首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Transient neonatal diabetes mellitus (TNDM) is associated with overexpression of an imprinted locus on chromosome 6q24; this locus contains a differentially methylated region (DMR) consisting of an imprinted CpG island that normally allows expression only from the paternal allele of genes under its control. Three types of abnormality involving 6q24 are known to cause TNDM: paternal uniparental disomy of chromosome 6 (pUPD6), an isolated methylation defect of the imprinted CpG island at chromosome 6q24 and a duplication of 6q24 of paternal origin. A fourth group of patients has no identifiable anomaly of 6q24. Bisulphite sequencing of the DMR has facilitated the development of a diagnostic test for TNDM based on ratiometric methylation-specific polymerase chain reaction. We have applied this method to 45 cases of TNDM, including 12 with pUPD6, 11 with an isolated methylation mutation at 6q24, 16 with a duplication of 6q24 and six of unknown aetiology, together with 29 normal controls. All were correctly assigned. The method is therefore capable of detecting all known genetic causes of TNDM at 6q24, although pUPD6 and methylation mutation cases are not distinguished from one another. In addition, we have carried out bisulphite sequencing of the DMR to compare its methylation status between six TNDM patients with a known methylation mutation, six patients with no identifiable 6q24 mutation and six normal controls. Whereas methylation mutation patients showed a near-total absence of DNA methylation at the TNDM locus, the patients with no identified molecular anomaly showed no marked methylation variation from controls.  相似文献   

2.
Transient neonatal diabetes mellitus (TNDM) is characterised by intra-uterine growth retardation, while Beckwith–Wiedemann syndrome (BWS) is a clinically heterogeneous overgrowth syndrome. Both TNDM and BWS may be caused by aberrant loss of methylation (LOM) at imprinted loci on chromosomes 6q24 and 11p15.5 respectively. Here we describe two patients with a clinical diagnosis of TNDM caused by LOM at the maternally methylated imprinted domain on 6q24; in addition, these patients had LOM at the centromeric differentially methylated region of 11p15.5. This shows that imprinting anomalies can affect more than one imprinted locus and may alter the clinical presentation of imprinted disease.  相似文献   

3.
The mouse Zac1 locus: basis for imprinting and comparison with human ZAC   总被引:6,自引:0,他引:6  
Smith RJ  Arnaud P  Konfortova G  Dean WL  Beechey CV  Kelsey G 《Gene》2002,292(1-2):101-112
  相似文献   

4.
Transient neonatal diabetes mellitus (TNDM) is a rare disease characterized by intrauterine growth retardation, dehydration, and failure to thrive due to a lack of normal insulin secretion. This disease is associated with paternal uniparental disomy or paternal duplication of chromosome 6, suggesting that the causative gene(s) for TNDM is imprinted. Recently, Gardner et al. (1999, J. Med. Genet. 36: 192–196) proposed that a candidate gene for TNDM lies within chromosome 6q24.1–q24.3. To find human imprinted genes, we performed a database search for EST sequences that mapped to this region, followed by RT-PCR analysis using monochromosomal hybrid cells with a human chromosome 6 of defined parental origin. Here we report the identification of a novel imprinted gene, HYMAI. This gene exhibits differential DNA methylation between the two parental alleles at an adjacent CpG island and is expressed only from the paternal chromosome. A previously characterized imprinted gene, ZAC/LOT1, is located 70 kb downstream of HYMAI and is also expressed only from the paternal allele. In the pancreas, both genes are moderately expressed. HYMAI and ZAC/LOT1 are therefore candidate genes involved in TNDM. Furthermore, the human chromosome 6q24 region is syntenic to mouse chromosome 10 and represents a novel imprinted domain.  相似文献   

5.
6.
Transient neonatal diabetes mellitus (TNDM) is associated with paternal over-expression of an imprinted locus on chromosome 6q24, which contains one differentially methylated region (DMR); maternal demethylation at the DMR accounts for ~20% of cases. Here we report female monozygous triplets, two of whom have TNDM arising from loss of maternal methylation within the TNDM DMR.  相似文献   

