首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of reduced nutritional levels (particularly nitrogen source) for immobilized K. fragilis type yeast were studied using a trickle flow, "differential" plug flow type reactor with cells immobilized by adsorption onto an absorbant packing matrix. Minimizing nutrient levels in a feed stream to an immobilized cell reactor (ICR) might have the benefits of reducing cell growth and clogging problems in the ICR, reducing feed preparation costs, as well as reducing effluent disposal costs. In this study step changes in test feed medium nutrient compositions were introduced to the ICR, followed by a return to a basal medium. Gas evolution rates were monitored and logged on a continuous basis, and effluent cell density was used as an indicator of cell growth rate of the immobilized cell mass. Startup of the reactor using a YEP medium showed a rapid buildup of cells in the reactor during the initial 110 h operation. The population density then stabilized at 1.6 x 10(11) cells/g sponge. A defined medium containing a complex mix of essential nutrients with an inorganic nitrogen source (ammonium sulfate) was able to maintain 90% of the productivity in the ICR as compared to the YEP medium, but proved unable to promote growth of the immobilized cell mass during startup. Experiments on reduced ammonium sulfate in the defined medium, and reduced yeast extract and peptone in YEP medium indicated that stable productivity could be maintained for extended periods (80 h) in the complete absence of any nutrients besides a few salts (potassium phosphate and magnesium sulfate). It was found that productivity rates dropped by 35-65% from maximal values as nitrogenous nutrients were eliminated from the test mediums, while growth rates (as determined by shed cell density from the reactor) dropped by 75-95%. Thus, nutritional deficiencies largely decoupled growth and productivity of the immobilized yeast which suggests productivity is both growth- and non-growth-associated for the immobilized cells. A yeast extract concentration of 0.375 g/L with or without 1 g/L ammonium sulfate was determined to be the minimum level which gave a sustained increase in productivity rates as compared to the nutritionally deficient salt medium. This represents a 94% reduction in complex nitrogenous nutrient levels compared to standard YEP batch medium (3 g/L YE and 3.5 g/L peptone).  相似文献   

2.
Acinetobacter calcoaceticus can be immobilized on Celite by adsorption. The salt concentrations suitable for immobilized cell fermentation are between 10 and 50 mM phosphate concentration. Low salt concentrations cause desorption of immobilized cells while high salt concentrations inhibit the adsorption of cells on Celite. It is also found that cell adsorption is better at lower pH than at higher pH. An airlift fermentation using immobilized cells at 300 g/L Celite loading shows that about 70% of the total polymer produced is accumulated in Celite pores at a concentration (15.4 g/L) almost threefold higher than that in the bulk liquid (5.7 g/L).  相似文献   

3.
以聚乙烯醇-海藻酸钠复合材料为载体,Ca(NO3)2为交联剂对氧化亚铁硫杆菌进行包埋固定化。该固定化细胞的连续培养技术可以用于处理H2S、SO2,为了减少减少固定化细胞培养过程中带来许多不利效应的黄铁矾沉淀 (NH4Fe3(SO4)2(OH)6),采取了改变初始pH值和目前普遍采用的9K培养基中的(NH4)2SO4浓度,K2HPO4浓度三种方法。结果显示:在三种方法中,降低(NH4)2SO4浓度是比较可行的一种方法,当(NH4)2SO4从3.0 g/L降低到0.5g/L,Fe2+氧化速率几乎没有受到影响,沉淀形成速率却减少了45%。在固定化细胞连续运行时,降低9K培养基中(NH4)2SO4的含量,当稀释率为0.4 h-1,运行时间为96 h,Fe2+氧化速率高达3.75 g/L.H,结果显示反应柱内沉淀明显减少,同时Fe2+氧化速率并没有明显变化。  相似文献   

4.
Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated, they could not be recovered.  相似文献   

5.
Whole cells of Escherichia coli containing aspartase activity were immobilized by mixing a cell suspension with a liquid isocyanate-capped polyurethane prepolymer (Hypol). The immobilized cell preparation was used to convert ammonium fumarate to l-aspartic acid. Properties of the immobilized E. coli cells containing aspartase were investigated with a batch reactor. A 1.67-fold increase in the l-aspartic acid production rate was observed at 37 degrees C as compared to 25 degrees C operating temperature. The pH optimum was broad, ranging from 8.5 to 9.2. Increasing the concentration of ammonium fumarate to 1.5 M from 1.0 M negatively affected the reaction rate. l-Aspartic acid was produced at an average rate of 2.18 x 10 mol/min per g (wet weight) of immobilized E. coli cells with a 37 degrees C substrate solution consisting of 1.0 M ammonium fumarate with 1 mM Mg (pH 9.0).  相似文献   

