首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heart proteostasis relies on a complex and integrated network of molecular processes surveilling organ performance under physiological and pathological conditions. For this purpose, cardiac cells depend on the correct function of their proteolytic systems, such as the ubiquitin-proteasome system (UPS), autophagy and the calpain system. Recently, the role of protein SUMOylation (an ubiquitin-like modification), has emerged as important modulator of cardiac proteostasis, which will be the focus of this review.  相似文献   

2.
脂肪细胞对胰岛β细胞功能的内分泌调节作用   总被引:2,自引:0,他引:2  
Zhao YF  Chen C 《生理学报》2007,59(3):247-252
脂肪因子包括脂肪细胞分泌的多种活性因子,它们通过内分泌方式调节胰岛β细胞的胰岛素分泌、基因表达以及细胞凋亡等多方面的功能。本文提出脂肪因子影响胰岛β细胞功能主要通过三条相互联系的途径而实现。第一是调节β细胞内葡萄糖和脂肪的代谢;第二是影响β细胞离子通道的活性;第三是改变β细胞本身的胰岛素敏感性。脂肪细胞的内分泌功能是一个动态过程,在不同的代谢状态下,各脂肪因子的分泌发生不同变化。从正常代谢状态发展到肥胖以及2型糖尿病的过程中,脂肪因子参与了胰岛β细胞功能障碍的发生与发展。  相似文献   

3.
Neuronatin (Nnat) was initially identified as a selectively-expressed gene in neonatal brains, but its expression has been also identified in pancreatic beta-cells. Therefore, to investigate the possible functions that Nnat may serve in pancreatic beta-cells, two Nnat isotypes (alpha and beta) were expressed using adenoviruses in murine MIN6N8 pancreatic beta-cells, and the cellular fates and the effects of Nnat on insulin secretion, high glucose-induced apoptosis, and functional impairment were examined. Nnatalpha and Nnatbeta were primarily localized in the endoplasmic reticulum (ER), and their expressions increased insulin secretion by increasing intracellular calcium levels. However, under chronic high glucose conditions, the Nnatbeta to Nnatalpha ratio gradually increased in proportion to the length of exposure to high glucose levels. Moreover, adenovirally-expressed Nnatbeta was inclined to form aggresome-like structures, and we found that Nnatbeta aggregation inhibited the function of the proteasome. Therefore, when glucose is elevated, the expression of Nnatbeta sensitizes MIN6N8 cells to high glucose stress, which in turn, causes ER stress. As a result, expression of Nnatbeta increased hyperglycemia-induced apoptosis. In addition, the expression of Nnatbeta under high glucose conditions decreased the expression of genes important for beta-cell function, such as glucokinase (GCK), pancreas duodenum homeobox-1 (PDX-1), and insulin. Collectively, Nnat may play a critical factor in normal beta-cell function, as well as in the pathogenesis of type 2 diabetes.  相似文献   

4.
Insulin secretion from pancreatic beta-cells occurs by sequential cellular processes, including glucose metabolism, electrical activity, Ca2+ entry, and regulated exocytosis. Abnormalities in any of these functions can impair insulin secretion. In the present study, we demonstrate that inhibition of proteasome activity severely reduces insulin secretion in the mouse pancreatic beta-cell line MIN6-m9. Although no significant effects on glucose metabolism including ATP production were found in the presence of proteasome inhibitors, both glucose- and KCl-induced Ca2+ entry were drastically reduced. As Ca2+-ionophore-induced insulin secretion was unaffected by proteasome inhibition, a defect in Ca2+ entry through voltage-dependent calcium channels (VDCCs) is the likely cause of the impaired insulin secretion. We found that the pore-forming alpha-subunit of VDCCs undergoes ubiquitination, which does not decrease but slightly increases expression of the alpha-subunit protein at the plasma membrane. However, electrophysiological analysis revealed that treatment with proteasome inhibitors results in a severe reduction in VDCC activity in MIN6-m9 cells, indicating that VDCC function is suppressed by proteasome inhibition. Furthermore, insulin secretion in isolated mouse pancreatic islets was also decreased by proteasome inhibition. These results demonstrate that the ubiquitin-proteasome system plays a critical role in insulin secretion by maintaining normal function of VDCCs.  相似文献   

