3H]inositol by choroid plexuses, isolated from rabbits and incubated in artificial CSF, was measured. Both scyllitol and inositol inhibited [3H]scyllitol or [3H]inositol accumulation by the choroid plexus. Inositol competitively inhibited [3H]scyllitol accumulation and both isomers had a comparable affinity (Kt= 0.1 m m ) for the single cyclohexitol accumulation system. The other 6 stereoisomers tested had an order of magnitude less affinity for the cyclohexitol accumulation system of choroid plexus. Thiol reagents that penetrate cells inhibited inositol accumulation by choroid plexus more effectively than nonpenetrating thiol reagents. In vivo , in unanesthetized rabbits. the transport of unmetabolized [3H]inositol from blood into CSF, choroid plexus and brain was readily saturated by increasing the plasma levels of myo-inositol but not by the stereoisomer d -chiroinositol. Similarly, the transport of unmetabolized [3H]scyllitol into CSF, brain and choroid plexus was readily saturated by increasing the plasma levels of myo-inositol. Beside documenting the stereospecificity and thiol reagent sensitivity of the inositol transport mechanism of the choroid plexus, these results provide further evidence that the choroid plexus is a locus for cyclohexitol transport between blood and CSF. Moreover, they show that scyllitol, which, like inositol, is present at a higher concentration in brain than plasma, can be transported from blood into CSF and brain by the same system that transports inositol.  相似文献   

3.
Active Transport of Nicotine by the Isolated Choroid Plexus In Vitro   总被引:2,自引:1,他引:1  
Abstract: In vitro , the transport of [14C]nicotine into the isolated choroid plexus, the anatomical locus of the blood–CSF barrier, was studied. The isolated rabbit choroid plexus accumulated [14C]nicotine by two processes: an active saturable transport process and a nonsaturable process. The [14C]nicotine accumulation process by choroid plexus was not due to binding or intracellular metabolism of the [14C]nicotine. The [14C]nicotine accumulation process in isolated choroid plexus was inhibited by weak bases, including tolazoline and lidocaine, but not by the weak acid probenecid. The accumulation process was decreased 60% by iodoacetate and dinitrophenol and by low temperatures. These results are consistent with previous autoradiographic evidence showing the choroid plexus concentrated [14C]nicotine in vivo , and suggest that the choroid plexus may transfer nicotine between blood and CSF in vivo .  相似文献   

4.
The transport of [3H]deoxyuridine by the active nucleoside transport system into the isolated rabbit choroid plexus was measured in vitro under various conditions. Choroid plexuses were incubated in artificial CSF containing 1 microM [3H]deoxyuridine and 1 microM nitrobenzylthioinosine for 5 min under 95% O2-5% CO2 at 37 degrees C and the accumulation of [3H]deoxyuridine measured. Nitrobenzylthioinosine was added to the artificial CSF at a concentration (1 microM) that did not inhibit the active nucleoside transport system but did inhibit the separate, saturable nucleoside efflux system. The active transport of deoxyuridine into the choroid plexus depended on Na+ in the medium, as ouabain, substitution of Li+ and choline for Na+, and poly-L-lysine all inhibited deoxyuridine transport. Thiocyanate in place of chloride and penetrating sulfhydryl reagents also inhibited the active transport of deoxyuridine into choroid plexus. The active transport of deoxyuridine into choroid plexus, which is inhibited by naturally occurring ribo- and deoxyribonucleosides (IC50 = 7-21 microM), was not inhibited (IC50 much greater than 150 microM) by nucleosides with certain alterations on the 2', 3', or 5' positions in D-ribose or 2-deoxy-D-ribose (e.g., adenine arabinoside, 3'-deoxyadenosine, xylosyladenosine); or the pyrimidine or purine rings (e.g., 6-azauridine, xanthosine, 7-methylinosine, or 8-bromoadenosine). Other analogues were effective (IC50 = 8-26 microM; e.g., 5-substituted pyrimidine nucleosides, 7-deazaadenosine, 6-mercaptoguanosine) or less effective (IC50 = 46-145 microM; e.g., 5-azacytidine, 3-deazauridine) inhibitors of deoxyuridine transport into the isolated choroid plexus.  相似文献   

