首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Half-sib family structure of Fagus crenata saplings was examined in an old-growth beech-dwarf bamboo (Sasa spp.) forest using microsatellite genotypes in parentage analysis to identify the half-sib families in two 50 x 50 m plots: one with 36 adults, 641 saplings and no Sasa cover, the other with 21 adults, 61 saplings and Sasa cover. For large proportions of the saplings (44.6% and 75.4%, respectively) both of their parents were found within the same plot, indicating that pollination events frequently involved short-range pollen dispersal, probably because of the high density of adults in the study population. Although almost all of the adults had half-sib families, the number of offspring in the families was highly variable. In the plot with no Sasa cover, the variation in the number of offspring was significantly explained by the size of parents, i.e. the reproductive success is higher for large adults than for small adults. The half-sibs were aggregately distributed around their parents and the distribution overlapped among different half-sib families, which may be due to the limited seed dispersal and overlapping seed shadows of this species. As expected, there was weak genetic structure in the plot. By contrast, in the plot with Sasa cover, the half-sibs were distributed sparsely with a low density, and the degree of genetic structure was very weak. The difference in the half-sib family structure and genetic structure among saplings presumably reflects the difference in density that should be affected by regeneration dynamics associated with environmental conditions.  相似文献   

2.
Pollen and seed dispersal are the two key processes in which plant genes move in space, mostly mediated by animal dispersal vectors in tropical forests. Due to the movement patterns of pollinators and seed dispersers and subsequent complex spatial patterns in the mortality of offspring, we have little knowledge of how pollinators and seed dispersers affect effective gene dispersal distances across successive recruitment stages. Using six highly polymorphic microsatellite loci and parentage analyses, we quantified pollen dispersal, seed dispersal, and effective paternal and maternal gene dispersal distances from pollen‐ and seed‐donors to offspring across four recruitment stages within a population of the monoecious tropical tree Prunus africana in western Kenya. In general, pollen‐dispersal and paternal gene dispersal distances were much longer than seed‐dispersal and maternal gene dispersal distances, with the long‐distance within‐population gene dispersal in P. africana being mostly mediated by pollinators. Seed dispersal, paternal and maternal gene dispersal distances increased significantly across recruitment stages, suggesting strong density‐ and distance‐dependent mortality near the parent trees. Pollen dispersal distances also varied significantly, but inconsistently across recruitment stages. The mean dispersal distance was initially much (23‐fold) farther for pollen than for seeds, yet the pollen‐to‐seed dispersal distance ratio diminished by an order of magnitude at later stages as maternal gene dispersal distances disproportionately increased. Our study elucidates the relative changes in the contribution of the two processes, pollen and seed dispersal, to effective gene dispersal across recruitment. Overall, complex sequential processes during recruitment contribute to the genetic make‐up of tree populations. This highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal‐mediated pollen and seed dispersal on small‐scale spatial genetic patterns of long‐lived tree species.  相似文献   

3.
Microsatellite analysis was used to examine parentage and spatial distributions of 62 adult bur oaks Quercus macrocarpa, and 100 saplings in a single stand. Using genotypes scored by PCR products at four microsatellite loci, we determined that 94 saplings matched at least one parent in the stand. Saplings often occur as dense clusters of half-sibs around the presumed maternal parent, and only four adults were seed parents to a large proportion of the saplings sampled. A stump apparently was the seed parent of the largest cluster of half-sibs, which occupied a sizeable light gap opened up by the death of their maternal tree. Approximately half of the saplings appeared to have grown from seeds that had not been removed after falling from the tree, and half from seeds that were dispersed beyond the crown of their maternal parent. Long-distance seed dispersal may be more common than has been previously reported. Extremely high levels of long-distance pollination were indicated, and pollen donors within the stand were generally distributed randomly around maternal trees. More than half of the saplings had paternal parents outside of the stand. This study demonstrates the utility of microsatellite analysis for studying mating systems, seed dispersal and seedling establishment in natural plant populations.  相似文献   