7.
8.
Transient neonatal diabetes mellitus (TNDM) is a rare disease characterized by intrauterine growth retardation, dehydration, and failure to thrive due to a lack of normal insulin secretion. This disease is associated with paternal uniparental disomy or paternal duplication of chromosome 6, suggesting that the causative gene(s) for TNDM is imprinted. Recently, Gardner et al. (1999, J. Med. Genet. 36: 192-196) proposed that a candidate gene for TNDM lies within chromosome 6q24.1-q24.3. To find human imprinted genes, we performed a database search for EST sequences that mapped to this region, followed by RT-PCR analysis using monochromosomal hybrid cells with a human chromosome 6 of defined parental origin. Here we report the identification of a novel imprinted gene, HYMAI. This gene exhibits differential DNA methylation between the two parental alleles at an adjacent CpG island and is expressed only from the paternal chromosome. A previously characterized imprinted gene, ZAC/LOT1, is located 70 kb downstream of HYMAI and is also expressed only from the paternal allele. In the pancreas, both genes are moderately expressed. HYMAI and ZAC/LOT1 are therefore candidate genes involved in TNDM. Furthermore, the human chromosome 6q24 region is syntenic to mouse chromosome 10 and represents a novel imprinted domain.  相似文献   

9.
Transient neonatal diabetes mellitus (TNDM) is a rare disease believed to result from overexpression of a paternally expressed gene controlled by a differentially methylated CpG island on chromosome 6q24. Two genes partially overlap the island: the cell-cycle-control gene ZAC and the untranslated gene HYMAI, the function of which is currently unknown. Proof that either gene is involved in TNDM would require demonstration that imprinted expression is relaxed in TNDM patients; this has hitherto been lacking because of the rarity of the disease and the lack of imprinted expression in the lymphoblastoid cells that are generally the only resource available for study. Here, we show, for the first time, the aberrant expression of imprinted genes in a TNDM patient. In TNDM fibroblasts, the monoallelic expression of both ZAC and HYMAI is relaxed, providing strong supportive evidence that the presence of two unmethylated alleles of this locus is indeed associated with the inappropriate gene expression of neighbouring genes.  相似文献   

10.
When a known microimbalance affecting multiple genes is detected in a patient with syndromic intellectual disability, it is usually presumed causative for all observed features. Whole exome sequencing (WES) allows questioning this assumption. In this study of three families with children affected by unexplained syndromic intellectual disability, genome-wide copy number and subsequent analyses revealed a de novo maternal 1.1 Mb microdeletion in the 14q32 imprinted region causing a paternal UPD(14)-like phenotype, and two inherited 22q11.21 microduplications of 2.5 or 2.8 Mb. In patient 1 carrying the 14q32 microdeletion, tall stature and renal malformation were unexplained by paternal UPD(14), and there was no altered DLK1 expression or unexpected methylation status. By WES and filtering with a mining tool, a novel FBN1 missense variant was found in patient 1 and his mother, who both showed clinical features of Marfan syndrome by thorough anthropometric assessment, and a novel EYA1 missense variant as a probable cause of the renal malformation in the patient. In patient 2 with the 22q11.21 microduplication syndrome, skin hypo- and hyperpigmentation and two malignancies were only partially explained. By WES, compound heterozygous BLM stop founder mutations were detected causing Bloom syndrome. In male patient 3 carrying a 22q11.21 microduplication inherited from his unaffected father, WES identified a novel missense variant in the OPHN1 X-linked intellectual disability gene inherited from the unaffected mother as a possible additional cause for developmental delay. Thus, WES seems warranted in patients carrying microdeletions or microduplications, who have unexplained clinical features or microimbalances inherited from an unaffected parent.  相似文献   