5.
Carrier-Mediated Transport of Chloride Across the Blood-Brain Barrier   总被引:2,自引:2,他引:0  
36Cl concentrations in each of eight brain regions and in cisternal cerebrospinal fluid (CSF) were determined 30 min after the intravenous injection of 36Cl in dialyzed-nephrectomized rats with plasma Cl concentrations between 14 and 120 mumol X ml-1. CSF 36Cl exceeded 36Cl concentrations in brain extracellular fluid. The calculated blood-to-brain transfer constants for Cl, kCl, ranged from 1.8 X 10(-5) S-1 at the parietal cortex to 3.8 X 10(-5) S-1 at the thalamus-hypothalamus. kCl fell by 42-62% when mean plasma [Cl] was elevated from 16 to 114 mumol X ml-1. Brain uptake of [14C]mannitol or of 22Na was independent of plasma [Cl], but 22Na influx into CSF fell when plasma [Cl] was reduced. Cl flux into brain and CSF could be represented by Michaelis-Menten saturation kinetics, where, for the parietal cortex, Km = 43 mumol X ml-1 and Vmax = 2.5 X 10(-3) mumol X S-1 X g-1, and for CSF Km = 68 mumol X ml-1. At least 80% of 36Cl influx into the parietal cortex was calculated to occur at the cerebrovascular endothelium, whereas the remainder was derived from tracer that first entered CSF. The CSF contribution was greater at brain regions adjacent to cerebral ventricles. The results show that Cl transport at the cerebrovascular endothelium as well as at the choroid plexus epithelium is a saturable concentration-dependent process, and that the CSF is a significant intermediate pathway for Cl passage from blood to brain.  相似文献   

6.
Little is known about the cerebral distribution and clearance of guanidinoacetate (GAA), the accumulation of which induces convulsions. The purpose of the present study was to identify creatine transporter (CRT)-mediated GAA transport and to clarify its cerebral expression and role in GAA efflux transport at the blood-cerebrospinal fluid barrier (BCSFB). CRT mediated GAA transport with a K(m) value of 269 microM/412 microM which was approximately 10-fold greater than that of CRT for creatine. There was wide and distinct cerebral expression of CRT and localization of CRT on the brush-border membrane of choroid plexus epithelial cells. The in vivo elimination clearance of GAA from the CSF was 13-fold greater than that of d-mannitol reflecting bulk flow of the CSF. This process was partially inhibited by creatine. The characteristics of GAA uptake by isolated choroid plexus and an immortalized rat choroid plexus epithelial cell line (TR-CSFB cells) used as an in vitro model of BCSFB are partially consistent with those of CRT. These results suggest that CRT plays a role in the cerebral distribution of GAA and GAA uptake by the choroid plexus. However, in the presence of endogenous creatine in the CSF, CRT may make only a limited contribution to the GAA efflux transport at the BCSFB.  相似文献   

7.
Saturable Transport of Manganese(II) Across the Rat Blood-Brain Barrier   总被引:4,自引:3,他引:1  
Unanesthetized adult male rats were infused intravenously with solutions containing 54Mn (II) and one of six concentrations of stable Mn(II). The infusion was timed to produce a near constant [Mn] in plasma for up to 20 min. Plasma was collected serially and on termination of the experiment, samples of CSF, eight brain regions, and choroid plexus (CP) were obtained. Influx of Mn (JMn) was calculated from uptake of 54Mn into tissues and CSF at two different times. Plasma [Mn] was varied 1,000-fold (0.076-78 nmol/ml). Over this plasma concentration range, JMn increased 123 times into CP, 18-120 times into brain, and 706 times into CSF. CP and brain JMn values fit saturation kinetics with Km (nmol/ml) equal to 15 for CP and 0.7-2.1 for brain, and Vmax (10(-2) nmol.g-1.s-1) of 27 for CP and 0.025-0.054 for brain. Brain JMn except at cerebral cortex had a nonsaturable component. CSF JMn varied linearly with plasma [Mn]. These findings suggest that Mn transport into brain and CP is saturable, but transport into CSF is nonsaturable.  相似文献   

