共查询到20条相似文献,搜索用时 15 毫秒
1.
Site-specific foraging can enhance the ability of generalist predators to provide effective and sustainable levels of pest
control in agroecosystems. This can result from increased growth rates, higher population densities, and improved capture
frequencies of pests at high prey density microsites. We tested the hypothesis that linyphiid spiders would exhibit microhabitat-specific
web-site selection strategies in alfalfa. This was predicted to result in high prey densities at web-sites compared to paired
non-web-sites through direct, or indirect, selection of prey-rich habitats. A total of 22,242 potential prey items were collected
from mini-sticky traps located at 896 microsites. Web-centered mini-sticky traps on the ground, representative of Erigone autumnalis Emerton (Araneae: Linyphiidae) webs, captured similar numbers of potential prey as paired non-web-centered traps nearby.
However, aerial sticky traps at web-sites of Bathyphantes pallidus (Banks) (Araneae: Linyphiidae) contained significantly more Diptera and Empoasca fabae (Harris) (Homoptera: Cicadellidae) than paired non-web-centered sticky-traps. Prey activity-densities also varied between
web-sites of E. autumnalis and B. pallidus. Diptera were dominant at aerial microsites of B. pallidus whilst Collembola were abundant on ground-based traps of E. autumnalis. These results suggest that in alfalfa, the pressure for selecting prey-rich web-sites by erigonine spiders is low, but B. pallidus exhibits a selective web-location strategy targeted towards high quality dipteran prey. These sites also captured large numbers
of E. fabae, a major pest of alfalfa, thus implicating aerial-based linyphiines as valuable predators in biological control. 相似文献
2.
3.
Abstract 1. Arthropods living in annual crops suffer mortality caused by agricultural practices. Therefore, migration from surrounding habitats is crucial to maintain populations of natural enemies of insect pests in crops. In desert agroecosystems there is a pronounced contrast between managed and unmanaged habitats, where irrigated and fertilised crops are islands of productivity in an arid matrix. This contrast could either enhance or inhibit movement of natural enemies between the landscape components. 2. The importance of the surrounding arid habitats as a source for spiders in crops was examined in the Negev desert of Israel. Spiders were sampled in both arid natural habitat and adjacent wheat fields using pitfall traps and visual searching. In addition, spiders in wheat fields were sampled throughout the winter cropping season using emergence traps at increasing distances from the field edge. Stationary and movable emergence traps were used to distinguish between residents and migrant species. 3. The spider assemblage in the wheat was dominated by three families: Linyphiidae, Theridiidae, and Gnaphosidae. Spider sampling in both natural arid habitat and adjacent wheat fields enabled four functional groups to be recognised that differed in habitat preference, movement patterns, and population dynamics. Thirty‐three per cent of collected individuals were classified as crop residents whereas more than 50% were classified as migrants from the surrounding habitats. These findings suggest that the surrounding habitats influence spider assemblage composition in the fields, in spite of the marked contrast in habitat structure and productivity. 4. Spider assemblages in the wheat fields were dominated by migrant species arriving from the surrounding arid habitats. Migrant spiders inhabited the crop throughout the cropping season. The combined contribution of resident and migrant functional groups may act to prevent insect pest outbreaks in this desert agroecosystem. 相似文献
4.
5.
6.
Eggsac development rates and phenology of agrobiont linyphiid spiders in relation to temperature 总被引:1,自引:0,他引:1
P. Thorbek K.D. Sunderland & C.J. Topping 《Entomologia Experimentalis et Applicata》2003,109(2):89-100
Spider densities are often low after winter in annual crops, and crop management decimates spider populations several times per year. Population recovery rates and phenology depend on reproductive and development rates, which in turn are driven largely by temperature. We aimed to quantify the relationships between eggsac development rates and temperature in order to understand the relative value of different linyphiid species for the biological control of agricultural pests. Female adults of nine linyphiid species were collected from winter wheat in the UK over 3 years; Bathyphantes gracilis (Blackwall), Erigone atra (Blackwall), Erigone dentipalpis (Wider), Erigone promiscua O.P.‐Cambridge), Tenuiphantes tenuis (Blackwall) [formerly Lepthyphantes tenuis (Blackwall)], Meioneta rurestris (C.L. Koch), Oedothorax apicatus (Blackwall), Oedothorax fuscus (Blackwall), and Oedothorax retusus (Westring). These are agrobiont species that are dominant in agroecosystems. We tested how well development in the field can be predicted on the basis of laboratory experiments. We also built a simple phenology simulation model to test whether spider phenology in the field can be predicted by a general knowledge of the relationship between temperature and development rate. The relationships between temperature and development rates of eggsacs were not linear as described by a day‐degree model, but exponential as described by a biophysical model. Duration of the eggsac development period in the field was predicted accurately from laboratory experiments. We only found minor differences between development thresholds of eggsacs at constant temperatures compared with fluctuating temperatures. The phenology model predicted the phenology of L. tenuis and E. atra well, but the number of generations predicted for O. fuscus was not realised in the field. This suggests that development of this species may be affected by factors other than temperature. The methods used here could also be applied to other natural enemies, to determine whether their thermal biology is conducive to a role as biocontrol agents in disturbed agricultural systems. 相似文献
7.
