首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
N-methyl-D-aspartic acid receptor-dependent long term potentiation (LTP), a model of memory formation, requires Ca2+·calmodulin-dependent protein kinase II (αCaMKII) activity and Thr286 autophosphorylation via both global and local Ca2+ signaling, but the mechanisms of signal transduction are not understood. We tested the hypothesis that the Ca2+-binding activator protein calmodulin (CaM) is the primary decoder of Ca2+ signals, thereby determining the output, e.g. LTP. Thus, we investigated the function of CaM mutants, deficient in Ca2+ binding at sites 1 and 2 of the N-terminal lobe or sites 3 and 4 of the C-terminal CaM lobe, in the activation of αCaMKII. Occupancy of CaM Ca2+ binding sites 1, 3, and 4 is necessary and sufficient for full activation. Moreover, the N- and C-terminal CaM lobes have distinct functions. Ca2+ binding to N lobe Ca2+ binding site 1 increases the turnover rate of the enzyme 5-fold, whereas the C lobe plays a dual role; it is required for full activity, but in addition, via Ca2+ binding site 3, it stabilizes ATP binding to αCaMKII 4-fold. Thr286 autophosphorylation is also dependent on Ca2+ binding sites on both the N and the C lobes of CaM. As the CaM C lobe sites are populated by low amplitude/low frequency (global) Ca2+ signals, but occupancy of N lobe site 1 and thus activation of αCaMKII requires high amplitude/high frequency (local) Ca2+ signals, lobe-specific sensing of Ca2+-signaling patterns by CaM is proposed to explain the requirement for both global and local Ca2+ signaling in the induction of LTP via αCaMKII.  相似文献   

3.
Protein-protein interactions are thought to modulate the efficiency and specificity of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling in specific subcellular compartments. Here we show that the F-actin-binding protein α-actinin targets CaMKIIα to F-actin in cells by binding to the CaMKII regulatory domain, mimicking CaM. The interaction with α-actinin is blocked by CaMKII autophosphorylation at Thr-306, but not by autophosphorylation at Thr-305, whereas autophosphorylation at either site blocks Ca(2+)/CaM binding. The binding of α-actinin to CaMKII is Ca(2+)-independent and activates the phosphorylation of a subset of substrates in vitro. In intact cells, α-actinin selectively stabilizes CaMKII association with GluN2B-containing glutamate receptors and enhances phosphorylation of Ser-1303 in GluN2B, but inhibits CaMKII phosphorylation of Ser-831 in glutamate receptor GluA1 subunits by competing for activation by Ca(2+)/CaM. These data show that Ca(2+)-independent binding of α-actinin to CaMKII differentially modulates the phosphorylation of physiological targets that play key roles in long-term synaptic plasticity.  相似文献   

4.
The nitric oxide synthase (NOS) enzymes are bound and activated by the Ca(2+)-binding protein, calmodulin (CaM). We have utilized CaM mutants deficient in binding Ca(2+) with mutations in the N-lobe (CaM(12)), the C-lobe (CaM(34)), or both lobes of CaM (CaM(1234)) to determine their effect on the binding and activation of the Ca(2+)-dependent neuronal (nNOS) and Ca(2+)-independent inducible NOS (iNOS) isoforms. Four different kinetic assays were employed to monitor the effect of these CaM mutants on electron transfer rates in NOS. Protein-protein interactions between CaM and NOS were studied using steady-state fluorescence and spectropolarimetry to monitor the binding of these CaM mutants to nNOS and iNOS CaM-binding domain peptides. The CaM mutants were unable to activate nNOS, however, our CD results show that the C-terminal lobe of CaM is capable of binding to nNOS peptide in the presence of Ca(2+). Our results prove for the first time without the use of chelators that apo-CaM is capable of binding to iNOS peptides and holoenzymes.  相似文献   