8.
Accumulation of Tyr-d-Ala-Gly (TAG) in choroid plexus was studied with ventriculocisternal perfusion of anesthetized rats. The choroid plexus of the lateral ventricles and the fourth ventricle accumulated TAG against a concentration gradient with regards to cerebrospinal fluid (CSF) but not plasma. This accumulation was inhibited by some metabolic inhibitors and peptides which had the same effect on accumulation of TAG in isolated choroid plexus. These results indicate that the active transport of TAG is present in the epithelium facing CSF. This active accumulation was affected by morphine. Reserpine, which is a chemical denervation of sympathetic nerves has no effect on the active accumulation of TAG. Thus, all these results suggest that, in vivo accumulation of TAG in choroid plexus during ventriculocisternal perfusion is similar to in vitro accumulation of TAG in isolated plexus.  相似文献   

9.
The mechanism and membrane localization of choroid plexus (CP) organic anion transport were determined in apical (or brush border) membrane vesicles isolated from bovine choroid plexus and in intact CP tissue from cow and rat. Brush border membrane vesicles were enriched in Na(+),K(+)-ATPase (20-fold; an apical marker in CP) and demonstrated specific, sodium-coupled transport of proline, glucose, and glutarate. Vesicular uptake of the anionic herbicide 2, 4-dichlorophenoxyacetic acid (2,4-D) was markedly stimulated by an inward sodium gradient but only in the presence of glutarate, indicating the presence of apical dicarboxylate/organic anion exchange. Consistent with this interpretation, an imposed outward glutarate gradient stimulated 2,4-D uptake in the absence of sodium. Under both conditions, uptake was dramatically slowed and overshoot was abolished by probenecid. Likewise, apical accumulation of 2,4-D by intact bovine choroid plexus tissue in vitro was stimulated by external glutarate in the presence of sodium. Glutarate stimulation was abolished by 5 mM LiCl. Identical findings were obtained using rat CP tissue, which showed both sodium/glutarate-stimulated 2,4-D (tissue/medium (T/M) approximately 8) and p-aminohippurate (T/M = 2) transport. Finally, since the renal exchanger (rROAT1) has been cloned in rat kidney, a rROAT1-green fluorescent protein construct was used to analyze exchanger distribution directly in transiently transfected rat CP. As predicted by the functional studies, the fluorescently tagged transporter was seen in apical but not basolateral membranes of the CP.  相似文献   

10.
Leukotriene C4 Transport and Metabolism in the Central Nervous System   总被引:1,自引:0,他引:1  
The transport and metabolism of radiolabeled leukotriene (LT) C4 in the CNS were investigated after intraventricular injection. Under thiopental (Pentothal) anesthesia, New Zealand white rabbits were injected intracerebroventricularly with 0.2 ml of artificial CSF containing 2.5 microCi of [3H]LTC4 (36 Ci/mmol), 0.3 microCi of [14C]mannitol, and, in some cases, 0.9 mg of probenecid, 1.8 mg of cysteine, 1.4 micrograms of unlabeled LTC4, or 2 mg of tolazoline HCl. After 2 h, the conscious rabbits were killed, and the quantity and nature of the 3H and 14C were determined in CSF, choroid plexus, and brain. The [3H]LTC4 recovered in CSF and brain was not extensively metabolized, as greater than 70% of the 3H remained [3H]LTC4, although some spontaneous conversion to 11-trans-[3H]LTC4 occurred. Oxidized forms of [3H]LTC4, [3H]LTD4, and [3H]LTE4 did not exceed 18% in CSF and brain. After intraventricular injection of [3H]LTC4, 3H was transferred from the CSF to blood by a probenecid-sensitive, but tolazoline-insensitive, transport system in the CNS much more rapidly than mannitol. Cysteine decreased the retention of [3H]LTC4 in brain. These results are consistent with previous in vitro observations that [3H]LTC4 is transferred from CSF into blood by an efficient transport system for LTC4 in choroid plexus.  相似文献   

