首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The presence of acellular hemoglobin (Hb) within the circulation is generally viewed as a pathological state that can result in toxic consequences. Haptoglobin (Hp), a globular protein found in the plasma, binds with high avidity the αβ dimers derived from the dissociation of Hb tetramer and thus helps clear free Hb. More recently there have been compelling indications that the redox properties of the Hp bound dimer (Hb-Hp) may play a more active role in controlling toxicity by limiting the potential tissue damage caused by propagation of the free-radicals generated within the heme containing globin chains. The present study further examines the potential protective effect of Hp through its impact on the production of nitric oxide (NO) from nitrite through nitrite reductase activity of the Hp bound αβ Hb dimer. The presented results show that the Hb dimer in the Hb-Hp complex has oxygen binding, CO recombination and spectroscopic properties consistent with an Hb species having properties similar to but not exactly the same as the R quaternary state of the Hb tetramer. Consistent with these observations is the finding that the initial nitrite reductase rate for Hb-Hp is approximately ten times that of HbA under the same conditions. These results in conjunction with the earlier redox properties of the Hb-Hp are discussed in terms of limiting the pathophysiological consequences of acellular Hb in the circulation.  相似文献   

2.
Nitrite reacts with deoxyhemoglobin to form nitric oxide (NO) and methemoglobin. Though this reaction is experimentally associated with NO generation and vasodilation, kinetic analysis suggests that NO should not be able to escape inactivation in the erythrocyte. We have discovered that products of the nitrite-hemoglobin reaction generate dinitrogen trioxide (N2O3) via a novel reaction of NO and nitrite-bound methemoglobin. The oxygen-bound form of nitrite-methemoglobin shows a degree of ferrous nitrogen dioxide (Fe(II)-NO2*) character, so it may rapidly react with NO to form N2O3. N2O3 partitions in lipid, homolyzes to NO and readily nitrosates thiols, all of which are common pathways for NO escape from the erythrocyte. These results reveal a fundamental heme globin- and nitrite-catalyzed chemical reaction pathway to N2O3, NO and S-nitrosothiol that could form the basis of in vivo nitrite-dependent signaling. Because the reaction redox-cycles (that is, regenerates ferrous heme) and the nitrite-methemoglobin intermediate is not observable by electron paramagnetic resonance spectroscopy, this reaction has been 'invisible' to experimentalists over the last 100 years.  相似文献   

3.
4.
The F(ab')2 fragment of murine monoclonal antibody A7 was covalently bonded to polyethylene glycol (PEG, molecular weight: 5000) and the conjugate was compared to the parent F(ab')2 fragment by in vitro and in vivo studies. PEG-conjugated antibody fragment retained its antigen-binding activity in a competitive radioimmunoassay. The conjugate had a longer half-life and showed increased accumulation in tumors. Although the tumor: blood ratio for parent F(ab')2 fragment was higher than that for the conjugate, it showed higher value than whole MAb A7. The tissue: blood ratios were kept low with the conjugate, indicating that the conjugate was uptaken to normal organ with lesser extent, as compared with parent F(ab')2 fragment. Our findings indicate that this PEG-conjugated F(ab')2 fragment could be a promising carrier for use in targeting cancer chemotherapy.  相似文献   

5.
Cells of Rhizobium loti strains T1 and U226 cultured in defined medium with glutamate as the only nitrogen source and bacteroids isolated from root nodules of Lotus corniculatus, L. pedunculatus and L. tenuis did not show constitutive (non-nitrate induced) nitrate reductase activity (NRA). In contrast, nitrite reductase activity (NiRA) was present in both free-living cells and bacteroids of either strain T1 or U226. Constitutive NRA and NiRA were detected in the cytosol fraction from nodules of all three symbioses examined. An induced NRA was expressed in bacteroids after a 10 h incubation in the presence of nitrate.  相似文献   

6.
7.
Banding patterns of nitrate reductase (NR), nitrite reductase (NiR), and glutamine synthetase (GS) from leaves of diploid barley (Hordeum vulgare), tetraploid wheat (Triticum durum), hexaploid wheat (Triticum aestivum), and tetraploid wild oats (Avena barbata) were compared following starch gel electrophoresis. Two NR isozymes, which appeared to be under different regulatory control, were observed in each of the three species. The activity of the more slowly migrating nitrate reductase isozyme (NR1) was induced by NO3- in green seedlings and cycloheximide inhibited induction. However, the activity of the faster NR isozyme (NR2) was unaffected by addition of KNO3, and it was not affected by treatments of cycloheximide or chloramphenicol. Only a single isozyme of nitrite reductase was detected in surveys of three tetraploid and 18 hexaploid wheat, and 48 barley accessions; however, three isozymes associated with different ecotypes were detected in the wild oats. Inheritance patterns showed that two of the wild oat isozymes were governed by a single Mendelian locus with two codominant alleles; however, no variation was detected for the third isozyme. Treatment of excised barely and wild oat seedlings with cycloheximide and chloramphenicol showed that induction of NiR activity was greatly inhibited by cycloheximide, but only slightly by chloramphenicol. Only a single GS isozyme was detected in extracts of green leaves of wheat, barley, and wild oat seedlings. No electrophoretic variation was observed within or among any of these three species. Thus, this enzyme appears to be the most structurally conserved of the three enzymes.  相似文献   

