首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
环介导等温扩增(LAMP)技术是一种新兴的核酸恒温扩增技术,与微流控芯片技术相结合,可实现对病原菌的快速检测,具有特异性强、灵敏度高、操作简单等优点。本文根据不同终产物的检测方法对目前检测病原菌的相关微流控LAMP芯片进行了分类与介绍,并对技术的改进和存在的问题进行了分析,以期为后续的相关研究提供参考。  相似文献   

2.
Urinary proteome profiling using microfluidic technology on a chip   总被引:1,自引:0,他引:1  
Clinical diagnostics and biomarker discovery are the major focuses of current clinical proteomics. In the present study, we applied microfluidic technology on a chip for proteome profiling of human urine from 31 normal healthy individuals (15 males and 16 females), 6 patients with diabetic nephropathy (DN), and 4 patients with IgA nephropathy (IgAN). Using only 4 microL of untreated urine, automated separation of proteins/peptides was achieved, and 1-7 (3.8 +/- 0.3) spectra/bands of urinary proteins/peptides were observed in the normal urine, whereas 8-16 (11.3 +/- 1.2) and 9-14 (10.8 +/- 1.2) spectra were observed in urine samples of DN and IgAN, respectively. Coefficient of variations of amplitudes of lower marker (1.2 kDa), system spectra (6-8 kDa), and upper marker (260.0 kDa) were 22.84, 24.92, and 32.65%, respectively. ANOVA with Tukey post-hoc multiple comparisons revealed 9 spectra of which amplitudes significantly differed between normal and DN urine (DN/normal amplitude ratios ranged from 2.9 to 3102.7). Moreover, the results also showed that 3 spectra (with molecular masses of 12-15, 27-28, and 34-35 kDa) were significantly different between DN and IgAN urine (DN/IgAN amplitude ratios ranged from 3.9 to 7.4). In addition to the spectral amplitudes, frequencies of some spectra could differentiate the normal from the diseased urine but could not distinguish between DN and IgAN. There was no significant difference, regarding the spectral amplitude or frequency, observed between males and females. These data indicate that the microfluidic chip technology is applicable for urinary proteome profiling with potential uses in clinical diagnostics and biomarker discovery.  相似文献   

3.
C Liu  MG Mauk  R Hart  M Bonizzoni  G Yan  HH Bau 《PloS one》2012,7(8):e42222

Background

Vector control is one of the most effective measures to prevent the transmission of malaria, a disease that causes over 600,000 deaths annually. Around 30–40 Anopheles mosquito species are natural vectors of malaria parasites. Some of these species cannot be morphologically distinguished, but have behavioral and ecological differences. Emblematic of this is the Anopheles gambiae species complex. The correct identification of vector species is fundamental to the development of control strategies and epidemiological studies of disease transmission.

Methodology/Principal Findings

An inexpensive, disposable, field-deployable, sample-to-answer, microfluidic chip was designed, constructed, and tested for rapid molecular identification of Anopheles gambiae and Anopheles arabiensis. The chip contains three isothermal amplification reactors. One test reactor operates with specific primers to amplify Anopheles gambiae DNA, another with specific primers for Anopheles arabiensis DNA, and the third serves as a negative control. A mosquito leg was crushed on an isolation membrane. Two discs, laden with mosquito tissue, were punched out of the membrane and inserted into the two test chambers. The isolated, disc-bound DNA served as a template in the amplification processes. The amplification products were detected with intercalating fluorescent dye that was excited with a blue light-emitting diode. The emitted light was observed by eye and recorded with a cell-phone camera. When the target consisted of Anopheles gambiae, the reactor containing primers specific to An. gambiae lit up while the other two reactors remained dark. When the target consisted of Anopheles arabiensis, the reactor containing primers specific to An. arabiensis lit up while the other two reactors remained dark.

Conclusions/Significance

The microfluidic chip provides a means to identify mosquito type through molecular analysis. It is suitable for field work, allowing one to track the geographical distribution of mosquito populations and community structure alterations due to environmental changes and malaria intervention measures.  相似文献   

4.

Background

Imaging single cells with fluorescent markers over multiple cell cycles is a powerful tool for unraveling the mechanism and dynamics of the cell cycle. Over the past ten years, microfluidic techniques in cell biology have emerged that allow for good control of growth environment. Yet the control and quantification of transient gene expression in unperturbed dividing cells has received less attention.