11.
Since the mechanism underlying the insulin stimulation of (Na+,K+)-ATPase transport activity observed in multiple tissues has remained undetermined, we have examined (Na+,K+)-ATPase transport activity (ouabain-sensitive 86Rb+ uptake) and Na+/H+ exchange transport (amiloride-sensitive 22Na+ influx) in differentiated BC3H-1 cultured myocytes as a model of insulin action in muscle. The active uptake of 86Rb+ was sensitive to physiological insulin concentrations (1 nM), yielding a maximum increase of 60% without any change in 86Rb+ permeability. In order to determine the mechanism of insulin stimulation of (Na+,K+)-ATPase activity, we demonstrated that insulin also stimulates passive 22Na+ influx by Na+/H+ exchange transport (maximal 200% increase) and an 80% increase in intracellular Na+ concentration with an identical time course and dose-response curve as insulin-stimulated (Na+,K+)-ATPase transport activity. Incubation of the cells with high [Na+] (195 mM) significantly potentiated insulin stimulation of ouabain-inhibitable 86Rb+ uptake. The ionophore monensin, which also promotes passive Na+ entry into BC3H-1 cells, mimics the insulin stimulation of ouabain-inhibitable 86Rb+ uptake. In contrast, incubation with amiloride or low [Na+] (10 mM), both of which inhibit Na+/H+ exchange transport, abolished the insulin stimulation of (Na+,K+)-ATPase transport activity. Furthermore, each of these insulin-stimulated transport activities displayed a similar sensitivity to amiloride. These results indicate that insulin stimulates a large increase in Na+/H+ exchange transport and that the resulting Na+ influx increases the intracellular Na+ concentration, thus activating the internal Na+ transport sites of the (Na+,K+)-ATPase. This Na+ influx is, therefore, the mediator of the insulin-induced stimulation of membrane (Na+,K+)-ATPase transport activity classically observed in muscle.  相似文献   

12.
Can loop diuretics like ethacrynic acid and furosemide, when administered intravenously, significantly alter ion transport and fluid dynamics in CNS? To shed light on this unresolved issue, we tested the ability of these agents to effect redistribution of Na, K and Cl in adult rat brain. Cl penetration into various CNS regions was assessed as the volume of distribution, i.e., uptake, of36Cl from blood. Ethacrynic acid and furosemide (50 mg/kg IV) reduced by 20–30% the rate of permeation of36Cl across the blood-CSF barrier, and they elevated [K] and [Cl] in choroid plexus (CP) by 15–25%. The loop diuretic-induced buildup of K and Cl in CP (lateral and 4th ventricle) was likely a reflection of decreased movement of these ions across the apical membrane into CSF.36Cl activity in parietal cortex and pons-medulla decreased in treatment with furosemide and ethacrynic acid, due to slowing of Cl transport across blood-brain and/or blood-CSF barriers. Our inhibitory findings in intact rats are consistent with those from previous in vitro experiments demonstrating diminution by loop diuretics of Na, K and Cl transport across isolated CP membranes.  相似文献   