4.
Insect pollinations of tree species with high-density populations have rarely been studied. Since the density of adults can affect effective pollen dispersal, short-distance pollination, even by insects, may frequently occur in high-density populations. To test this prediction, we investigated pollination patterns in a high-density population of the insect-pollinated canopy tree species Castanopsis sieboldii by paternity analysis using genotypes at 8 microsatellite loci of 145 adult trees and 439 seeds from 11 seed parents in a 4-ha plot. We then explored their genetic effects on the population by calculating other population genetics parameters. Although C. sieboldii has high potential for long-distance dispersal of pollen (as indicated by a fat-tailed dispersal kernel), the cumulative pollination at the local scale was spatially limited and strongly dependent on the distance between parents due to the high density of adults. Genetic diversity estimates for pollen pools accepted by each seed parent converged on a maximum as the effective number of pollen parents increased. The genetic diversity of pollen pool bulked over all the seed parents from inside the plot did not differ from that of the total pollen pools. Therefore, although pollen flow from distant pollen parents may help to maintain the genetic diversity of offspring, pollen parents neighboring seed parents may be the main contributors to the genetic diversity of the offspring at the seed stage.  相似文献   

5.
Seed and pollen dispersal shape patterns of gene flow and genetic diversity in plants. Pollen is generally thought to travel longer distances than seeds, but seeds determine the ultimate location of gametes. Resolving how interactions between these two dispersal processes shape microevolutionary processes is a long‐standing research priority. We unambiguously isolated the separate and combined contributions of these two dispersal processes in seedlings of the animal‐dispersed palm Oenocarpus bataua to address two questions. First, what is the spatial extent of pollen versus seed movement in a system characterized by long‐distance seed dispersal? Second, how does seed dispersal mediate seedling genetic diversity? Despite evidence of frequent long‐distance seed dispersal, we found that pollen moves much further than seeds. Nonetheless, seed dispersal ultimately mediates genetic diversity and fine‐scale spatial genetic structure. Compared to undispersed seedlings, seedlings dispersed by vertebrates were characterized by higher female gametic and diploid seedling diversity and weaker fine‐scale spatial genetic structure for female gametes, male gametes and diploid seedlings. Interestingly, the diversity of maternal seed sources at seed deposition sites (N em) was associated with higher effective number of pollen sources (N ep), higher effective number of parents (N e) and weaker spatial genetic structure, whereas seed dispersal distance had little impact on these or other parameters we measured. These findings highlight the importance maternal seed source diversity (N em) at frugivore seed deposition sites in driving emergent patterns of fine‐scale genetic diversity and structure.  相似文献   

6.
We assessed the pollen and seed dispersal patterns, genetic diversity, inbreeding and spatial genetic structure of Himatanthus drasticus (Apocynaceae), a tree native to the Brazilian Savanna (Cerrado) that is heavily exploited for its medicinal latex. The study was conducted in the Araripe National Forest, Ceará State, Brazil. Within a one-hectare plot, samples were collected from all adult trees, adult trees located in the immediate vicinity of the plot, and seedlings. All sampled individuals were mapped and genotyped using microsatellite markers. High levels of polymorphism and significant levels of inbreeding were found, which indicates that self-fertilisation and mating among relatives occur in this population. Both the adults and seedlings had significant spatial genetic structure up to ~40 m and our results confirmed the occurrence of isolation by distance. Pollen and seeds were dispersed over short distances and immigration of pollen and seeds into the plot was estimated at 13 and 9 %, respectively. Taking into consideration the degree of inbreeding, relatedness, intrapopulation spatial genetic structure and pollen dispersal distance, we recommend collecting seeds from a large number of trees spaced at least 150 m apart to avoid collecting seeds from related individuals and an overlap of pollen pools among seed trees.  相似文献   

7.
种子与花粉的随机迁移对植物群体遗传结构分化的影响   总被引:1,自引:0,他引:1  
胡新生 《遗传学报》2000,27(4):351-360
将Wright的经典岛屿模型拓广到植物群体上,同时考虑了含有花粉和种子随机迁移的影响。并给出了3种不同遗传方式的基因(双亲遗传,父本和母本遗传)频率的期望均值和方差。理论结果证明花粉或种子的随机迁移可增加基因频率方差,其幅度取决于迁移率和迁移基因频率的方差。同绝对迁移率一样,花粉和种子的迁移率方差及迁移基因频率的方差对群体遗传结构的分化有着同样的重要。一个重要结论就是花粉或种子的随机迁移率和随机迁  相似文献   