Cynthia Maria De Lyra Neves Carlos Alfredo Lopes De Carvalho Cerilene Santiago Machado Fernanda Silva Das Mercês Sousa 《Grana》2013,52(4):302-308
Pollen analysis of the larval food supply is an important tool for identifying the plants that provide the floral resources used by bees. The present study documents the pollen sources consumed by larvae of the solitary bee Tetrapedia diversipes in a tropical agroecosystem. A total of 60 pollen types were recorded with three families being the most important. Euphorbiaceae (60.5%), Malpighiaceae (16.8%) and Asteraceae (12.2%) pollen had the greatest representation in the samples examined. The pollen of Dalechampia dioscoreifolia predominated in the diet of the larvae of T. diversipes (RF?=?56.35%) and indicates the importance of this plant in maintaining populations of this solitary bee. 相似文献
8.
Recent research has demonstrated that the topography of defensive reactions depends on factors that are extraneous to the stimulus that elicits the defensive response. For example, hermit crabs will withdraw more slowly to the approach of a simulated visual predator (i.e., the eliciting stimulus) when in the presence of a coincident acoustic stimulus. Multiple properties related to the magnitude (e.g., duration, amplitude) of the acoustic stimulus have been found to modulate the crabs' withdrawal response (Chan et al., 2010b). We demonstrate that the proximity in spatial location between a threatening visual stimulus and a potentially distracting extraneous auditory stimulus is an important determinant of anti-predator behavior in hermit crabs. We suggest that a distal relationship between the eliciting stimulus and an unrelated signal may produce greater distraction. This marks the first reported experimental evidence of this relationship in an invertebrate species. 相似文献
9.
Spiders are important generalist predators in natural pest control. However, agricultural fields are highly disturbed and ephemeral habitats, which present a number of challenges to the organisms living there; likewise landscape diversity and heterogeneity are also thought to be important factors in determining spider spatial dynamics. To investigate the interactions between these factors, we present an individual-based simulation model, which integrates life history characteristics of a typical agrobiont linyphiid spider with a dynamic spatially explicit landscape representation. The landscape contains several habitat types of varying quality and varies in time and space. Simulations showed that spatial landscape diversity (number of habitat types available for the spiders) is crucial for the persistence of spiders, but that spatial heterogeneity (spatial arrangement of patches) only had little impact on spider abundance. The necessary landscape diversity could either be provided by a diverse crop rotation or by including refuges in the form of less frequently managed habitats in the landscape. The presence of refuges greatly boosted numbers of spiders in the landscape as a whole. The most important characteristics of refuge were sanctuary from pesticides and extra prey availability, whereas tillage frequency mattered less. The simulations indicated that agrobiont linyphiids combination of high dispersal abilities and high reproductive rate enables it to exploit the transient resources of the different habitats in the agricultural landscape. 相似文献
10.
Fagan WF Siemann E Mitter C Denno RF Huberty AF Woods HA Elser JJ 《The American naturalist》2002,160(6):784-802
Disparities in nutrient content (nitrogen and phosphorus) between herbivores and their plant resources have lately proven to have major consequences for herbivore success, consumer-driven nutrient cycling, and the fate of primary production in ecosystems. Here we extend these findings by examining patterns of nutrient content between animals at higher trophic levels, specifically between insect herbivores and predators. Using a recently compiled database on insect nutrient content, we found that predators exhibit on average 15% greater nitrogen content than herbivores. This difference persists after accounting for variation from phylogeny and allometry. Among herbivorous insects, we also found evidence that recently derived lineages (e.g., herbivorous Diptera and Lepidoptera) have, on a relative basis, 15%-25% less body nitrogen than more ancient herbivore lineages (e.g., herbivorous Orthoptera and Hemiptera). We elaborate several testable hypotheses for the origin of differences in nitrogen content between trophic levels and among phylogenetic lineages. For example, interspecific variation in insect nitrogen content may be directly traceable to differences in dietary nitrogen (including dilution by gut contents), selected for directly in response to the differential scarcity of dietary nitrogen, or an indirect consequence of adaptation to different feeding habits. From some functional perspectives, the magnitude rather than the source of the interspecific differences in nitrogen content may be most critical. We conclude by discussing the implications of the observed patterns for both the trophic complexity of food webs and the evolutionary radiation of herbivorous insects. 相似文献
11.