Methodology/Principal Findings

Here, we describe a microfluidic flow cell to grow Saccharomyces Cerevisiae for more than 8 generations (≈12 hrs) starting with single cells, with controlled flow of the growth medium. This setup provides two important features: first, cells are tightly confined and grow in a remarkably planar array. The pedigree can thus be determined and single-cell fluorescence measured with 3 minutes resolution for all cells, as a founder cell grows to a micro-colony of more than 200 cells. Second, we can trigger and calibrate rapid and transient gene expression using reversible administration of inducers that control the GAL1 or MET3 promoters. We then show that periodic 10–20 minutes gene induction pulses can drive many cell division cycles with complete coherence across the cell cluster, with either a G1/S trigger (cln1 cln2 cln3 MET3-CLN2) or a mitotic trigger (cdc20 GALL-CDC20).

Conclusions/Significance

In addition to evident cell cycle applications, this device can be used to directly measure the amount and duration of any fluorescently scorable signal-transduction or gene-induction response over a long time period. The system allows direct correlation of cell history (e.g., hysteresis or epigenetics) or cell cycle position with the measured response.  相似文献   

5.
A method for the stable long-termimmobilization of microalgal cultures wasdeveloped. Immobilized Klebsormidiumcultures were used in a biosensor systemfor air monitoring. The measurement ofbiosensor response was performed usingseveral parameters obtained from the PAMchlorophyll fluorescence technique. To testbiosensor response on toxic compoundsmethanol and formaldehyde, classified asvolatile organic compounds (VOC), were usedin concentrations relevant to human health.Our results showed that quantitativedetection of methanol vapour by thebiosensor is possible within minutes atconcentrations from 75 to 350 ppm.Additionally, due to reversibility of thebiosensor response signal and long-termstability, the biosensor was operationalfor 30 days with repeated exposure periodsto methanol vapour. We conclude that thealgal biosensor, in principle, is suitableto detect volatile toxic compounds such asmethanol and formaldehyde.  相似文献   

6.
7.
The investigation of cellular processes and gene regulatory networks within living cells requires the development of improved technology for dynamic, single cell imaging. Here, we demonstrate a microfluidic system capable of mechanical trapping of yeast cells with continuous flow and flow switching capability during time-lapse high magnification fluorescence imaging. The novel functionality of the system was validated by observing the response of pheromone-induced expression of GFP in Saccharomyces cerevisiae.  相似文献   

8.
We present a comparative analysis of a magnetoresistive biosensor to standard fluorescent DNA detection. The biosensor consists of giant magnetoresistive (GMR) type Cu/Ni(80)Fe(20) multilayers in the second antiferromagnetic coupling maximum. Each of the 206 elements of the magnetoresistive biosensor is patterned into a spiral-shaped line that can cover the area of a typical DNA spot (70 microm diameter). The probe DNA is assembled on top of the sensor elements in different concentrations ranging from 16 pg/microl to 10 ng/microl. Complementary biotin-labeled analyte DNA is hybridized to the probe DNA at a concentration of 10 ng/microl. A number of different commercially available magnetic microspheres are investigated to determine the most appropriate markers. The experimental comparison shows that the relative sensitivity of the magnetoresistive biosensor is superior to the fluorescent detection at low probe DNA concentrations.  相似文献   

9.
A cell-based chip was fabricated for the electrochemical detection of the dose-dependent effects of bisphenol-A (BPA) on neuroblastoma cells (SH-SY5Y), which showed dual-mode correlation as a standard curve. Toxicity assessment of BPA became very important in environmental toxicants detection since BPA can be reached out easily from various common plastic-based product and give negative cellular effects on living organism. Cell chip was fabricated by immobilizing cells on C(RGD)(4) peptide coated electrode to detect the cytotoxicity of BPA electrochemically. Redox properties in living cells were determined by cyclic voltammetry using a home-made three-electrode system, and the cathodic peak current (I(pc)) was used as a parameter for measurement of the effect of BPA on cell viability. The peak current, I(pc) value increased with the concentration of BPA up to 300 nM and then decreased because of the stimulation of cancer cell activity at the concentration of BPA below 300nM and cytotoxicity at the concentration of BPA above 300 nM, respectively. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and optical microscopy-based morphological analysis confirmed the results of electrochemical study. This dual-mode correlation between the concentration of BPA and voltammetric signal intensity should be firstly considered to analyze its dose-dependent stimulus and cytotoxic effects on neuroblastoma cells by cell chip.  相似文献   

10.
Perfusion flow is one of the essential elements and advantages of organ-on-a-chip technology. For example, microfluidics have enabled implementation of perfusion flow and recapitulation of fluidic environment for vascular endothelial cells. The most prevalent method of implementing flow in a chip is to use a pump, which requires elaborate manipulation and complex connections, and accompanies a large amount of dead volume. Previously we devised a gravity-induced flow system which does not require tubing connections, but this method results in bidirectional flow to enable recirculation, which is somewhat different from physiological blood flow. Here, we have developed a novel microfluidic chip that enables gravity-induced, unidirectional flow by using a bypass channel with geometry different from the main channel. Human umbilical vein endothelial cells were cultured inside the chip and the effect of flow direction was examined. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2701, 2019  相似文献   