8.
Various factors affect spatial genetic structure in plant populations, including adult density and primary and secondary seed dispersal mechanisms. We evaluated pollen and seed dispersal distances and spatial genetic structure of Carapa guianensis Aublet. (Meliaceae) in occasionally inundated and terra firme forest environments that differed in tree densities and secondary seed dispersal agents. We used parentage analysis to obtain contemporary gene flow estimates and assessed the spatial genetic structure of adults and juveniles. Despite the higher density of adults (diameter at breast height ≥ 25 cm) and spatial aggregation in occasionally inundated forest, the average pollen dispersal distance was similar in both types of forest (195 ± 106 m in terra firme and 175 ± 87 m in occasionally inundated plots). Higher seed flow rates (36.7% of juveniles were from outside the plot) and distances (155 ± 84 m) were found in terra firme compared to the occasionally inundated plot (25.4% and 114 ± 69 m). There was a weak spatial genetic structure in juveniles and in terra firme adults. These results indicate that inundation may not have had a significant role in seed dispersal in the occasionally inundated plot, probably because of the higher levels of seedling mortality.  相似文献   

9.
Savannas are highly diverse and dynamic environments that can shift to forest formations due to protection policies. Long‐distance dispersal may shape the genetic structure of these new closed forest formations. We analyzed eight microsatellite loci using a single‐time approach to understand contemporary pollen and effective seed dispersal of the tropical tree, Copaifera langsdorffii Desf. (Fabaceae), occurring in a Brazilian fire‐ and livestock‐protected savanna. We sampled all adult trees found within a 10.24 ha permanent plot, young trees within a subplot of 1.44 ha and open‐pollinated seeds. We detected a very high level of genetic diversity among the three generations in the studied plot. Parentage analysis revealed high pollen immigration rate (0.64) and a mean contemporary pollen dispersal distance of 74 m. In addition, half‐sib production was 1.8 times higher than full‐sibs in significant higher distances, indicating foraging activity preference for different trees at long distances. There was a significant and negative correlation between diameter at breast height (DBH) of the pollen donor with the number of seeds (r = ?0.640, P‐value = 0.032), suggesting that pollen donor trees with a higher DBH produce less seeds. The mean distance of realized seed dispersal (recruitment kernel) was 135 m due to the large home range dispersers (birds and mammals) in the area. The small magnitude of spatial genetic structure found in young trees may be a consequence of overlapping seed shadows and increased tree density. Our results show the positive side of closed canopy expansion, where animal activities regarding pollination and seed dispersal are extremely high.  相似文献   

10.
Since flowering often varies among years in wind-pollinated woody species, the genetic composition of pollen pools accepted by seed parents can differ between years. The interannual heterogeneity of pollen flow may be important for maintaining genetic diversity within populations because it can increase genetic variation within populations and the effective sizes of the populations. In this study we examined heterogeneity, using paternity analysis and analysis of molecular variance, in the genetic composition of pollen pools among different reproductive years for six Quercus salicina seed parents in an 11.56-ha plot in a temperate old-growth evergreen broadleaved forest. The genotypes at seven microsatellite loci were determined for 111 adult trees and 777 offspring of the six seed parents in 2-5 reproductive years. Genetic differentiation of pollen pools among different reproductive years for each seed parent was significant over all seed parents and for each of four seed parents that were analysed for more than 2 years, but not for either of the other two seed parents (analysed for 2 years). For both the pollen pools originating from inside the plot and those originating from outside it, genetic differentiation among different reproductive years for each seed parent was significant over all seed parents. However, among-year genetic differentiation in the pollen pools originating from within the plot was detected for all four of the seed parents that were analysed for more than 2 years, but for only one of the four in the pools originating from outside the plot. Genetic diversity (estimated as allelic richness and gene diversity) was higher for pollen pools over all reproductive years than for pollen pools in single years. These results indicate that the year-to-year genetic variation of pollen pools increases genetic diversity in offspring and is strongly affected by the variation in pollen parents within the plot because of their high pollination contributions. The high year-to-year variation in pollen parents within the plot and overall supports the hypothesis that the offspring produced across years represent a larger genetic neighbourhood.  相似文献   