Modeling denitrification in a tile-drained, corn and soybean agroecosystem of Illinois, USA 总被引:2,自引:0,他引:2
Mark B. David Stephen J. Del Grosso Xuetao Hu Elizabeth P. Marshall Gregory F. McIsaac William J. Parton Christina Tonitto Mohamed A. Youssef 《Biogeochemistry》2009,93(1-2):7-30
Denitrification is known as an important pathway for nitrate loss in agroecosystems. It is important to estimate denitrification fluxes to close field and watershed N mass balances, determine greenhouse gas emissions (N2O), and help constrain estimates of other major N fluxes (e.g., nitrate leaching, mineralization, nitrification). We compared predicted denitrification estimates for a typical corn and soybean agroecosystem on a tile drained Mollisol from five models (DAYCENT, SWAT, EPIC, DRAINMOD-N II and two versions of DNDC, 82a and 82h), after first calibrating each model to crop yields, water flux, and nitrate leaching. Known annual crop yields and daily flux values (water, nitrate-N) for 1993–2006 were provided, along with daily environmental variables (air temperature, precipitation) and soil characteristics. Measured denitrification fluxes were not available. Model output for 1997–2006 was then compared for a range of annual, monthly and daily fluxes. Each model was able to estimate corn and soybean yields accurately, and most did well in estimating riverine water and nitrate-N fluxes (1997–2006 mean measured nitrate-N loss 28 kg N ha?1 year?1, model range 21–28 kg N ha?1 year?1). Monthly patterns in observed riverine nitrate-N flux were generally reflected in model output (r 2 values ranged from 0.51 to 0.76). Nitrogen fluxes that did not have corresponding measurements were quite variable across the models, including 10-year average denitrification estimates, ranging from 3.8 to 21 kg N ha?1 year?1 and substantial variability in simulated soybean N2 fixation, N harvest, and the change in soil organic N pools. DNDC82a and DAYCENT gave comparatively low estimates of total denitrification flux (3.8 and 5.6 kg N ha?1 year?1, respectively) with similar patterns controlled primarily by moisture. DNDC82h predicted similar fluxes until 2003, when estimates were abruptly much greater. SWAT and DRAINMOD predicted larger denitrification fluxes (about 17–18 kg N ha?1 year?1) with monthly values that were similar. EPIC denitrification was intermediate between all models (11 kg N ha?1 year?1). Predicted daily fluxes during a high precipitation year (2002) varied considerably among models regardless of whether the models had comparable annual fluxes for the years. Some models predicted large denitrification fluxes for a few days, whereas others predicted large fluxes persisting for several weeks to months. Modeled denitrification fluxes were controlled mainly by soil moisture status and nitrate available to be denitrified, and the way denitrification in each model responded to moisture status greatly determined the flux. Because denitrification is dependent on the amount of nitrate available at any given time, modeled differences in other components of the N cycle (e.g., N2 fixation, N harvest, change in soil N storage) no doubt led to differences in predicted denitrification. Model comparisons suggest our ability to accurately predict denitrification fluxes (without known values) from the dominant agroecosystem in the midwestern Illinois is quite uncertain at this time. 相似文献
12.