11.
Instrumentation for rare-event analysis should be capable of reliably detecting infrequent cells (less than 1:10,000) while both excluding false-positive signals and including true positive cells found in multicell clumps. We have developed a digital image microscopy (DIM) system in which a cytospin of 2 million cells is scanned with an intensified video camera (ISIT) using an IBM PC AT microcomputer-controlled microscope stage. PASCAL software controls the stage and analyzes video input, storing the location of positive cells to magnetic disk. The user can then "replay" each positive cell under computer control for either visual confirmation or analysis using other fluorescent probes. The computer requires 24 min to scan a cytoprep of 2 million cells, while playback for visual confirmation by the user averages 5 min. Using Hoechst-33342 premarked cells seeded into bone marrow as a model system, we found that the DIM system reliably detects one target cell per million marrow cells. With appropriate immunological markers, this system will aid in evaluating bone marrow purged of tumor cells prior to transplantation and should also be useful for detection of minimal residual disease in blood or bone marrow from patients with leukemia or solid tumors.  相似文献   

12.
Polystyrene fluorescent microspheres prepared by deposition of CdTe quantum dots (QDs) are used in an immunoassay in this study. CdTe QDs/polyelectrolyte multilayers on the surface of polystyrene microspheres have been formed by layer-by-layer self-assembly via electrostatic interactions. As a model antigen, rabbit IgG has been bound to the outermost layer of the fluorescent microspheres. The immunoreaction between fluorescent microspheres/rabbit IgG and the corresponding antibody was confirmed by change of the fluorescence spectrum and competitive immunoassay. This approach allowed detection of the antigen (rabbit IgG) in the range 1-500 mg/L, based on the change in the fluorescence intensity of the reporter (fluorescent microspheres/rabbit IgG). A novel microfluidic chip device with a laser-induced fluorescence system was established and used for the detection of fluorescent microspheres in this study.  相似文献   

13.
Virus identification is a prerequisite not only for the early diagnosis of viral infectious diseases but also for the effective prevention of epidemics. Successful cultivation is the gold standard for identifying a virus, according to the Koch postulates. However, this requires screening for a permissive cell line, which is traditionally time-, reagent- and labor-intensive. Here, a simple and easy-to-operate microfluidic chip, formed by seeding a variety of cell lines and culturing them in parallel, is reported for use in virus cultivation and virus-permissive host-cell screening. The chip was tested by infection with two known viruses, enterovirus 71 (EV71) and influenza virus H1N1. Infection with EV71 and H1N1 caused significant cytopathic effects (CPE) in RD and MDCK cells, respectively, demonstrating that virus cultivation based on this microfluidic cell chip can be used as a substitute for the traditional plate-based culture method and reproduce the typical CPE caused by virus infection. Using this microfluidic cell chip method for virus cultivation could make it possible to identify an emerging virus in a high-throughput, automatic, and unprecedentedly fast way.  相似文献   

14.
Fluorescence microscopy of live cells is instrumental in deciphering the molecular details of autophagy. To facilitate the routine examination of yeast Atg proteins under diverse conditions, here we provide a comprehensive tool set, including (1) plasmids for the expression of GFP chimeras at endogenous levels for most Atg proteins, (2) RFP-Atg8 constructs with improved properties as a PAS marker, and (3) plasmids for the complementation of common yeast auxotrophic markers. We hope that the availability of this tool set will further accelerate yeast autophagy research.  相似文献   

15.
Bacteria and yeast frequently exist as populations capable of reaching extremely high cell densities. With conventional culturing techniques, however, cell proliferation and ultimate density are limited by depletion of nutrients and accumulation of metabolites in the medium. Here we describe design and operation of microfabricated elastomer chips, in which chemostatic conditions are maintained for bacterial and yeast colonies growing in an array of shallow microscopic chambers. Walls of the chambers are impassable for the cells, but allow diffusion of chemicals. Thus, the chemical contents of the chambers are maintained virtually identical to those of the nearby channels with continuous flowthrough of a dynamically defined medium. We demonstrate growth of cell cultures to densely packed ensembles that proceeds exponentially in a temperature-dependent fashion, and we use the devices to monitor colony growth from a single cell and to analyze the cell response to an exogenously added autoinducer.  相似文献   