11.
Dicorynia guianensis is a canopy tree, endemic to the tropical rain forest of French Guiana. We compared generational and spatial genetic structure for maternally and biparentally inherited markers in two cohorts (adult and seedling) in order to infer processes shaping the distribution of genetic diversity. The study was conducted on a 40 ha study plot located at Paracou near Kourou, where 172 adults trees and 375 saplings were sampled. Aggregation of trees was therefore suggested at different distances, ranging from 100 to 400 m. There was a strong link between demographic and genetic spatial structures at small distances (less than 100 m) that is likely to be the consequence of restricted seed dispersal. Genetic differentiation was more pronounced between spatial aggregates than between cohorts. Despite the spatial differentiation, the species was able to maintain high levels of diversity for maternal genomes, suggesting rapid turnover of aggregates. Spatial autocorrelation was larger for chloroplast than nuclear markers indicating a strong asymmetry between pollen and seed flow. Fixation indices indicated a lower heterozygote deficiency for the adults, maybe because of gradual elimination of selfed trees. Genetic relatedness at lower distances was higher in adult trees than in saplings, as a result of generation overlapping in the adult cohort. Overall, our results confirm earlier biological knowledge about the dispersion mechanisms of the species, and lead to an enhanced role of spatial processes in the dynamics of genetic diversity of D. guianensis.  相似文献   

12.
Summary Electrophoretic profiles of crude protein extracts from seed of F1 hybrids and reciprocal crosses among diploid, tetraploid and hexaploid wheats were compared with those of their respective parental species. The electrophoretic patterns within each of three pairs of reciprocal crosses, T.boeoticum X T.urartu, T.monococcun X T. urartu and T.dicoccum X T. araraticum, were different from one another but were identical with those of their respective maternal parents. Protein bands characteristic of the paternal parents were missing in F1 hybrid seed suggesting that the major seed proteins in wheat were presumably regulated by genotype of the maternal parent rather than by the seed genotype. However, in another three pairs of reciprocal crosses, T.boeoticum X T. durum, T.dicoccum X T.aestivum and T. zhukovskyi x T. aestivum, protein bands attributable to the paternal parents were present in the F1 hybrid seeds indicating that the seed proteins were not always exclusively regulated by the maternal genotype. The expression of paternal genomes is presumably determined by dosage and genetic affinity of the maternal and paternal genomes in the hybrid endosperm. The maternal regulation of seed protein content is probably accomplished through the maternal control over seed size. The seed protein quality may, however, depend upon the extent of expression of the paternal genome.  相似文献   

13.
In theory, conservation genetics predicts that forest fragmentation will reduce gene dispersal, but in practice, genetic and ecological processes are also dependent on other population characteristics. We used Bayesian genetic analyses to characterize parentage and propagule dispersal in Heliconia acuminata L. C. Richard (Heliconiaceae), a common Amazonian understory plant that is pollinated and dispersed by birds. We studied these processes in two continuous forest sites and three 1‐ha fragments in Brazil's Biological Dynamics of Forest Fragments Project. These sites showed variation in the density of H. acuminata. Ten microsatellite markers were used to genotype flowering adults and seedling recruits and to quantify realized pollen and seed dispersal distances, immigration of propagules from outside populations, and reproductive dominance among parents. We tested whether gene dispersal is more dependent on fragmentation or density of reproductive plants. Low plant densities were associated with elevated immigration rates and greater propagule dispersal distances. Reproductive dominance among inside‐plot parents was higher for low‐density than for high‐density populations. Elevated local flower and fruit availability is probably leading to spatially more proximal bird foraging and propagule dispersal in areas with high density of reproductive plants. Nevertheless, genetic diversity, inbreeding coefficients and fine‐scale spatial genetic structure were similar across populations, despite differences in gene dispersal. This result may indicate that the opposing processes of longer dispersal events in low‐density populations vs. higher diversity of contributing parents in high‐density populations balance the resulting genetic outcomes and prevent genetic erosion in small populations and fragments.  相似文献   

14.
We examined genetic differentiation among eight local populations of a metapopulation of Magnolia stellata using 10 nuclear and three chloroplast microsatellite (nSSR and cpSSR) markers and evaluated the influence of historical gene flow on population differentiation. The coefficient of genetic differentiation among populations for nSSR (F(ST) = 0.053) was less than half that for cpSSR (0.137). An isolation-by-distance pattern was detected for nSSRs, but not cpSSRs. These results suggest that pollen flow, as well as seed dispersal, has significantly reduced genetic differentiation among populations. We also examined patterns of contemporary pollen flow by paternity analysis of seeds from nine seed parents in one of the populations using the nSSR markers and found it to be greatly restricted by the distance between parents. Although most pollen flow occurred within the population, pollen flow from outside the population accounted for 2.5% of the total. When historical and contemporary pollen flows among populations were compared, the levels of pollen flow seem to have declined recently. We conclude that to conserve M. stellata, it is important to preserve the whole population by maintaining its metapopulation structure and the gene flow among its populations.  相似文献   