6.
Immobilized whole cells of Clostridium butyricum reduced both NAD(+) and NADP(+) in the presence of hydrogen at a pressure of 100 atm. The NAD(+) and NADP(+) reduction activities were 4.45 and 4.30 U/g dry cells, respectively [U = NAD(P)H regenerated, mu mol/min]. The amount of NADH regenerated by immobilized cells increased with increasing hydrogen pressure above 10 atm. Immobilized cells (6 mg dry cells) of Cl. butyricum completely converted NAD(+) (6.4 mumole) to NADH for 5 h, whereas only 60% of NAD(+) were reduced by free cells. Immobilized cells retained 89% activity after the 5-h reactions were repeated 4 times. L-Alanine was continuously produced at the rate of 12.8 mumol/min g dry cells from hydrogen, ammonium, and pyruvate with immobilized Cl. butyricum-alanine dehydrogenase.  相似文献   

7.
The nitrile hydratase (Nhase) induced cells of Rhodococcus rhodochrous PA-34 catalyzed the conversion of acrylonitrile to acrylamide. The cells of R. rhodochrous PA-34 immobilized in 2% (w/v) agar (1.76 mg dcw/ml agar matrix) exhibited maximum Nhase activity (8.25 U/mg dcw) for conversion of acrylonitrile to acrylamide at 10°C in the reaction mixture containing 0.1 M potassium phosphate buffer (pH 7.5), 8% (w/v) acrylonitrile and immobilized cells equivalent to 1.12 mg dcw (dry cell weight) per ml. In a partitioned fed batch reaction at 10°C, using 1.12 g dcw immobilized cells in a final volume of 1 l, a total of 372 g of acrylonitrile was completely hydrated to acrylamide (498 g) in 24 h. From the above reaction mixture 87% acrylamide (432 g) was recovered through crystallization at 4°C. By recycling the immobilized biocatalyst (six times), a total of 2,115 g acrylamide was produced.  相似文献   

8.
9.
Summary Cells of Escherichia intermedia were immobilized by entrapment in a polyacrylamide gel and used for the enzymatic production of l-tyrosine from phenol, pyruvate, and ammonia. A preparation containing 50 mg of cells/g of gel retained 60% of its original activity. The effect of temperature, pH and substrate concentration on the activity of free cells was almost identical with the effect on immobilized cells. Phenol showed inhibition and inactivation of the catalyst at high concentration. Synthesis of l-tyrosine (up to 10 g/l) was demonstrated in batch reactors with high conversion yields (95–100%) and a maximal productivity of 2 g/l/h. In continuous reactor the catalyst showed a very high operational stability (more than 54 days without losses).  相似文献   

10.
The viability of algal cells immobilized on screens and starved in a water-saturated air stream was studied at the laboratory scale. This new process for wastewater biotreatment has been developed using immobilized cells, which were starved in air, to obtain a high rate of nutrient removal. A unicellular green microalgae, Scenedesmus bicellularis, was isolated from secondary decantation tanks at an urban wastewater treatment plant and grown in a synthetic medium for 12 days. The cells were then concentrated by centrifugation and immobilized on alginate screens. The screens were then inserted in a photochamber saturated at 100% relative humidity and subjected to a photoperiod of 16 h in the light and 8 h in the dark, with an illumination of 150 muE m(-2) s(-1) provided by fluorescent lamps. After 48 h of nutrient starvation, the immobilized cells were used for the removal of ammonium and orthophosphate from a synthetic secondary wastewater effluent in a plexiglass reactor. During the sequential operation of starvation followed by incubation in the presence of nutrients, fast growth of viable cells in the gel matrix was obtained and there was no appreciable decay of chlorophyll a or cell activity. When these immobilized and starved cells were incubated in wastewater, ammonium (NH(4) (+)) and orthophosphate (PO(4) (3-)) ions were quickly taken up from medium. After three successive 2-h exposures to wastewater, immobilized algal cells were freed by dissolving the Ca-alginate with phosphate as 0.2 M Na(3)PO(4) and resuspended in fresh culture medium. Results indicate that free cells transferred to rich medium remained viable, but the growth rate revealed that the viable cells decreased their culturability. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
通过海藻酸钠/纤维素硫酸钠-聚二甲基二烯丙基氯化铵(SA/NaCS-PDMDAAC)微胶囊固定化酵母细胞将胞苷一磷酸(CMP)转化为胞苷三磷酸(CTP),考察了各种因素条件对CTP转化率的影响,以提高CTP的转化率.通过考察分批补料添加葡萄糖,固定化酵母量,CMP浓度等以达到提高CTP转化率的要求.结果在250 mL锥...  相似文献   