Pérez-de La Cruz M Sánchez-Soto S Ortíz-García CF Zapata-Mata R Cruz-Pérez Ade L 《Neotropical Entomology》2007,36(1):90-101
The aim of this work was to know the diversity of insects captured by weaver spiders in a plantation of cocoa (Theobroma cacao L.) of 6 ha in the State of Tabasco, Mexico. The study was carried out from July 2004 to June 2005 by means biweekly samples of the insects captured on the spiders webs. The total of 3,041 webs of 54 species of spiders belonging to seven families (Araneidae, Theridiidae, Tetragnathidae, Uloboridae, Pholcidae, Dyctinidae and Linyphiidae) were revised. We found 1,749 specimens belonging to 10 orders of insects, represented by 93 families, the majority of Coleoptera, Diptera and Hemiptera that constituted 74% of the identified families. The biggest number of specimens of all orders was captured by Araneidae, except of Isoptera, whose specimens were captured mainly by the family Theridiidae. The index of diversity (H'), evenness (J') and similarity (Is), applied to know the diversity of families of insects captured among families of spiders, varied from 0.00 to 3.24, 0.00 to 0.81, and 0.04 to 0.522, respectively. We conclude that there is a wide diversity of insects predated by the weaver spiders in the cocoa agroecosystem, and that there are species that can be promising for the biological control of pests. 相似文献
13.
A molecular approach, using aphid-specific monoclonal antibodies, was used to test the hypothesis that alternative prey can affect predation on aphids by linyphiid spiders. These spiders locate their webs in cereal crops within microsites where prey density is high. Previous work demonstrated that of two subfamilies of Linyphiidae, one, the Linyphiinae, is web-dependent and makes its webs at sites where they were more likely to intercept flying insects plus those (principally aphids) falling from the crop above. The other, the Erigoninae, is less web-dependent, making its webs at ground level at sites with higher densities of ground-living detritivores, especially Collembola. The guts of the spiders were analysed to detect aphid proteins using enzyme-linked immunosorbent assay (ELISA). Female spiders were consuming more aphid than males of both subfamilies and female Linyphiinae were, as predicted, eating more aphid than female Erigoninae. Rates of predation on aphids by Linyphiinae were related to aphid density and were not affected by the availability of alternative prey. However, predation by the Erigoninae on aphids was significantly affected by Collembola density. Itinerant Linyphiinae, caught away from their webs, contained the same concentration of aphid in their guts as web-owners. However, nonweb-owning Erigoninae, living away from Collembola aggregations at web-sites, contained significantly higher concentrations of aphid. For both subfamilies there was evidence of a disproportionate increase in predation on aphids once Collembola populations had declined. It was concluded that nonaphid prey, by helping to maintain spiders in the field, can significantly affect predation on aphids. 相似文献
14.
Aaron Iverson Doug Jackson Robyn Burnham Ivette Perfecto Natalia Vandenberg John Vandermeer 《BioControl》2018,63(2):253-264
Natural enemy diversity may be beneficial, through species complementarity, or detrimental, through antagonistic interactions, such as competition or intraguild predation, for the biological control of agricultural pests. We studied two coexisting myrmecophilous coccinellid beetles, Azya orbigera (Mulsant) (Coleoptera: Coccinellidae) and an undescribed species in the genus Diomus (Coleoptera: Coccinellidae), in a coffee agroecosystem in Chiapas, Mexico. As both beetles specialize on the same prey, the green coffee scale pest, Coccus viridis (Green) (Hemiptera: Coccidae), we studied the beetles’ behavior and distribution to determine if they niche partition in order to avoid extreme competition. Through field surveys and lab experiments we detected spatial segregation but not resource partitioning among A. orbigera and Diomus sp. We posit that the presence of both species can lead to improved biocontrol of C. viridis populations through species complementarity. Our work supports the growing evidence that natural enemy diversity can provide enhanced conservation biological control. 相似文献
15.
Uptake of Bt endotoxins by nontarget herbivores and higher order arthropod predators: molecular evidence from a transgenic corn agroecosystem 总被引:5,自引:0,他引:5
The planting of transgenic crops expressing Bacillus thuringiensis endotoxins is widespread throughout the world; the prolific increase in their application exposes nontarget organisms to toxins designed to control pests. To date, studies have focused upon the effects of Bt endotoxins on specific herbivores and detritivores, without consideration of their persistence within arthropod food webs. Here, we report the first quantitative field evaluation of levels of Bt endotoxin within nontarget herbivores and the uptake by higher order arthropods. Antibody-based assays indicated significant quantities of detectable Cry1Ab endotoxin within nontarget herbivores which feed on transgenic corn (including the corn flea beetle, Chaetocnema pulicaria, Japanese beetle, Popillia japonica and southern corn rootworm, Diabrotica undecimpunctata howardi). Furthermore, arthropod predators (Coccinellidae, Araneae, and Nabidae) collected from these agroecosystems also contained significant quantities of Cry1Ab endotoxin indicating its movement into higher trophic levels. This uptake by predators is likely to have occurred by direct feeding on plant material (in predators which are facultatively phytophagous) or the consumption of arthropod prey which contained these proteins. These data indicate that long-term exposure to insecticidal toxins occurs in the field. These levels of exposure should therefore be considered during future risk assessments of transgenic crops to nontarget herbivores and arthropod predators. 相似文献
16.