5.
Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a major mediator of cellular Ca(2+) signaling. Several inhibitors are commonly used to study CaMKII function, but these inhibitors all lack specificity. CaM-KIIN is a natural, specific CaMKII inhibitor protein. CN21 (derived from CaM-KIIN amino acids 43-63) showed full specificity and potency of CaMKII inhibition. CNs completely blocked Ca(2+)-stimulated and autonomous substrate phosphorylation by CaMKII and autophosphorylation at T305. However, T286 autophosphorylation (the autophosphorylation generating autonomous activity) was only mildly affected. Two mechanisms can explain this unusual differential inhibitor effect. First, CNs inhibited activity by interacting with the CaMKII T-site (and thereby also interfered with NMDA-type glutamate receptor binding to the T-site). Because of this, the CaMKII region surrounding T286 competed with CNs for T-site interaction, whereas other substrates did not. Second, the intersubunit T286 autophosphorylation requires CaM binding both to the "kinase" and the "substrate" subunit. CNs dramatically decreased CaM dissociation, thus facilitating the ability of CaM to make T286 accessible for phosphorylation. Tat-fusion made CN21 cell penetrating, as demonstrated by a strong inhibition of filopodia motility in neurons and insulin secrection from isolated Langerhans' islets. These results reveal the inhibitory mechanism of CaM-KIIN and establish a powerful new tool for dissecting CaMKII function.  相似文献   

6.
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the regulation of neuronal excitability in many systems. Recent studies suggest that local regulation of membrane potential can have important computational consequences for neuronal function. In Drosophila, CaMKII regulates the eag potassium channel, but if and how this regulation was spatially restricted was unknown. Using coimmunoprecipitation from head extracts and in vitro binding assays, we show that CaMKII and Eag form a stable complex and that association with Eag activates CaMKII independently of CaM and autophosphorylation. Ca(2+)/CaM is necessary to initiate binding of CaMKII to Eag but not to sustain association because binding persists when CaM is removed. The Eag CaMKII-binding domain has homology to the CaMKII autoregulatory region, and the constitutively active CaMKII mutant, T287D, binds Eag Ca(2+)-independently in vitro and in vivo. These results favor a model in which the CaMKII-binding domain of Eag displaces the CaMKII autoinhibitory region. Displacement results in autophosphorylation-independent activation of CaMKII which persists even when Ca(2+) levels have gone down. Activity-dependent binding to this potassium channel substrate allows CaMKII to remain locally active even when Ca(2+) levels have dropped, providing a novel mechanism by which CaMKII can regulate excitability locally over long time scales.  相似文献   

7.
The ability of CaMKII to act as a molecular switch, becoming Ca(2+) independent after activation and autophosphorylation at T287, is critical for experience-dependent plasticity. Here, we show that the Drosophila homolog of CASK, also known as Camguk, can act as a gain controller on the transition to calcium-independence in vivo. Genetic loss of dCASK significantly increases synapse-specific, activity-dependent autophosphorylation of CaMKII T287. In wild-type adult animals, simple and complex sensory stimuli cause region-specific increases in pT287. dCASK-deficient adults have a reduced dynamic range for activity-dependent T287 phosphorylation and have circuit-level defects that result in inappropriate activation of the kinase. dCASK control of the CaMKII switch occurs via its ability to induce autophosphorylation of T306 in the kinase's CaM binding domain. Phosphorylation of T306 blocks Ca(2+)/CaM binding, lowering the probability of intersubunit T287 phosphorylation, which requires CaM binding to both the substrate and catalytic subunits. dCASK is the first CaMKII-interacting protein other than CaM found to regulate this plasticity-controlling molecular switch.  相似文献   

8.
An increasing number of ion channels have been found to be regulated by the direct binding of calmodulin (CaM), but its structural features are mostly unknown. Previously, we identified the Ca(2+)-dependent and -independent interactions of CaM to the voltage-gated sodium channel via an IQ-motif sequence. In this study we used the trypsin-digested CaM fragments (TR(1)C and TR(2)C) to analyze the binding of Ca(2+)-CaM or Ca(2+)-free (apo) CaM with a sodium channel-derived IQ-motif peptide (NaIQ). Circular dichroic spectra showed that NaIQ peptide enhanced alpha-helicity of the CaM C-terminal lobe, but not that of the CaM N-terminal lobe in the absence of Ca(2+), whereas NaIQ enhanced the alpha-helicity of both the N- and C-terminal lobes in the presence of Ca(2+). Furthermore, the competitive binding experiment demonstrated that Ca(2+)-dependent CaM binding of target peptides (MLCKp or melittin) with CaM was markedly suppressed by NaIQ. The results suggest that IQ-motif sequences contribute to prevent target proteins from activation at low Ca(2+) concentrations and may explain a regulatory mechanism why highly Ca(2+)-sensitive target proteins are not activated in the cytoplasm.  相似文献   