16.
Single-mismatch detection using gold-quenched fluorescent oligonucleotides   总被引:19,自引:0,他引:19  
Here we describe a hybrid material composed of a single-stranded DNA (ssDNA) molecule, a 1.4 nm diameter gold nanoparticle, and a fluorophore that is highly quenched by the nanoparticle through a distance-dependent process. The fluorescence of this hybrid molecule increases by a factor of as much as several thousand as it binds to a complementary ssDNA. We show that this composite molecule is a different type of molecular beacon with a sensitivity enhanced up to 100-fold. In competitive hybridization assays, the ability to detect single mismatch is eightfold greater with this probe than with other molecular beacons.  相似文献   

17.
The electrical sheet resistance between living cells grown on planar electronic contacts of semiconductors or metals is a crucial parameter for bioelectronic devices. It determines the strength of electrical signal transduction from cells to chips and from chips to cells. We measured the sheet resistance by applying AC voltage to oxidized silicon chips and by imaging the voltage change across the attached cell membrane with a fluorescent voltage-sensitive dye. The phase map of voltage change was fitted with a planar core-coat conductor model using the sheet resistance as a free parameter. For nerve cells from rat brain on polylysine as well as for HEK293 cells and MDCK cells on fibronectin we find a similar sheet resistance of 10 MOmega. Taking into account the independently measured distance of 50 nm between chip and membrane for these cells, we obtain a specific resistance of 50 Omegacm that is indistinguishable from bulk electrolyte. On the other hand, the sheet resistance for erythrocytes on polylysine is far higher, at approximately 1.5 GOmega. Considering the distance of 10 nm, the specific resistance in the narrow cleft is enhanced to 1500 Omegacm. We find this novel optical method to be a convenient tool to optimize the interface between cells and chips for bioelectronic devices.  相似文献   

18.
The RootChip: an integrated microfluidic chip for plant science   总被引:1,自引:0,他引:1  
Studying development and physiology of growing roots is challenging due to limitations regarding cellular and subcellular analysis under controlled environmental conditions. We describe a microfluidic chip platform, called RootChip, that integrates live-cell imaging of growth and metabolism of Arabidopsis thaliana roots with rapid modulation of environmental conditions. The RootChip has separate chambers for individual regulation of the microenvironment of multiple roots from multiple seedlings in parallel. We demonstrate the utility of The RootChip by monitoring time-resolved growth and cytosolic sugar levels at subcellular resolution in plants by a genetically encoded fluorescence sensor for glucose and galactose. The RootChip can be modified for use with roots from other plant species by adapting the chamber geometry and facilitates the systematic analysis of root growth and metabolism from multiple seedlings, paving the way for large-scale phenotyping of root metabolism and signaling.  相似文献   

19.
HC Kuo  TY Wang  HH Hsu  SH Lee  YM Chen  TJ Tsai  MC Ou  HT Ku  GB Lee  TY Chen 《PloS one》2012,7(8):e42203
Groupers of the Epinephelus spp. are an important aquaculture species of high economic value in the Asia Pacific region. They are susceptible to piscine nodavirus infection, which results in viral nervous necrosis disease. In this study, a rapid and sensitive automated microfluidic chip system was implemented for the detection of piscine nodavirus; this technology has the advantage of requiring small amounts of sample and has been developed and applied for managing grouper fish farms. Epidemiological investigations revealed an extremely high detection rate of piscine nodavirus (89% of fish samples) from 5 different locations in southern Taiwan. In addition, positive samples from the feces of fish-feeding birds indicated that the birds could be carrying the virus between fish farms. In the present study, we successfully introduced this advanced technology that combines engineering and biological approaches to aquaculture. In the future, we believe that this approach will improve fish farm management and aid in reducing the economic loss experienced by fish farmers due to widespread disease outbreaks.  相似文献   

20.
This paper reports the pre-concentration of C-reactive protein (CRP) antigen with packed beads in a microfluidic chamber to enhance the sensitivity of the miniaturized fluorescence detection system for portable point-of-care testing devices. Although integrated optical systems in microfluidic chips have been demonstrated by many groups to replace bulky optical systems, the problem of low sensitivity is a hurdle for on-site clinical applications. Hence we integrated the pre-concentration module with miniaturized detection in microfluidic chips (MDMC) to improve analytical sensitivity. Cheap silicon-based photodiodes with optical filter were packaged in PDMS microfluidic chips and beads were packed by a frit structure for pre-concentration. The beads were coated with CRP antibodies to capture antigens and the concentrated antigens were eluted by an acid buffer. The pre-concentration amplified the fluorescence intensity by about 20-fold and the fluorescence signal was linearly proportional to the concentration of antigens. Then the CRP antigen was analyzed by competitive immunoassay with an MDMC. The experimental result demonstrated that the analytical sensitivity was enhanced up to 1.4 nM owing to the higher signal-to-noise ratio. The amplification of fluorescence by pre-concentration of bead-based immunoassay is expected to be one of the methods for portable fluorescence detection system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号