5.
ATP-sensitive potassium (K(ATP)) channels of pancreatic beta-cells mediate glucose-induced insulin secretion by linking glucose metabolism to membrane excitability. The number of plasma membrane K(ATP) channels determines the sensitivity of beta-cells to glucose stimulation. The K(ATP) channel is formed in the endoplasmic reticulum (ER) on coassembly of four inwardly rectifying potassium channel Kir6.2 subunits and four sulfonylurea receptor 1 (SUR1) subunits. Little is known about the cellular events that govern the channel's biogenesis efficiency and expression. Recent studies have implicated the ubiquitin-proteasome pathway in modulating surface expression of several ion channels. In this work, we investigated whether the ubiquitin-proteasome pathway plays a role in the biogenesis efficiency and surface expression of K(ATP) channels. We provide evidence that, when expressed in COS cells, both Kir6.2 and SUR1 undergo ER-associated degradation via the ubiquitin-proteasome system. Moreover, treatment of cells with proteasome inhibitors MG132 or lactacystin leads to increased surface expression of K(ATP) channels by increasing the efficiency of channel biogenesis. Importantly, inhibition of proteasome function in a pancreatic beta-cell line, INS-1, that express endogenous K(ATP) channels also results in increased channel number at the cell surface, as assessed by surface biotinylation and whole cell patch-clamp recordings. Our results support a role of the ubiquitin-proteasome pathway in the biogenesis efficiency and surface expression of beta-cell K(ATP) channels.  相似文献   

6.
Mouse models of insulin resistance   总被引:1,自引:0,他引:1  
The hallmarks of type 2 diabetes are impaired insulin action in peripheral tissues and decreased pancreatic beta-cell function. Classically, the two defects have been viewed as separate entities, with insulin resistance arising primarily from impaired insulin-dependent glucose uptake in skeletal muscle, and beta-cell dysfunction arising from impaired coupling of glucose sensing to insulin secretion. Targeted mutagenesis and transgenesis involving components of the insulin action pathway have changed our understanding of these phenomena. It appears that the role of insulin signaling in the pathogenesis of type 2 diabetes has been overestimated in classic insulin target tissues, such as skeletal muscle, whereas it has been overlooked in liver, pancreatic beta-cells, and brain, which had been thought not to be primary insulin targets. We review recent progress and try to reconcile areas of apparent controversy surrounding insulin signaling in skeletal muscle and pancreatic beta-cells.  相似文献   

7.
The homeostatic control of beta-cell mass in normal and pathological conditions is based on the balance of proliferation, differentiation, and death of the insulin-secreting cells. A considerable body of evidence, accumulated during the last decade, has emphasized the significance of the disregulation of the mechanisms regulating the apoptosis of beta-cells in the sequence of events that lead to the development of diabetes. The identification of agents capable of interfering with this process needs to be based on a better understanding of the beta-cell specific pathways that are activated during apoptosis. The aim of this article is fivefold: (1) a review of the evidence for beta-cell apoptosis in Type I diabetes, Type II diabetes, and islet transplantation, (2) to review the common stimuli and their mechanisms in pancreatic beta-cell apoptosis, (3) to review the role of caspases and their activation pathway in beta-cell apoptosis, (4) to review the caspase cascade and morphological cellular changes in apoptotic beta-cells, and (5) to highlight the putative strategies for preventing pancreatic beta-cells from apoptosis.  相似文献   

8.
Type 1 diabetes is characterized by the selective destruction of pancreatic beta-cells caused by an autoimmune attack. Type 2 diabetes is a more complex pathology which, in addition to beta-cell loss caused by apoptotic programs, includes beta-cell dedifferentiation and peripheric insulin resistance. beta-Cells are responsible for insulin production, storage and secretion in accordance to the demanding concentrations of glucose and fatty acids. The absence of insulin results in death and therefore diabetic patients require daily injections of the hormone for survival. However, they cannot avoid the appearance of secondary complications affecting the peripheral nerves as well as the eyes, kidneys and cardiovascular system. These afflictions are caused by the fact that external insulin injection does not mimic the tight control that pancreatic-derived insulin secretion exerts on the body's glycemia. Restoration of damaged beta-cells by transplantation from exogenous sources or by endocrine pancreas regeneration would be ideal therapeutic options. In this context, stem cells of both embryonic and adult origin (including beta-cell/islet progenitors) offer some interesting alternatives, taking into account the recent data indicating that these cells could be the building blocks from which insulin secreting cells could be generated in vitro under appropriate culture conditions. Although in many cases insulin-producing cells derived from stem cells have been shown to reverse experimentally induced diabetes in animal models, several concerns need to be solved before finding a definite medical application. These refer mainly to the obtainment of a cell population as similar as possible to pancreatic beta-cells, and to the problems related with the immune compatibility and tumor formation. This review will summarize the different approaches that have been used to obtain insulin-producing cells from embryonic and adult stem cells, and the main problems that hamper the clinical applications of this technology.  相似文献   