12.
Free and immobilized cultures of Spirulina maxima for swine waste treatment   总被引:6,自引:0,他引:6  
We have analyzed the behavior of spirulina maxima at increasing concentration of ammonium nitrogen present in swine waste when it is either growing in suspension or immobilized in polymeric supports. We compared the response of spirulina maxima growth to different concentrations of aeration stabilized swine waste (total phosphorus, ammonium nitrogen) as a way to determine the treatment efficiency of both systems. At a dilution of 50 % of swine waste, the suspended system reached the best results for biomass concentration and nutrient removal. In the immobilized system, at dilutions of 25 and 50 % of swine waste, more than 90 % ammonium nitrogen removal was obtained, and the optimal cell concentration for immobilization was 2 g/l (wet basis).  相似文献   

13.
于存  罗佳欣 《菌物学报》2018,37(3):379-388
利用海藻酸钙法对乳白耙齿菌进行固定化,检测固定化乳白耙齿菌(固定化菌)对几种染料的脱色能力。同时,考察pH值、染料浓度、金属离子、碳源种类、氮源种类、盐浓度对固定化菌脱色茜素红的影响。结果表明,固定化菌的优化条件为海藻酸钠3%、氯化钙5%、固定化时间6h、接菌量10g/100mL;固定化菌对6种染料均可脱色,其中对茜素红染料的脱色效果最为明显;固定化菌对茜素红的脱色率随染料浓度的增加而下降,当染料浓度高于250mg/L时,其脱色效果明显下降;固定化菌对茜素红脱色的适宜pH为7,适宜碳源为可溶性淀粉、适宜氮源为硝酸铵。另外,固定化菌对茜素红的脱色率随盐浓度的升高,呈下降趋势,当盐浓度高于3%时,脱色率下降明显;固定化菌于生理盐水中保存10d后,脱色率维持在较高水平,达94.20%;固定化菌重复利用5次后,脱色率仍高达88.70%。  相似文献   

14.
Whereas in freely suspended cell cultures growing photoautotrophically under non-limiting carbon conditions nitrite and nitrate were simultaneously consumed after ammonium consumption was complete, in alginate-entrapped cell cultures a sequential consumption of nitrite (first) and nitrate was observed after ammonium had almost been fully removed. In this paper results are reported that show inhibition of nitrate consumption by nitrite in immobilized cells. However no inhibition of nitrate active transport was observed. The sequential consumption of ammonium, nitrite and nitrate by Ca-alginate immobilized cells is explained on the basis of local ammonium accumulation due to its photoproduction by photorespiration, that could be caused by the increase of the O2/CO2 ratio around the entrapped cells. Measurements of light-dependent oxygen production (LDOP) and activity levels of nitrogen assimilation enzymes, including nitrite reductase (NiR) and glutamine synthetase (GS) in immobilized cells, determined under photorespiration stimulating conditions, are shown that support this explanation.  相似文献   

15.
A new method for the immobilization of microbial cells has been developed. Whole cells of Escherichia coli with aspartase activity were immobilized by capture on the surface of cross-linked poly(N-benzyl-4-vinylpyridinium bromide) containing styrene (BVPS resin), an insoluble pyridinium-type resin. When a suspension of the bacterial cells in buffer solution was passed through a glass column containing beads of BVPS resin, the cells were captured on the resin surface and formed an immobilized cell system. A fixed-bed column reactor containing 300 mg of the bacterial cells immobilized by capture on 10 g of BVPS resin beads was used for the preparation of L-aspartic acid from ammonium fumarate. Continuous operation of tne bioreactor produced L-aspartic acid in a quantitative yield when the influent substrate concentration was 0.1M and the flow rate was 0.41-0.83 bed volumes per hour at pH 7.4-7.7 at 30 degrees C.  相似文献   

16.
Mangiferin (MGN), a dietary C-glucosylxanthone present in Mangifera indica, is known to possess a spectrum of beneficial pharmacological properties. This study demonstrates antigenotoxic potential of MGN against mercuric chloride (HgCl2)-induced genotoxicity in HepG2 cell line. Treatment of HepG2 cells with various concentrations of HgCl2 for 3 h caused a dose-dependent increase in micronuclei frequency and elevation in DNA strand breaks (olive tail moment and tail DNA). Pretreatment with MGN significantly (p < 0.01) inhibited HgCl2 -induced (20 μM for 30 h) DNA damage. An optimal antigenotoxic effect of MGN, both in micronuclei and comet assay, was observed at a concentration of 50 μM. Furthermore, HepG2 cells treated with various concentrations of HgCl2 resulted in a dose-dependent increase in the dichlorofluorescein fluorescence, indicating an increase in the generation of reactive oxygen species (ROS). However, MGN by itself failed to generate ROS at a concentration of 50 μM, whereas it could significantly decrease HgCl2 -induced ROS. Our study clearly demonstrates that MGN pretreatment reduced the HgCl2-induced DNA damage in HepG2 cells, thus demonstrating the genoprotective potential of MGN, which is mediated mainly by the inhibition of oxidative stress.  相似文献   