9.
Black DJ  Persechini A 《Biochemistry》2011,50(46):10061-10068
We have investigated the roles played by the calmodulin (CaM) N- and C-lobes in establishing the conformations of CaM-IQ domain complexes in different Ca(2+)-free and Ca(2+)-bound states. Our results indicate a dominant role for the C-lobe in these complexes. When the C-lobe is Ca(2+)-free, it directs the N-lobe to a binding site within the IQ domain consensus sequence. It appears that the N-lobe must be Ca(2+)-free to interact productively with this site. When the C-lobe is Ca(2+)-bound, it directs the N-lobe to a site upstream of the consensus sequence, and it appears that the N-lobe must be Ca(2+)-bound to interact productively with this site. A model for switching in CaM-IQ domain complexes is presented in which the N-lobe adopts bound and extended positions that depend on the status of the Ca(2+)-binding sites in each CaM lobe and the compositions of the two N-lobe binding sites. Ca(2+)-dependent changes in the conformation of the bound C-lobe that appear to be responsible for directed N-lobe binding are also identified. Changes in the equilibria between extended and bound N-lobe positions may control bridging interactions in which the extended N-lobe is bound to another CaM-binding domain. Ca(2+)-dependent control of bridging interactions with CaM has been implicated in the regulation of ion channel and unconventional myosin activities.  相似文献   

10.
Okamoto H  Ichikawa K 《Bio Systems》2000,55(1-3):65-71
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) undergoes Ca(2+)/calmodulin-dependent autophosphorylation of threonine-286/287 (Thr(286/287)). Extremely high concentration of CaMKII in the postsynaptic spine indicates that increase in the Ca(2+) concentration in the spine induced by synaptic activation results in Thr(286/287) autophosphorylation of this enzyme. It has recently been shown that the K(d) value of CaMKII for Ca(2+)/calmodulin (Ca(2+)/CaM) drastically decreases after Thr(286/287) autophosphorylation. Therefore, Ca(2+)/CaM associated with CaMKII becomes tightly bound to this kinase after Thr(286/287) autophosphorylation. This has been called 'Ca(2+)/CaM trapping'. We discussed the functional significance of Ca(2+)/CaM trapping in the neuronal system by a mathematical-modelling approach. We considered neighbouring synapses formed on the same dendrite and different increase in the Ca(2+) concentration in each spine. CaMKII undergoing Thr(286/287) autophosphorylation in each spine is eager to recruit nearby calmodulin in the dendrite for Ca(2+)/CaM trapping. Since the amount of calmodulin is limited, recruiting calmodulin to each spine causes competition among synapses for this finite resource. The results of our computer simulation show that this competition leads to 'winner-take-all': almost all calmodulin is taken by a few synapses to which relatively large increases in the Ca(2+) concentration are assigned. These results suggest a novel form of synaptic encoding of information.  相似文献   

11.
Calmodulin (CaM) is a ubiquitous Ca (2+)-sensor protein that binds and activates the nitric oxide synthase (NOS) enzymes. We have used fluorescence resonance energy transfer (FRET) to examine the conformational transitions of CaM induced by its binding to synthetic nitric oxide synthase (NOS) CaM-binding domain peptides and full length heme-free constitutive NOS (cNOS) enzymes over a range of physiologically relevant free Ca (2+) concentrations. We demonstrate for the first time that the domains of CaM collapse when associated with Ca (2+)-independent inducible NOS CaM-binding domain, similar to the previously solved crystal structures of CaM bound to the Ca (2+)-dependent cNOS peptides. We show that the association of CaM is not detectable with the cNOS peptides at low free Ca (2+) concentrations (<40 nM). In contrast, we demonstrate that CaM associates with the cNOS holo-enzymes in the absence of Ca (2+) and that the Ca (2+)-dependent transition occurs at a lower free Ca (2+) concentration with the cNOS holo-enzymes. Our results suggest that other regions outside of the CaM-binding domain in the cNOS enzymes are involved in the recruitment and binding of CaM. We also demonstrate that CaM binds to the cNOS enzymes in a sequential manner with the Ca (2+)-replete C-lobe binding first followed by the Ca (2+)-replete N-lobe. This novel FRET study helps to clarify some of the observed similarities and differences between the Ca (2+)-dependent/independent interaction between CaM and the NOS isozymes.  相似文献   