17.
Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem 下载免费PDF全文
Chris R. Smith Peter L. Blair Charlie Boyd Brianne Cody Alexander Hazel Ashley Hedrick Hitesh Kathuria Parul Khurana Brent Kramer Kristin Muterspaw Charles Peck Emily Sells Jessica Skinner Cara Tegeler Zoe Wolfe 《Ecology and evolution》2016,6(22):8075-8084
The acreage planted in corn and soybean crops is vast, and these crops contribute substantially to the world economy. The agricultural practices employed for farming these crops have major effects on ecosystem health at a worldwide scale. The microbial communities living in agricultural soils significantly contribute to nutrient uptake and cycling and can have both positive and negative impacts on the crops growing with them. In this study, we examined the impact of the crop planted and soil tillage on nutrient levels, microbial communities, and the biochemical pathways present in the soil. We found that farming practice, that is conventional tillage versus no‐till, had a much greater impact on nearly everything measured compared to the crop planted. No‐till fields tended to have higher nutrient levels and distinct microbial communities. Moreover, no‐till fields had more DNA sequences associated with key nitrogen cycle processes, suggesting that the microbial communities were more active in cycling nitrogen. Our results indicate that tilling of agricultural soil may magnify the degree of nutrient waste and runoff by altering nutrient cycles through changes to microbial communities. Currently, a minority of acreage is maintained without tillage despite clear benefits to soil nutrient levels, and a decrease in nutrient runoff—both of which have ecosystem‐level effects and both direct and indirect effects on humans and other organisms. 相似文献
18.
Mathias Middelboe Karin Holmfeldt Lasse Riemann Ole Nybroe Jakob Haaber 《Environmental microbiology》2009,11(8):1971-1982
Genetic, structural and physiological differences between strains of the marine bacterium Cellulophaga baltica MM#3 (Flavobacteriaceae) developing in response to the activity of two virulent bacteriophages, ΦSM and ΦST, was investigated during 3 weeks incubation in chemostat cultures. A distinct strain succession towards increased phage resistance and a diversification of the metabolic properties was observed. During the incubation the bacterial population diversified from a single strain, which was sensitive to 24 tested Cellulophaga phages, into a multistrain and multiresistant population, where the dominant strains had lost susceptibility to up to 22 of the tested phages. By the end of the experiment the cultures reached a quasi steady state dominated by ΦST‐resistant and ΦSM + ΦST‐resistant strains coexisting with small populations of phage‐sensitive strains sustaining both phages at densities of > 106 plaque forming units (pfu) ml?1. Loss of susceptibility to phage infection was associated with a reduction in the strains' ability to metabolize various carbon sources as demonstrated by BIOLOG assays. This suggested a cost of resistance in terms of reduced physiological capacity. However, there was no direct correlation between the degree of resistance and the loss of metabolic properties, suggesting either the occurrence of compensatory mutations in successful strains or that the cost of resistance in some strains was associated with properties not resolved by the BIOLOG assay. The study represents the first direct demonstration of phage‐driven generation of functional diversity within a marine bacterial host population with significant implications for both phage susceptibility and physiological properties. We propose, therefore, that phage‐mediated selection for resistant strains contributes significantly to the extensive microdiversity observed within specific bacterial species in marine environments. 相似文献
19.
20.
We examined sexual size dimorphism in 627 species from 123 genera and 32 families of northern temperate spiders from Great Britain and Ireland with different life histories, using phylogenetically independent contrasts. Web-building and non-web-building, sit-and-wait predators were compared with non-web-building, active hunting spiders. After accounting for phylogenetic effects, we find no evidence of differences in sexual size dimorphism in northern temperate spiders with differing life history/predatory strategies. We discuss the implications of our findings for the generality of the differential mortality hypothesis (Vollrath & Parker, 1992) with respect to spiders with different predatory modes from different habitats and environments. This recent theory proposed that extreme sexual dimorphism in spiders resulted from differential adult mortality as a consequence of different adult life histories. We conclude that this model cannot explain the less extreme dimorphism found in temperate spiders. 相似文献