17.
Jung ES  Kim HJ  Oh DK 《Biotechnology progress》2005,21(4):1335-1340
Using immobilized recombinant Escherichia coli cells containing Geobacillus stearothermophilus l-arabinose isomerase mutant (Gali 152), we found that the galactose isomerization reaction was maximal at 70 degrees C and pH 7.0. Manganese ion enhanced galactose isomerization to tagatose. The immobilized cells were most stable at 60 degrees C and pH 7.0. The cell and substrate concentrations and dilution rate were optimal at 34 g/L, 300 g/L, and 0.05 h(-1), respectively. Under the optimum conditions, the immobilized cell reactor with Mn2+ produced an average of 59 g/L tagatose with a productivity of 2.9 g/L.h and a conversion yield of 19.5% for the first 20 days. The operational stability of immobilized cells with Mn2+ was demonstrated, and their half-life for tagatose production was 34 days. Tagatose production was compared for free and immobilized enzymes and free and immobilized cells using the same mass of cells. Immobilized cells produced the highest tagatose concentration, indicating that cell immobilization was more efficient for tagatose production than enzyme immobilization.  相似文献   

18.
As a means of integrating cell growth and immobilization, recombinant Saccharomyces cerevisiae cells with invertase activity were immobilized in liquid-core alginate capsules and cultured to a high density. S. cerevisiae cells of SEY 2102 (MAT alpha ura3-52 leu2-3, 112 his4-519) harboring plasmid pRB58 with the SUC2 gene coding for invertase were grown to 83 g/L of liquid-core volume inside the capsule on a dry weight basis. The cloned invertase was expressed well in the immobilized cells with slightly higher activity than the free cells in a batch culture. Invertase in the immobilized cells showed slightly more improved thermal stability than in the free cells. Storage in a Na-acetate buffer at 4 degrees C and 10 degrees C for 1 month resulted in 7% and 8% loss in activity, respectively. The sucrose hydrolysis reaction was stably maintained for 25 repeated batches for 7 days at 30 degrees C. Continuous hydrolysis of 0.3 M sucrose was carried out in a packed bed reactor with a conversion of more than 90% at a maximum productivity of 55.5 g glucose/L per hour for 7 days. In a continuous stirred tank reactor, the maximum productivity of 80.8 g glucose/L per hour was achieved at a conversion of 59.1% using 1.0 M sucrose solution, and 0.5 M sucrose solution was hydrolyzed for 1 week with a 95% conversion at a productivity of 48.8 g/L per hour. (c) 1996 John Wiley & Sons, Inc.  相似文献   

19.
Kluyveromyces marxianus UCD (FST) 55-82 cells were immobilized in Na alginate beads and used in a packed-bed bioreactor system for the continuous production of ethanol from the extract of Jerusalem artichoke tubers. Volumetric ethanol productivities of 104 and 80 g ethanol/ L/h were obtained at 80 and 92% sugar utilization, respectively. The maximum volumetric ethanol productivity of the immobilized cell bioreactor system was found to be 15 times higher than that of an ordinary-stirred-tank (CST) bioreactor using cells of K. marxianus. The immobilized cell bioreactor system was operated continuously at a constant dilution rate of 0.66 h(-1) for 12 days resulting in only an 8% loss of the original immobilized cell activity, which corresponds to an estimated half-life of ca. 72 days. The maximum specific ethanol productivity and maximum specific sugar uptake rate of the immobilized cells were found to be 0.55 g ethanol/g/biomass/h and 1.21 g sugars/g biomass/h, respectively.  相似文献   

20.
A selective and sensitive high-performance liquid chromatography method has been developed and validated for determination of mitiglinide (MGN) in rat plasma using 2-(4-biphenylyl) propionic acid (BPA) as internal standard. Liquid-liquid extraction was used for sample preparation. Chromatographic separation was achieved on a C(18) column using acetonitrile and 0.02 mol/l KH(2)PO(4) buffer (pH 4.0) (45:55, v/v) as mobile phase delivered at 1.0 ml/min. The UV detector was set at 210 nm. The assay was linear over the range 0.1-20 microg/ml for MGN. The average extraction recoveries of MGN and BPA from rat plasma were 98.6 and 97.4%, respectively. The developed method has been applied to the pharmacokinetic study of MGN in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号