15.
Pollen and seed dispersal are key processes affecting the demographic and evolutionary dynamics of plant species and are also important considerations for the sustainable management of timber trees. Through direct and indirect genetic analyses, we studied the mating system and the extent of pollen and seed dispersal in an economically important timber species, Entandrophragma cylindricum (Meliaceae). We genotyped adult trees, seeds and saplings from a 400‐ha study plot in a natural forest from East Cameroon using eight nuclear microsatellite markers. The species is mainly outcrossed (= 0.92), but seeds from the same fruit are often pollinated by the same father (correlated paternity, rp = 0.77). An average of 4.76 effective pollen donors (Nep) per seed tree contributes to the pollination. Seed dispersal was as extensive as pollen dispersal, with a mean dispersal distance in the study plot approaching 600 m, and immigration rates from outside the plot to the central part of the plot reaching 40% for both pollen and seeds. Extensive pollen‐ and seed‐mediated gene flow is further supported by the weak, fine‐scale spatial genetic structure (Sp statistic = 0.0058), corresponding to historical gene dispersal distances (σg) reaching approximately 1,500 m. Using an original approach, we showed that the relatedness between mating individuals (Fij = 0.06) was higher than expected by chance, given the extent of pollen dispersal distances (expected Fij = 0.02 according to simulations). This remarkable pattern of assortative mating could be a phenomenon of potentially consequential evolutionary and management significance that deserves to be studied in other plant populations.  相似文献   

16.
Spatial genetic structure was analysed with five highly polymorphic microsatellite loci in a Romanian population of common ash (Fraxinus excelsior L.), a wind-pollinated and wind-dispersed tree species occurring in mixed deciduous forests over almost all of Europe. Contributions of seed and pollen dispersal to total gene flow were investigated by analysing the pattern of decrease in kinship coefficients among pairs of individuals with geographical distance and comparing it with simulation results. Plots of kinship against the logarithm of distance were decomposed into a slope and a shape component. Simulations showed that the slope is informative about the global level of gene flow, in agreement with theoretical expectations, whereas the shape component was correlated with the relative importance of seed vs. pollen dispersal. Hence, our results indicate that insights into the relative contributions of seed and pollen dispersal to overall gene flow can be gained from details of the pattern of spatial genetic structure at biparentally inherited loci. In common ash, the slope provided an estimate of total gene dispersal in terms of Wright's neighbourhood size of Nb = 519 individuals. No precise estimate of seed vs. pollen flow could be obtained from the shape because of the stochasticity inherent to the data, but the parameter combinations that best fitted the data indicated restricted seed flow, sigmas pound 14 m, and moderate pollen flow, 70 m pound sigmap pound 140 m.  相似文献   

17.
Sato T  Isagi Y  Sakio H  Osumi K  Goto S 《Heredity》2006,96(1):79-84
Few studies have analyzed pollen and seed movements at local scale, and genetic differentiation among populations covering the geographic distribution range of a species. We carried out such a study on Cercidiphyllum japonicum; a dioecious broad-leaved tree of cool-temperate riparian forest in Japan. We made direct measurement of pollen and seed movements in a site, genetic structure at the local scale, and genetic differentiation between populations covering the Japanese Archipelago. Parentage analysis of seedlings within a 20-ha study site indicated that at least 28.8% of seedlings were fertilized by pollen from trees outside the study site. The average pollination distance within the study site was 129 m, with a maximum of 666 m. The genotypes of 30% of seedlings were incompatible with those of the nearest female tree, and the maximum seed dispersal distance within the study site was over 300 m. Thus, long-distance gene dispersal is common in this species. The correlation between genetic relatedness and spatial distance among adult trees within the population was not significant, indicating an absence of fine-scale genetic structure perhaps caused by high levels of pollen flow and overlapping seed shadows. Six populations sampled throughout the distribution of C. japonicum in Japan showed significant isolation-by-distance but low levels of genetic differentiation (F(ST) = 0.043), also indicating long-distance gene flow in C. japonicum. Long-distance gene flow had a strong influence on the genetic structure at different spatial scales, and contributes to the maintenance of genetic diversity in C. japonicum.  相似文献   