13.
We examined the effects of quinidine, amiloride and Li+ on the kinetics of Na+-H+ exchange in microvillus membrane vesicles isolated from the rabbit renal cortex. Quinidine reversibly inhibited the initial rate of Na+-H+ exchange (I50 200 microM). The plot of 1/V versus [quinidine] was curvilinear, with Hill coefficient greater than 1.0, indicating that the drug interacts at two or more inhibitory sites or at a single site on at least two different conformations of the transporter. Quinidine decreased the Vmax for Na+-H+ exchange and increased the Km for Na+, indicating a mixed-type mechanism of inhibition. In contrast, plots of 1/V versus [amiloride] and 1/V versus [Li+] were linear, indicating single inhibitory sites; amiloride and Li+ each increased the Km for Na+ with no effect on Vmax, indicating a competitive mechanism of inhibition. Addition of Li+ increased the intercept with no change in slope of the 1/V versus [amiloride] plot, indicating that Li+ and amiloride are mutually exclusive inhibitors of Na+-H+ exchange. Addition of quinidine increased the slopes of the plots of 1/V versus [amiloride] and 1/V versus [Li+], indicating that the binding of quinidine is not mutually exclusive with the binding of amiloride and Li+. Results from this and previous studies are consistent with the concept that the inhibitor amiloride and the transportable substrates Na+, H+, Li+, and NH+4 all mutually compete for binding to a single site, the external transport site of the renal Na+-H+ exchanger. However, our findings indicate that quinidine interacts with the Na+-H+ exchanger on at least one additional site that is not shared by Na+, Li+, or amiloride.  相似文献   

14.
Cerebrospinal fluid (CSF) is secreted primarily by the choroid plexus (CP) located in the cerebral ventricles. Although much is known about ionic composition of cisternal CSF, the mechanisms involved in secretion of CSF in mammals are still not understood. The main aim of this report is to critically review the role of NaCl cotransport carrier in CSF production. On the basis of the studies in the literature, a model for CSF production by the CP is proposed. In this model, CP cells are assumed to be equipped with an NaCl cotransport carrier located on the basolateral (blood-facing) membrane. Because Na+ and Cl- are the two principal ions in CSF, their continued secretions into cerebral ventricles by CP cells require an adequate intracellular supply, which may be guaranteed by the NaCl cotransport carrier. Although this appears to be a reasonable assumption, making the processes involved in CSF production similar to those of other secretory epithelial cells, the presence of such a carrier in mammalian CP remains controversial. The reasons for this controversy are critically reviewed, and some suggestions for further studies are made.  相似文献   

15.
Summary Light (LM-ARG) and electron microscope (EM-ARG) autoradiographs were prepared from immature rat choroid plexus and ependyma at 5, 10, 30, and 60 min and 16 h following intraperitoneal administration of [3H]- labeled amino acid mixtures. Intracellular protein synthesis and transport were ascertained in lateral and fourth ventricle choroid plexus epithelium by quantitative EM-ARG at the several post-injection intervals. ARG were also prepared from choroid plexuses cultured for one day, pulse labeled for one hour and reincubated for various periods in nonradioactive media. Significant labeling of both attached and free apical protrusions (blebs) was observed in both choroid plexus and ependyma in vivo and in choroid plexus in vitro. This phenomenon was interpreted as a physiologically significant mechanism for protein transport (apocrine secretion) by epithelia into the cerebrospinal fluid (CSF).This study was supported in part by N.I.H. Research Grant NS 12906  相似文献   