9.
Diabetes is caused by impaired insulin secretion in pancreatic beta-cells and peripheral insulin resistance. Overload of pancreatic beta-cells leads to beta-cell exhaustion and finally to the development of diabetes. Reduced beta-cell mass is evident in type 2 diabetes, and apoptosis is implicated in this process. One characteristic feature of beta-cells is highly developed endoplasmic reticulum (ER) due to a heavy engagement in insulin secretion. The ER serves several important functions, including post-translational modification, folding, and assembly of newly synthesized secretory proteins, and its proper function is essential to cell survival. Various conditions can interfere with ER function and these conditions are called ER stress. Recently, we found that nitric oxide (NO)-induced apoptosis in beta-cells is mediated by the ER-stress pathway. NO causes ER stress and leads to apoptosis through induction of ER stress-associated apoptosis factor CHOP. The Akita mouse with a missense mutation (Cys96Tyr) in the insulin 2 gene has hyperglycemia and a reduced beta-cell mass. This mutation disrupts a disulfide bond between A and B chains of insulin and may induce its conformational change. In the development of diabetes in Akita mice, mRNAs for an ER chaperone Bip and CHOP were induced in the pancreas. Overexpression of the mutant insulin in mouse MIN6 beta-cells induced CHOP expression and led to apoptosis. Targeted disruption of the CHOP gene did not delay the onset of diabetes in the homozygous Akita mice, but it protected islet cells from apoptosis and delayed the onset of diabetes in the heterozygous Akita mice. We conclude that ER overload in beta-cells causes ER stress and leads to apoptosis via CHOP induction. These results highlight the importance of chronic ER stress in beta-cell apoptosis in type 2 diabetes, and suggest a new target to the management of the disease.  相似文献   

10.
11.
Endocrine cells are continually regulating the balance between hormone biosynthesis, secretion, and intracellular degradation to ensure that cellular hormone stores are maintained at optimal levels. In pancreatic beta-cells, intracellular insulin stores in beta-granules are mostly upheld by efficiently up-regulating proinsulin biosynthesis at the translational level to rapidly replenish the insulin lost via exocytosis. Under normal circumstances, intracellular degradation of insulin plays a relatively minor janitorial role in retiring aged beta-granules, apparently via crinophagy. However, this mechanism alone is not sufficient to maintain optimal insulin storage in beta-cells when insulin secretion is dysfunctional. Here, we show that despite an abnormal imbalance of glucose/glucagon-like peptide 1 regulated insulin production over secretion in Rab3A(-/-) mice compared with control animals, insulin storage levels were maintained due to increased intracellular beta-granule degradation. Electron microscopy analysis indicated that this was mediated by a significant 12-fold up-regulation of multigranular degradation vacuoles in Rab3A(-/-) mouse islet beta-cells (P 相似文献   

12.
13.
Failure of pancreatic beta-cells is the common characteristic of type 1 and type 2 diabetes. Type 1 diabetes mellitus is induced by destruction of pancreatic beta-cells which is mediated by an autoimmune mechanism and consequent inflammatory process. Various inflammatory cytokines and oxidative stress are produced during this process, which has been proposed to play an important role in mediating beta-cell destruction. The JNK pathway is also activated by such cytokines and oxidative stress, and is involved in beta-cell destruction. Type 2 diabetes is the most prevalent and serious metabolic disease, and beta-cell dysfunction and insulin resistance are the hallmark of type 2 diabetes. Under diabetic conditions, chronic hyperglycemia gradually deteriorates beta-cell function and aggravates insulin resistance. This process is called "glucose toxicity". Under such conditions, oxidative stress is provoked and the JNK pathway is activated, which is likely involved in pancreatic beta-cells dysfunction and insulin resistance. In addition, oxidative stress and activation of the JNK pathway are also involved in the progression of atherosclerosis which is often observed under diabetic conditions. Taken together, it is likely that oxidative stress and subsequent activation of the JNK pathway are involved in the pathogenesis of type 1 and type 2 diabetes.  相似文献   