12.
Ca(2+) oscillations are required in various signal trans duction pathways, and contain information both in their amplitude and frequency. Remarkably, the Ca(2+)/calmodulin(CaM)-dependent protein kinase II (CaMKII) can decode such frequencies. A Ca(2+)/CaM-stimulated autophosphorylation leads to Ca(2+)/CaM-independent (autonomous) activity of the kinase that outlasts the initial stimulation. This autonomous activity increases exponentially with the frequency of Ca(2+) oscillations. Here we show that three beta-CaMKII splice variants (beta(M), beta and beta(e)') have very similar specific activity and maximal autonomy. However, their autonomy generated by Ca(2+) oscillations differs significantly. A mechanistic basis was found in alterations of the CaM activation constant and of the initial rate of autophosphorylation. Structurally, the splice variants differ only in a variable 'linker' region between the kinase and association domains. Therefore, we propose that differences in relative positioning of kinase domains within multimeric holoenzymes are responsible for the observed effects. Notably, the beta-CaMKII splice variants are differentially expressed, even among individual hippocampal neurons. Taken together, our results suggest that alternative splicing provides cells with a mechanism to modulate their sensitivity to Ca(2+) oscillations.  相似文献   

13.
The cardiac L-type voltage-dependent calcium channel is responsible for initiating excitation-contraction coupling. Three sequences (amino acids 1609-1628, 1627-1652, and 1665-1685, designated A, C, and IQ, respectively) of its alpha(1) subunit contribute to calmodulin (CaM) binding and Ca(2+)-dependent inactivation. Peptides matching the A, C, and IQ sequences all bind Ca(2+)CaM. Longer peptides representing A plus C (A-C) or C plus IQ (C-IQ) bind only a single molecule of Ca(2+)CaM. Apocalmodulin (ApoCaM) binds with low affinity to the IQ peptide and with higher affinity to the C-IQ peptide. Binding to the IQ and C peptides increases the Ca(2+) affinity of the C-lobe of CaM, but only the IQ peptide alters the Ca(2+) affinity of the N-lobe. Conversion of the isoleucine and glutamine residues of the IQ motif to alanines in the channel destroys inactivation (Zühlke et al., 2000). The double mutation in the peptide reduces the interaction with apoCaM. A mutant CaM unable to bind Ca(2+) at sites 3 and 4 (which abolishes the ability of CaM to inactivate the channel) binds to the IQ, but not to the C or A peptide. Our data are consistent with a model in which apoCaM binding to the region around the IQ motif is necessary for the rapid binding of Ca(2+) to the C-lobe of CaM. Upon Ca(2+) binding, this lobe is likely to engage the A-C region.  相似文献   

14.
The regulation of Ca(V)2.1 (P/Q-type) channels by calmodulin (CaM) showcases the powerful Ca(2+) decoding capabilities of CaM in complex with the family of Ca(V)1-2 Ca(2+) channels. Throughout this family, CaM does not simply exert a binary on/off regulatory effect; rather, Ca(2+) binding to either the C- or N-terminal lobe of CaM alone can selectively trigger a distinct form of channel modulation. Additionally, Ca(2+) binding to the C-terminal lobe triggers regulation that appears preferentially responsive to local Ca(2+) influx through the channel to which CaM is attached (local Ca(2+) preference), whereas Ca(2+) binding to the N-terminal lobe triggers modulation that favors activation via Ca(2+) entry through channels at a distance (global Ca(2+) preference). Ca(V)2.1 channels fully exemplify these features; Ca(2+) binding to the C-terminal lobe induces Ca(2+)-dependent facilitation of opening (CDF), whereas the N-terminal lobe yields Ca(2+)-dependent inactivation of opening (CDI). In mitigation of these interesting indications, support for this local/global Ca(2+) selectivity has been based upon indirect inferences from macroscopic recordings of numerous channels. Nagging uncertainty has also remained as to whether CDF represents a relief of basal inhibition of channel open probability (P(o)) in the presence of external Ca(2+), or an actual enhancement of P(o) over a normal baseline seen with Ba(2+) as the charge carrier. To address these issues, we undertake the first extensive single-channel analysis of Ca(V)2.1 channels with Ca(2+) as charge carrier. A key outcome is that CDF persists at this level, while CDI is entirely lacking. This result directly upholds the local/global Ca(2+) preference of the lobes of CaM, because only a local (but not global) Ca(2+) signal is here present. Furthermore, direct single-channel determinations of P(o) and kinetic simulations demonstrate that CDF represents a genuine enhancement of open probability, without appreciable change of activation kinetics. This enhanced-opening mechanism suggests that the CDF evoked during action-potential trains would produce not only larger, but longer-lasting Ca(2+) responses, an outcome with potential ramifications for short-term synaptic plasticity.  相似文献   