16.
Abstract: Cl and Na transport by the lateral ventricle (LVCP) and fourth ventricle (4VCP) choroid plexuses were examined by kinetic analysis of 36Cl and 22Na uptake into the choroid plexus-CSF system of the adult rat. Both radioisotopes required more than 5 h to reach steady-state distribution in the in vivo choroid plexuses and CSF after intraperitoneal injection. Whereas the LVCP and 4VCP 36Cl steady-state spaces were comparable (55–56%), the 4VCP 22Na space (39%) tended to be greater than the LVCP 22Na space (36%). No evidence for inexchangeable Cl or Na was found for the choroid plexuses; the radioisotopic and chemical spaces were not significantly different. Choroid plexus 36Cl and 22Na uptake curves were resolved into two components, a fast component ( t 1/2 0.02–0.05 h) and a slow component ( t 1/2 0.85–1.93 h). By analysis of the distribution of [3H]inulin, [3H]mannitol, and 51Cr-tagged erythrocytes within the choroid plexuses, the fast component of 36Cl and 22Na uptake was found to represent extracellular and erythrocyte contributions to the tissue radioactivity, whereas the slow component represented isotope movement into the epithelial cell compartment. The calculated cell [Cl] of LVCP and 4VCP, 67 mmol/kg cell water, was 3.9 times greater than that predicted by the membrane potential for passive distribution. It is postulated that Cl is actively transported into the choroid epithelial cell across the basolateral membrane; the energy source for active Cl transport may be the Na electrochemical potential gradient (˜90 mV), which is twice that of the Cl electrochemical potential gradient (˜45 mV).  相似文献   

17.
Prostaglandin E2 (PGE2, 5 ng/ml to 5 micrograms/ml) induced a dose-dependent increase in cAMP accumulation, inositol phosphates (IPs) accumulation, and cytoplasmic free Ca2+ ([Ca2+]i) in a clonal osteoblast-like cell line, MOB 3-4. In contrast, prostaglandin F2 alpha (PGF2 alpha, 5 ng/ml to 5 micrograms/ml) stimulated increases in IPs accumulation and [Ca2+]i without stimulating an increase in cAMP accumulation. Both PGE2 (greater than 0.5 micrograms/ml) and PGF2 alpha (greater than or equal to 5 micrograms/ml) increased cytoplasmic pH (pHi) from approximately 7.15 to 7.35 in BCECF-loaded cells. A tumor promotor, phorbol 12-myristate 13-acetate (PMA, 0.1-100 nM) also increased pHi without effect on phosphoinositide hydrolysis. Both PGE2-(5 micrograms/ml) and PMA- (100 nM) induced cytoplasmic alkalinization was inhibited by removal of extracellular Na+, or by pretreatment of the cells with amiloride (0.5 mM), an inhibitor of Na+/H+ exchange, or H-7 (100 microM), a nonspecific inhibitor of protein kinase C. Thus, MOB 3-4 cells appeared to possess PGE2 receptors and PGF2 alpha receptors: the former are coupled to adenylate cyclase and phospholipase C, and the latter are predominantly coupled to phospholipase C. Also the cells appeared to possess an amiloride-sensitive Na+/H+ exchange activity, which increases pHi in response to PGE2 and PGF2 alpha, as well as to PMA. Long-term (48 hr) exposure of the cells to PGE2 at a high concentration (5 micrograms/ml), but not to PGF2 alpha and PMA, decreased DNA synthesis in the serum-deficient medium. Thus, cytoplasmic alkalinization appeared insufficient for cell replication. At least in MOB 3-4 cells, the inhibitory effect of PGE2 on DNA synthesis may be due to the cAMP messenger system.  相似文献   

18.
Abstract: Changes in cellular [K] and [Na] in the choroidal epithelium (as a reflection of Na-K pump activity) were analyzed in Sprague-Dawley rats subjected to acute systemic acidosis. In the lateral and 4th ventricle choroid plexus (CP) of adult rats in which metabolic acidosis was induced for 1 h, cell [K] and [Na] increased and decreased by 35 and 15 m m /kg water, respectively, indicating marked stimulation of the Na-K exchange pump in the CSF-facing membrane; in contrast, this striking response of the CP to acidosis could not be elicited in immature animals (1 week old). Since the effects of respiratory acidosis on CP cell [K] and [Na] were similar to those of metabolic acidosis, the reduction in plasma pH (rather than in [HCO3]) is likely the mechanism underlying the enhanced turnover of Na and K across the CP in adults. The concentration of Na and K in the cerebral cortex, medulla, and CSF was generally not altered during acute acid-base distortions in both mature and immature animals. The striking difference in the response of CNS tissue protected by the blood-CSF barrier (i.e., CP) and the blood-brain barrier (BBB) to systemic acidosis emphasizes a unique role, presumably homeostatic, for the plexus. Since propranolol substantially attenuated the acidosis-induced changes in choroidal cell [K] and [Na], it is possible that there is β-receptor modulation of the Na,K-ATPase (Na-K pump) in the CP. We postulate that the generally observed enhanced electropositivity in the CSF in systemic acidosis is brought about, at least in part, by facilitation of Na-K pumping in the CP, although induced changes in membrane permeability may also be a factor.  相似文献   