18.
The possibility that sexual selection operates in angiosperms to effect evolutionary change in polygenic traits affecting male reproductive success requires that there is additive genetic variance for these traits. I applied a half-sib breeding design to individuals of the annual, hermaphroditic angiosperm, wild radish (Raphanus raphanistrum: Brassicaceae), to estimate paternal genetic effects on, or, when possible, the narrow-sense heritability of several quantitative traits influencing male reproductive success. In spite of significant differences among pollen donors with respect to in vitro pollen tube growth rates, I detected no significant additive genetic variance in male performance with respect to the proportion of ovules fertilized, early ovule growth, the number of seeds per fruit, or mean individual seed weight per fruit. In all cases, differences among maternal plants in these traits far exceeded differences among pollen donors. Abortion rates of pollinated flowers and fertilized ovules also differed more among individuals as maternal plants than as pollen donors, suggesting strong maternal control over these processes. Significant maternal phenotypic effects in the absence of paternal genetic or phenotypic effects on reproductive traits may be due to maternal environmental effects, to non-nuclear or non-additive maternal genetic effects, or to additive genetic variance in maternal control over offspring development, independent of offspring genotype. While I could not distinguish among these alternatives, it is clear that, in wild radish, the opportunity for natural or sexual selection to effect change in seed weight or seed number per fruit appears to be greater through differences in female performance than through differences in male performance.  相似文献   

19.
Prevailing directions of seed and pollen dispersal may induce anisotropy of the fine‐scale spatial genetic structure (FSGS), particularly in wind‐dispersed and wind‐pollinated species. To examine the separate effects of directional seed and pollen dispersal on FSGS, we conducted a population genetics study for a dioecious, wind‐pollinated, and wind‐dispersed tree species, Cercidiphyllum japonicum Sieb. et Zucc, based on genotypes at five microsatellite loci of 281 adults of a population distributed over a ca. 80 ha along a stream and 755 current‐year seedlings. A neighborhood model approach with exponential‐power‐von Mises functions indicated shorter seed dispersal (mean = 69.1 m) and much longer pollen dispersal (mean = 870.6 m), effects of dispersal directions on the frequencies of seed and pollen dispersal, and the directions with most frequent seed and pollen dispersal (prevailing directions). Furthermore, the distance of effective seed dispersal within the population was estimated to depend on the dispersal direction and be longest at the direction near the prevailing direction. Therefore, patterns of seed and pollen dispersal may be affected by effective wind directions during the period of respective dispersals. Isotropic FSGS and spatial sibling structure analyses indicated a significant FSGS among the seedlings generated by the limited seed dispersal, but anisotropic analysis for the seedlings indicated that the strength of the FSGS varied with directions between individuals and was weakest at a direction near the directions of the most frequent and longest seed dispersal but far from the prevailing direction of pollen dispersal. These results suggest that frequent and long‐distance seed dispersal around the prevailing direction weakens the FSGS around the prevailing direction. Therefore, spatially limited but directional seed dispersal would determine the existence and direction of FSGS among the seedlings.  相似文献   

20.
Despite recurrent episodes of range expansion and contraction, forest trees often harbour high genetic diversity. Studies of temperate forest trees suggest that prolonged juvenile phase and high pollen flow are the main factors limiting founder effects. Here, we studied the local colonization process of a pioneer rainforest tree in central Africa, Aucoumea klaineana. We identified 87% of parents among trees up to 20-25 years old and could thus compare direct parentage structure data with classical population genetics estimators. In this species, genetic diversity was maintained during colonization. The absence of founder effects was explained by (i) local random mating and (ii) local recruitment, as we showed that 75% of the trees in the close neighbourhood participated in the recruitment of new saplings. Long-distance pollen flow contributed little to genetic diversity: pollen and seed dispersal was mainly within stand (128 and 118 m, respectively). Spatial genetic structure was explained by aggregated seed dispersal rather than by mother-offspring proximity as assumed in classical isolation-by-distance models. Hence, A. klaineana presents a genetic diversity pattern typical of forest trees but does not follow the classical rules by which this diversity is generally achieved. We suggest that while high local genetic variability is of general importance to forest tree survival, the proximate mechanisms by which it is achieved may follow very different scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号