15.
The interaction of calmodulin with its target proteins is known to affect the kinetics and affinity of Ca(2+) binding to calmodulin. Based on thermodynamic principles, proteins that bind to Ca(2+)-calmodulin should increase the affinity of calmodulin for Ca(2+), while proteins that bind to apo-calmodulin should decrease its affinity for Ca(2+). We quantified the effects on Ca(2+)-calmodulin interaction of two neuronal calmodulin targets: RC3, which binds both Ca(2+)- and apo-calmodulin, and alphaCaM kinase II, which binds selectively to Ca(2+)-calmodulin. RC3 was found to decrease the affinity of calmodulin for Ca(2+), whereas CaM kinase II increases the calmodulin affinity for Ca(2+). Specifically, RC3 increases the rate of Ca(2+) dissociation from the C-terminal sites of calmodulin up to 60-fold while having little effect on the rate of Ca(2+) association. Conversely, CaM kinase II decreases the rates of dissociation of Ca(2+) from both lobes of calmodulin and autophosphorylation of CaM kinase II at Thr(286) induces a further decrease in the rates of Ca(2+) dissociation. RC3 dampens the effects of CaM kinase II on Ca(2+) dissociation by increasing the rate of dissociation from the C-terminal lobe of calmodulin when in the presence of CaM kinase II. This effect is not seen with phosphorylated CaM kinase II. The results are interpreted according to a kinetic scheme in which there are competing pathways for dissociation of the Ca(2+)-calmodulin target complex. This work indicates that the Ca(2+) binding properties of calmodulin are highly regulated and reveals a role for RC3 in accelerating the dissociation of Ca(2+)-calmodulin target complexes at the end of a Ca(2+) signal.  相似文献   

16.
The intracellular calcium ion is one of the most important secondary messengers in eukaryotic cells. Ca(2+) signals are translated into physiological responses by EF-hand calcium-binding proteins such as calmodulin (CaM). Multiple CaM isoforms occur in plant cells, whereas only a single CaM protein is found in animals. Soybean CaM isoform 1 (sCaM1) shares 90% amino acid sequence identity with animal CaM (aCaM), whereas sCaM4 is only 78% identical. These two sCaM isoforms have distinct target-enzyme activation properties and physiological functions. sCaM4 is highly expressed during the self-defense reaction of the plant and activates the enzyme nitric-oxide synthase (NOS), whereas sCaM1 is incapable of activating NOS. The mechanism of selective target activation by plant CaM isoforms is poorly understood. We have determined high resolution NMR solution structures of Ca(2+)-sCaM1 and -sCaM4. These were compared with previously determined Ca(2+)-aCaM structures. For the N-lobe of the protein, the solution structures of Ca(2+)-sCaM1, -sCaM4, and -aCaM all closely resemble each other. However, despite the high sequence identity with aCaM, the C-lobe of Ca(2+)-sCaM1 has a more open conformation and consequently a larger hydrophobic target-protein binding pocket than Ca(2+)-aCaM or -sCaM4, the presence of which was further confirmed through biophysical measurements. The single Val-144 --> Met substitution in the C-lobe of Ca(2+)-sCaM1, which restores its ability to activate NOS, alters the structure of the C-lobe to a more closed conformation resembling Ca(2+)-aCaM and -sCaM4. The relationships between the structural differences in the two Ca(2+)-sCaM isoforms and their selective target activation properties are discussed.  相似文献   

17.
Calmodulin (CaM) is a major Ca2+ messenger which, upon Ca2+ activation, binds and activates a number of target enzymes involved in crucial cellular processes. The dependence on Ca2+ ion concentration suggests that CaM activation may be modulated by low-affinity Ca2+ chelators. The effect on CaM structure and function of citrate ion, a Ca2+ chelator commonly found in the cytosol and the mitochondria, was therefore investigated. A series of structural and biochemical methods, including tryptic mapping, immunological recognition by specific monoclonal antibodies, CIDNP-NMR, binding to specific ligands and association with radiolabeled citrate, showed that citrate induces conformational modifications in CaM which affect the shape and activity of the protein. These changes were shown to be associated with the C-terminal lobe of the molecule and involve actual binding of citrate to CaM. Analyzing X-ray structures of several citrate-binding proteins by computerized molecular graphics enabled us to identify a putative citrate-binding site (CBS) on the CaM molecule around residues Arg106-His107. Owing to the tight proximity of this site to the third Ca(2+)-binding loop of CaM, binding of citrate is presumably translated into changes in Ca2+ binding to site III (and indirectly to site IV). These changes apparently affect the structural and biochemical properties of the conformation-sensitive protein.  相似文献   