8.
Abstract A chromate resistant mutant of Enterobacter aerogenes manifested its chromate resistance only under aerobic conditions. Both parent and mutant showed substantial levels of anaerobic chromate reductase activity when grown on glycerol plus fumarate. The chromate reductase was further induced by growth in the presence of nitrite but was repressed by nitrate. The chromate reductase activity paralleled that of the formate-linked nitrite reductase. There was no significant difference in chromate reductase levels between the parent and its chromate resistant mutant, indicating that this enzyme activity is not, in fact responsible for chromate resistance as was suggested previously by others.  相似文献   

9.
Nitrate reductase (NR) activity and nitrite reductase (NiR) mRNA levels were monitored in Black Mexican Sweet maize (Zea mays L.) suspension cultures after the addition of nitrate. Maximal induction occurred with 20 millimolar nitrate and within 2 hours. Both NR and NiR mRNA were transiently induced with levels decreasing after the 2 hours despite the continued presence of nitrate in the medium. Neither ammonia nor chlorate prevented the induction of NR. Furthermore, removal of nitrate, followed by its readdition 22 to 48 hours later, did not result in reinduction of activity or message. NR was synthesized de novo, since cycloheximide completely blocked its induction. Cycloheximide had no effect on the induction of NiR mRNA or on the transient nature of its induction. These results are similar to those reported previously for maize seedlings.  相似文献   

10.
Upon cardiolipin (CL) liposomes binding, horse heart cytochrome c (cytc) changes its tertiary structure disrupting the heme-Fe-Met80 distal bond, reduces drastically the midpoint potential, binds CO and NO with high affinity, displays peroxidase activity, and facilitates peroxynitrite isomerization. Here, the effect of CL liposomes on the nitrite reductase activity of ferrous cytc (cytc-Fe(II)) is reported. In the absence of CL liposomes, hexa-coordinated cytc-Fe(II) displays a very low value of the apparent second-order rate constant for the NO2 ?-mediated conversion of cytc-Fe(II) to cytc-Fe(II)-NO (k on = (7.3 ± 0.7) × 10?2 M?1 s?1; at pH 7.4 and 20.0 °C). However, CL liposomes facilitate the NO2 ?-mediated nitrosylation of cytc-Fe(II) in a dose-dependent manner inducing the penta-coordination of the heme-Fe(II) atom. The value of k on for the NO2 ?-mediated conversion of CL-cytc-Fe(II) to CL-cytc-Fe(II)-NO is 2.6 ± 0.3 M?1 s?1 (at pH 7.4 and 20.0 °C). Values of the apparent dissociation equilibrium constant for CL liposomes binding to cytc-Fe(II) are (2.2 ± 0.2) × 10?6 M, (1.8 ± 0.2) × 10?6 M, and (1.4 ± 0.2) × 10?6 M at pH 6.5, 7.4, and 8.1, respectively, and 20.0 °C. These results suggest that the NO2 ?-mediated conversion of CL-cytc-Fe(II) to CL-cytc-Fe(II)-NO could play anti-apoptotic effects impairing lipid peroxidation and therefore the initiation of the cell death program by the release of pro-apoptotic factors (including cytc) in the cytoplasm.  相似文献   

11.
The ratio between the nitrite reductase and cytochrome oxidase activities of Pseudomonas aeruginosa nitrite reductase [EC 1.9.3.2.] varies with kind of C-type cytochrome used as the electron donor. Withe cytochrome c-548, 554 (Micrococcus sp.), the nitrite reductase activity is greater than the cytochrome oxidase activity, while the former is smaller than the latter with cytochrome c-554 (Navicula pelliculosa). The aerobic oxidation catalyzed by this enzyme of denitrifying bacterial ferrocytochrome c is greatly accelerated on addition of nitrite, while that of the algal ferrocytochrome c is not affected or is even depressed by the salt. An accelerative effect of nitrite is generally observed with many kinds of C-type cytochromes which react with the enzyme very or fairly rapidly. The difference in the ratio of the two activities of the enzyme seems to arise according to whether or not nitrite affects the interaction of C-type cytochrome with the enzyme.  相似文献   