14.
A lysophospholipid series, such as lysophosphatidic acid, lysophosphatidylserine, and lysophosphatidylcholine (LPC), is a bioactive lipid mediator with diverse physiological and pathological functions. LPC has been reported to induce insulin secretion from pancreatic beta-cells, however, the precise mechanism has remained elusive to date. Here we show that an orphan G-protein-coupled receptor GPR119 plays a pivotal role in this event. LPC potently enhances insulin secretion in response to high concentrations of glucose in the perfused rat pancreas via stimulation of adenylate cyclase, and dose-dependently induces intracellular cAMP accumulation and insulin secretion in a mouse pancreatic beta-cell line, NIT-1 cells. The Gs-protein-coupled receptor for LPC was identified as GPR119, which is predominantly expressed in the pancreas. GPR119-specific siRNA significantly blocked LPC-induced insulin secretion from NIT-1 cells. Our findings suggest that GPR119, which is a novel endogenous receptor for LPC, is involved in insulin secretion from beta-cells, and is a potential target for anti-diabetic drug development.  相似文献   

15.
Rab27a in pancreatic beta-cells, a busy protein in membrane trafficking   总被引:1,自引:0,他引:1  
The small GTPases have the ‘active’ GTP-bound and ‘inactive’ GDP-bound states, and thereby act as a molecular switch in cells. Rab27a is a member of this family and exists in T-lymphocytes, melanocytes and pancreatic beta-cells. Rab27a regulates secretion of cytolytic granules from cytotoxic T-lymphocytes and intracellular transport of melanosomes in melanocytes. In pancreatic beta-cells, Rab27a controls pre-exocytotic stages of insulin secretion. A few GTP-dependent Rab27a effectors are known to mediate these cellular functions. We recently found that Rab27a also possesses the GDP-dependent effector coronin 3. Coronin 3 regulates endocytosis in pancreatic beta-cells through its interaction with GDP-Rab27a. These results imply that GTP- and GDP-Rab27a actively regulate distinct stages in the insulin secretory pathway. In this review, we provide an overview of the roles of both GTP- and GDP-Rab27a in pancreatic beta-cells.  相似文献   

16.
Recent studies on the identification of stem/progenitor cells within adult mouse and human pancreatic islets have raised the possibility that autologous transplantation might be used in treating type 1 diabetes. However, it is not yet known whether such stem/progenitor cells are impaired in type 1 diabetic patients or diabetic animal models. The latter would also allow us to test the efficacy of autologous transplantation in large animal models prior to clinical applications. The present study aims to determine the existence of stem/progenitor cells in the islets of diabetic monkey models and to assess the proliferation and differentiation potential of such cells in vitro. Our results indicate that there are pancreatic progenitor cells in the adult pancreatic islets in both normal and type 1 diabetic monkeys. The isolated pancreatic progenitor cells can be greatly expanded in culture. Upon the removal of growth medium, these cells spontaneously form islet-like cell clusters, which could be further induced to secrete insulin by inductive factors. Furthermore, the secretion of insulin and C-peptide from the islet-like cell clusters responds to glucose and other stimuli, indicating that the differentiated cells not only resemble beta-cells but also possess the unique biological function of beta-cells. This study provides a foundation for further characterization of adult pancreatic progenitor cells and autologous transplantation using pancreatic progenitor cells in treating diabetic monkeys.  相似文献   

17.
Ramey G  Faye A  Durel B  Viollet B  Vaulont S 《FEBS letters》2007,581(5):1053-1057
Diabetes Mellitus is found with increasing frequency in iron overload patients with hemochromatosis. In these conditions, the pancreas shows predominant iron overload in acini but also islet beta-cells. We assess glucose homeostasis status in iron-overloaded hepcidin-deficient mice. These mice presented with heavy pancreatic iron deposits but only in the acini. The beta-cell function was found unaffected with a normal production and secretion of insulin. The mutant mice were not diabetic, responded as the control group to glucose and insulin challenges, with no alteration of insulin signalling in the muscle and the liver. These results indicate that, beta-cells iron deposits-induced decreased insulin secretory capacity might be of primary importance to trigger diabetes in hemochromatosic patients.  相似文献   