18.
Calcium-dependent protein kinases (CDPKs) are structurally unique Ser/Thr kinases found in plants and certain protozoa. They are distinguished by a calmodulin-like regulatory apparatus (calmodulin-like domain (CaM-LD)) that is joined via a junction (J) region to the C-terminal end of the kinase catalytic domain. Like CaM, the CaM-LD is composed of two globular EF structural domains (N-lobe, C-lobe), each containing a pair of Ca(2+) binding sites. Spectroscopic analysis shows that the CaM-LD is comprised of helical elements, but the isolated CaM-LD does not form a conformationally homogeneous tertiary structure in the absence of Ca(2+). The addition of substoichiometric amounts of Ca(2+) is sufficient to stabilize the C-terminal lobe in a construct containing J and CaM-LD (JC) but not in the CaM-LD alone. Moreover, as J is titrated into Ca(2+)-saturated CaM-LD, interactions are stronger with the C-lobe than the N-lobe of the CaM-LD. Measurements of Ca(2+) affinity for JC reveal two cooperatively interacting high affinity binding sites (K(d)(,mean) = 5.6 nm at 20 mm KCl) in the C-lobe and two weaker sites in the N-lobe (K(d,mean) = 110 nm at 20 mm KCl). The corresponding Ca(2+) binding constants in the isolated CaM-LD are lower by more than 2 orders of magnitude, which indicates that the J region has an essential role in stabilizing the structure of the CDPK regulatory apparatus. The large differential affinity between the two domains together with previous studies on a plasmodium CDPK (Zhao, Y., Pokutta, S., Maurer, P., Lindt, M., Franklin, R. M., and Kappes, B. (1994) Biochemistry 33, 3714-3721) suggests a model whereby even at normally low cytosolic levels of Ca(2+), the C-lobe interacts with the junction, but the kinase remains in an autoinhibited state. Activation then occurs when Ca(2+) levels rise to fill the two weaker affinity binding sites in the N-lobe, thereby triggering a conformational change that leads to release of the autoinhibitory region.  相似文献   

19.
Calmodulin (CaM) is a Ca2+ signal transducing protein that binds and activates many cellular enzymes with physiological relevance, including the mammalian nitric oxide synthase (NOS) isozymes: endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS). The mechanism of CaM binding and activation to the iNOS enzyme is poorly understood in part due to the strength of the bound complex and the difficulty of assessing the role played by regions outside of the CaM-binding domain. To further elucidate these processes, we have developed the methodology to investigate CaM binding to the iNOS holoenzyme and generate CaM mutant proteins selectively labeled with fluorescent dyes at specific residues in the N-terminal lobe, C-terminal lobe, or linker region of the protein. In the present study, an iNOS CaM coexpression system allowed for the investigation of CaM binding to the holoenzyme; three different mutant CaM proteins with cysteine substitutions at residues T34 (N-domain), K75 (central linker), and T110 (C-domain) were fluorescently labeled with acrylodan or Alexa Fluor 546 C5-maleimide. These proteins were used to investigate the differential association of each region of CaM with the three NOS isoforms. We have also N-terminally labeled an iNOS CaM-binding domain peptide with dabsyl chloride in order to perform FRET studies between Alexa-labeled residues in the N- and C-terminal domains of CaM to determine CaM's orientation when associated to iNOS. Our FRET results show that CaM binds to the iNOS CaM-binding domain in an antiparallel orientation. Our steady-state fluorescence and circular dichroism studies show that both the N- and C-terminal EF hand pairs of CaM bind to the CaM-binding domain peptide of iNOS in a Ca2+-independent manner; however, only the C-terminal domain showed large Ca2+-dependent conformational changes when associated with the target sequence. Steady-state fluorescence showed that Alexa-labeled CaM proteins are capable of binding to holo-iNOS coexpressed with nCaM, but this complex is a transient species and can be displaced with the addition of excess CaM. Our results show that CaM does not bind to iNOS in a sequential manner as previously proposed for the nNOS enzyme. This investigation provides additional insight into why iNOS remains active even under basal levels of Ca2+ in the cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号