12.
13.
A tobacco nitrite reductase (NiR) cDNA and its corresponding gene were isolated from cDNA and genomic libraries. An NiR antisense mRNA was expressed in transgenic tobacco under the control of a double 35S promoter. Transformants were obtained on a medium containing ammonium as the sole source of nitrogen. One plant growing normally on ammonium but displaying drastically reduced development and chlorotic leaves when grown on nitrate as the sole source of nitrogen was studied further. This plant accumulated nitrite fivefold over wild-type level and showed reduced amounts of ammonium (11% wild-type level), glutamine (19%), and total protein (8%). NiR mRNA and activity were below detectable levels. Under these conditions, nitrate reductase (NR) activity and mRNA were overexpressed, suggesting that N-metabolites resulting from nitrate reduction are responsible for the repression of the expression of the NR gene, independently from the presence or absence of a functional NR protein.  相似文献   

14.
Different types of active inhibitors of the reaction of nitrite hemoglobin oxidation have been revealed and studied. The dependence of inhibition of methemoglobin formation, on concentration of inhibitors at pH 5.9 and 7.17 has been determined. Differential absorption spectra of the inhibitors in the presence sodium nitrite in UV and visual light has been studied. The values of oxidation-reduction potentials have been estimated. Possible mechanism of action of the inhibitors has been discussed.  相似文献   

15.
Hypoxic vasodilation involves detection of the oxygen content of blood by a sensor, which rapidly transduces this signal into vasodilatory bioactivity. Current perspectives on the molecular mechanism of this function hold that hemoglobin (Hb) operates as both oxygen sensor and a condition-responsive NO reactor that regulates the dispensing of bioactivity through release of the NO group from the beta-cys93 S-nitroso derivative of Hb, SNO-Hb. A common path to the formation of SNO-Hb involves oxidative transfer of the NO-group from heme to thiol. We have previously reported that the reaction of nitrite with deoxy-Hb, which furnishes heme-Fe(II)NO, represents one attractive route for the formation of SNO-Hb. Recent literature, however, posits that the nitrite-reductase reaction of Hb might produce physiological vasodilatory effects through NO that evades trapping on heme-Fe(II) and may be stored before release as Fe(III)NO. In this article, we briefly review current perspectives in NO biology on the nitrite-reductase reaction of Hb. We report in vitro spectroscopic (UV/Vis, EPR) studies that are difficult to reconcile with suggestions that this reaction either generates a heme-Fe(III)NO reservoir or significantly liberates NO. We further show in bioassay experiments that combinations of nitrite and deoxy-Hb--under conditions that suppress SNO-Hb formation--exhibit no direct vasodilatory activity. These results help underscore the differences between physiological, RBC-regulated, hypoxic vasodilation versus pharmacological effects of exogenous nitrite.  相似文献   

16.
The chemical modification of hemoglobin was conducted with the help of bifunctional crosslinking agent--glutaraldehyde. By SDS-polyacrylamide gel electrophoresis and gel-filtration it was shown that the final product contained 70% of modified protein which consisted of non-dissociating hemoglobin dimers and tetramers. It was also shown that the chemical modification didn't produce significant changes in the oxygen-transporting properties of the starting hemoglobin, but had influence on the character of the interaction with the allosteric regulator of reversible oxygenation (pyridoxal-5'-phosphate). The half-disappearance period in animals of the intramolecularly crosslinked hemoglobin was two times longer in comparison with the native protein.  相似文献   

17.
Properties of carboxymethylated cross-linked hemoglobin A   总被引:2,自引:0,他引:2  
The selective carboxymethylation of the N-terminal amino groups of hemoglobin A with glyoxylic acid and sodium cyanoborohydride has been studied as a function of the state of ligation of hemoglobin. The N-terminal residues have been established as the primary sites of reaction by peptide mapping of the tryptic digest of each chain and subsequent amino acid analysis of the modified peptides. With oxyhemoglobin, the desired derivatives with a carboxymethyl group at the N-terminal of either or both chains amounted to 55% [Di Donato, A., Fantl, W. J., Acharya, A. S., & Manning, J. M. (1983) J. Biol. Chem. 258, 11890-11895]. In the present study it is shown that with deoxyhemoglobin the amount of the desired derivative is increased to 75%. The oxygen equilibrium curve of hemoglobin A carboxymethylated on its four N-terminal residues [0.5 mM as tetramer in 50 mM [bis(2-hydroxyethyl)amino]tris(hydroxymethyl)methane (Bis-Tris), pH 7.5, 37 degrees C] had a P50 value of 30 mmHg (Hill coefficient n = 2.8, alkaline Bohr value = 0.4) compared to a P50 of 9 mmHg for unmodified hemoglobin under the same conditions (n = 2.5, alkaline Bohr value = 0.5). In carboxymethylated oxyhemoglobin A, cross-linked with the mild agent glycolaldehyde for 3.5 h, there was 85% of Mr 64,000 species and 15% of Mr 128,000 or higher species. For the former, the extent of cross-linking between two subunits was 19%. For the latter, there was 29% of two cross-linked subunits and 13% of three cross-linked subunits. Termination of cross-linking, which may be desirable in some circumstances, can be successfully achieved with isonicotinic acid hydrazide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The reduction of ferric iron from microbial iron-binding compounds (siderophores) releases the iron from the siderophore so that it may be utilized by the microorganism. A method to detect aerobic ferrisiderophore reductase activity using ferrozine as a ferrous iron trap is shown to be applicable to cytoplasmic fractions from Rhodopseudomonas sphaeroides and four other different species of bacteria. The ferrisiderophore reductase uses reduced nicotinamide cofactors as reducing agents, and activity is stimulated by flavins. This assay has been adapted as a staining method to locate ferrisiderophore reductase activity in native polyacrylamide gels.  相似文献   