19.
N-System Amino Acid Transport at the Blood-CSF Barrier   总被引:1,自引:1,他引:0  
Abstract: Despite l -glutamine being the most abundant amino acid in CSF, the mechanisms of its transport at the choroid plexus have not been fully elucidated. This study examines the role of L-, A-, ASC-, and N-system amino acid transporters in l -[14C]glutamine uptake into isolated rat choroid plexus. In the absence of competing amino acids, approximately half the glutamine uptake was via a Na+-dependent mechanism. The Na+-independent uptake was inhibited by 2-amino-2-norbornane carboxylic acid, indicating that it is probably via an L-system transporter. Na+-dependent uptake was inhibited neither by the A-system substrate α-(methylamino)isobutyric acid nor by the ASC-system substrate cysteine. It was inhibited by histidine, asparagine, and l -glutamate γ-hydroxamate, three N-system substrates. Replacement of Na+ with Li+ had little effect on uptake, another feature of N-system amino acid transport. These data therefore indicate that N-system amino acid transport is present at the choroid plexus. The V max and K max for glutamine transport by this system were 8.1 ± 0.3 nmol/mg/min and 3.3 ± 0.4 m M , respectively. This system may play an important role in the control of CSF glutamine, particularly when the CSF glutamine level is elevated as in hepatic encephalopathy.  相似文献   

20.
Intracellular free Ca2+ [( Ca2+]i) and pH (pHi) were measured simultaneously by dual wavelength excitation in thrombin-stimulated human platelets double-labeled with the fluorescent probes fura2 and 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein to determine the relationship between changes in [Ca2+]i and pHi, respectively. At 37 degrees C, thrombin (0.5 or 0.1 units/ml) increased [Ca2+]i with no detectable lag period to maximum levels within 13 s followed by a slow return to resting levels. There was a transient decrease in pHi within 9 s that was immediately followed by an alkalinization response, attributable to activation of Na+/H+ exchange, that raised pHi above resting levels within 22 s. At 10-15 degrees C, thrombin-induced changes in [Ca2+]i and pHi were delayed and therefore better resolved, although no differences in the magnitude of changes in [Ca2+]i and pHi were observed. However, the increase in [Ca2+]i had peaked or was declining before the alkalinization response was detected, suggesting that Ca2+ mobilization occurs before activation of Na+/H+ exchange. In platelets preincubated with 5-(N-ethyl-N-isopropyl)amiloride or gel-filtered in Na+-free buffer (Na+ replaced with N-methyl-D-glutamine) to inhibit Na+/H+ exchange, thrombin stimulation caused a rapid, sustained decrease in pHi. Under these conditions there was complete inhibition of the alkalinization response, whereas Ca2+ mobilization was only partially inhibited. Nigericin (a K+/H+ ionophore) caused a rapid acidification of more than 0.3 pH unit that was sustained in the presence of 5-(N-ethyl-N-isopropyl)amiloride. Subsequent stimulation with thrombin resulted in slight inhibition of Ca2+ mobilization. These data show that, in human platelets stimulated with high or low concentrations of thrombin, Ca2+ mobilization can occur without a functional Na+/H+ exchanger and in an acidified cytoplasm. We conclude that Ca2+ mobilization does not require activation of Na+/H+ exchange or preliminary cytoplasmic alkalinization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号