18.
Autophagy is an evolutionarily conserved machinery for bulk degradation of cytoplasmic components. Here, we report upregulation of autophagosome formation in pancreatic beta cells in diabetic db/db and in nondiabetic high-fat-fed C57BL/6 mice. Free fatty acids (FFAs), which can cause peripheral insulin resistance associated with diabetes, induced autophagy in beta cells. Genetic ablation of atg7 in beta cells resulted in degeneration of islets and impaired glucose tolerance with reduced insulin secretion. While high-fat diet stimulated beta cell autophagy in control mice, it induced profound deterioration of glucose tolerance in autophagy-deficient mutants, partly because of the lack of compensatory increase in beta cell mass. These findings suggest that basal autophagy is important for maintenance of normal islet architecture and function. The results also identified a unique role for inductive autophagy as an adaptive response of beta cells in the presence of insulin resistance induced by high-fat diet.  相似文献   

19.
We have generated transgenic mice that express green fluorescent protein (GFP) under the control of the mouse insulin I gene promoter (MIP). The MIP-GFP mice develop normally and are indistinguishable from control animals with respect to glucose tolerance and pancreatic insulin content. Histological studies showed that the MIP-GFP mice had normal islet architecture with coexpression of insulin and GFP in the beta-cells of all islets. We observed GFP expression in islets from embryonic day E13.5 through adulthood. Studies of beta-cell function revealed no difference in glucose-induced intracellular calcium mobilization between islets from transgenic and control animals. We prepared single-cell suspensions from both isolated islets and whole pancreas from MIP-GFP-transgenic mice and sorted the beta-cells by fluorescence-activated cell sorting based on their green fluorescence. These studies showed that 2.4 +/- 0.2% (n = 6) of the cells in the pancreas of newborn (P1) and 0.9 +/- 0.1% (n = 5) of 8-wk-old mice were beta-cells. The MIP-GFP-transgenic mouse may be a useful tool for studying beta-cell biology in normal and diabetic animals.  相似文献   

20.
Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease that is characterized by selective destruction of insulin secreting pancreatic islets beta-cells. The formation of cytokines (IL-1beta, IL-6, TNF-alpha, etc.) leads to extensive morphological damage of beta-cells, DNA fragmentation, decrease of glucose oxidation, impaired glucose-insulin secretion and decreased insulin action and proinsulin biosynthesis. We examined the protective effect of a 1,4-dihydropyridine (DHP) derivative cerebrocrast (synthesized in the Latvian Institute of Organic Synthesis) on pancreatic beta-cells in rats possessing diabetes induced with the autoimmunogenic compound streptozotocin (STZ). Cerebrocrast administration at doses of 0.05 and 0.5 mg/kg body weight (p.o.) 1 h or 3 days prior to STZ as well as at 24 and 48 h after STZ administration partially prevented pancreatic beta-cells from the toxic effects of STZ, and delayed the development of hyperglycaemia. Administration of cerebrocrast starting 48 h after STZ-induced diabetes in rats for 3 consecutive days at doses of 0.05 and 0.5 mg/kg body weight (p.o.) significantly decreased blood glucose level, and the effect remained 10 days after the last administration. Moreover, in these rats, cerebrocrast evoked an increase of serum immunoreactive insulin (IRI) level during 7 diabetic days as compared to both the control normal rats and the STZ-induced diabetic control rats. The STZ-induced diabetic rats that received cerebrocrast had a significantly high serum IRI level from the 14th to 21st diabetic days in comparison with the STZ-induced diabetic control.The IRI level in serum as well as the glucose disposal rate were significantly increased after stimulation of pancreatic beta-cells with glucose in normal rats that received cerebrocrast, administered 60 min before glucose. Glucose disposal rate in STZ-induced diabetic rats as a result of cerebrocrast administration was also increased in comparison with STZ-diabetic control rats. Administration of cerebrocrast in combination with insulin intensified the effect of insulin. The hypoglycaemic effect of cerebrocrast primarily can be explained by its immunomodulative properties. Moreover, cerebrocrast can act through extrapancreatic mechanisms that favour the expression of glucose transporters, de novo insulin receptors formation in several cell membranes as well as glucose uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号