19.
The intermolecular electron transfer from Achromobacter cycloclastes pseudoazurin (AcPAZ) to wild-type and mutant Alcaligenes xylosoxidans nitrite reductases (AxNIRs) was investigated using steady-state kinetics and electrochemical methods. The affinity and the electron transfer reaction constant (k(ET)) are considerably lower between AcPAZ and AxNIR (K(m) = 1.34 mM and k(ET) = 0.87 x 10(5) M(-1) s(-1)) than between AcPAZ and its cognate nitrite reductase (AcNIR) (K(m) = 20 microM and k(ET) = 7.3 x 10(5) M(-1) s(-1)). A negatively charged hydrophobic patch, comprising seven acidic residues around the type 1 copper site in AcNIR, is the site of protein-protein interaction with a positively charged hydrophobic patch on AcPAZ. In AxNIR, four of the negatively charged residues (Glu-112, Glu-133, Glu-195, and Asp-199) are conserved at the corresponding positions of AcNIR, whereas the other three residues are not acidic amino acids but neutral amino acids (Ala-83, Ala-191, and Gly-198). Seven mutant AxNIRs with additional negatively charged residues surrounding the hydrophobic patch of AxNIR (A83D, A191E, G198E, A83D/A191E, A93D/G198E, A191E/G198E, and A83D/A191E/G198E) were prepared to enhance the specificity of the electron transport reaction between AcPAZ and AxNIR. The k(ET) values of these mutants become progressively larger as the number of mutated residues increases. The K(m) and k(ET) values of A83D/A191E/G198E (K(m) = 88 microM and k(ET) = 4.1 x 10(5) M(-1) s(-1)) are 15-fold smaller and 4.7-fold larger than those of wild-type AxNIR, respectively. These results suggest that the introduction of negatively charged residues into the docking surface of AxNIR facilitates both the formation of electron transport complex and the electron transfer reaction.  相似文献   

20.
Panesar NS  Chan KW 《Steroids》2006,71(11-12):984-992
Nitric oxide (NO) supposedly derived via L-arginine-NO synthase (NOS) pathway has been implicated in inhibiting steroidogenesis by binding the heme moiety of steroidogenic enzymes. Previously, nitrite, and to a lesser extent nitrate ions inhibited steroidogenesis via NO by hitherto unknown reduction mechanism. Recently, a putative mammalian nitrite reductase activity ascribed to complex III of mitochondrial respiratory chain complexes (MRCC) has been reported, where MRCC inhibitors reduced NO production from nitrite variably. We thus studied the effects of MRCC inhibitors on testosterone production in mouse Leydig tumor cells (MLTC-1) without (basal) or with human chorionic gonadotropin (hCG) stimulation. In stimulated MLTC-1, MRCC inhibitors decreased testosterone production, order being: complex III (antimycin A and myxothiazol) > complex I (rotenone) > complex II (thenoyltrifluoroacetone), while cAMP production increased inversely. In unstimulated MLTC-1, MRCC inhibitors in same order, increased basal testosterone production, which correlated inversely with the percentage inhibition of NO production, with one exception; while antimycin A did not inhibit NO production in the nitrite reductase study mentioned above, it increased basal testosterone production in the present study. While MLTC-1 expressed mRNA for endothelial and neuronal, but not inducible NOS, various stimulators and inhibitors of L-arginine-NOS pathway had no effect on basal testosterone production in MLTC-1 or fresh Balb/c Leydig cells. Moreover, hCG increased nitrate uptake into MLTC-1, which suggests the gonadotropin aids nitrite and nitrate ions in their steroidogenesis inhibitory activity. In conclusion, this study supports the existence of a surrogate mammalian nitrite reductase and the dormancy of L-arginine-NOS pathway in MLTC-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号