11.
12.
Beckwith–Wiedemann syndrome (BWS), an overgrowth and tumor predisposition syndrome is clinically heterogeneous. Its variable presentation makes molecular diagnosis particularly important for appropriate counseling of patients with respect to embyronal tumor risk and recurrence risk. BWS is characterized by macrosomia, omphalocele, and macroglossia. Additional clinical features can include hemihyperplasia, embryonal tumors, umbilical hernia, and ear anomalies. BWS is etiologically heterogeneous arising from dysregulation of one or both of the chromosome 11p15.5 imprinting centers (IC) and/or imprinted growth regulatory genes on chromosome 11p15.5. Most BWS cases are sporadic and result from loss of maternal methylation at imprinting center 2 (IC2), gain of maternal methylation at imprinting center 1 (IC1) or paternal uniparental disomy (UPD). Heritable forms of BWS (15 %) have been attributed mainly to mutations in the growth suppressor gene CDKN1C, but have also infrequently been identified in patients with copy number variations (CNVs) in the chromosome 11p15.5 region. Four hundred and thirty-four unrelated BWS patients referred to the molecular diagnostic laboratory were tested by methylation-specific multiplex ligation-dependent probe amplification. Molecular alterations were detected in 167 patients, where 103 (62 %) showed loss of methylation at IC2, 23 (14 %) had gain of methylation at IC1, and 41 (25 %) showed changes at both ICs usually associated with paternal UPD. In each of the three groups, we identified patients in whom the abnormalities in the chromosome 11p15.5 region were due to CNVs. Surprisingly, 14 patients (9 %) demonstrated either deletions or duplications of the BWS critical region that were confirmed using comparative genomic hybridization array analysis. The majority of these CNVs were associated with a methylation change at IC1. Our results suggest that CNVs in the 11p15.5 region contribute significantly to the etiology of BWS. We highlight the importance of performing deletion/duplication testing in addition to methylation analysis in the molecular investigation of BWS to improve our understanding of the molecular basis of this disorder, and to provide accurate genetic counseling.  相似文献   

13.
Genomic imprinting, representing parent-specific expression of alleles at a locus, raises many questions about how—and especially why—epigenetic silencing of mammalian genes evolved. We present the first in-depth study of how a human imprinted domain evolved, analyzing a domain containing several imprinted genes that are involved in human disease. Using comparisons of orthologous genes in humans, marsupials, and the platypus, we discovered that the Prader-Willi/Angelman syndrome region on human Chromosome 15q was assembled only recently (105–180 million years ago). This imprinted domain arose after a region bearing UBE3A (Angelman syndrome) fused with an unlinked region bearing SNRPN (Prader-Willi syndrome), which had duplicated from the non-imprinted SNRPB/B′. This region independently acquired several retroposed gene copies and arrays of small nucleolar RNAs from different parts of the genome. In their original configurations, SNRPN and UBE3A are expressed from both alleles, implying that acquisition of imprinting occurred after their rearrangement and required the evolution of a control locus. Thus, the evolution of imprinting in viviparous mammals is ongoing.  相似文献   

14.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two distinct neurogenetic disorders caused by the loss of function of imprinted genes in the chromosomal region 15q11q13. An approximately 2 Mb region inside 15q11q13 is subject to genomic imprinting. As a consequence the maternal and paternal copies in this region are different in DNA methylation and gene expression. The most frequent genetic lesions in both disorders are an interstitial de novo deletion of the chromosomal region 15q11q13, uniparental disomy 15, an imprinting defect or, in the case of AS, a mutation of the UBE3A gene. Microdeletions in a small number of patients with PWS and AS with an imprinting defect have led to the identification of the chromosome 15 imprinting centre (IC) upstream of the SNURF-SNRPN gene, which acts in cis to regulate imprinting in the whole 15q imprinted domain. The IC consists of two critical elements: one in the more centromeric part which is deleted in patients with AS and which is thought to be responsible for the establishment of imprinting in the female germ line, and one in the more telomeric part which is deleted in patients with PWS and which is required to maintain the paternal imprint.  相似文献   

15.
There are multiple theories on the evolution of genomic imprinting. We investigated whether the molecular evolution of true orthologs of known imprinted genes provides support for theories based on gene duplication or parental conflicts (where mediated by amino-acid changes). Our analysis of 34 orthologous genes demonstrates that the vast majority of mammalian imprinted genes have not undergone any subsequent significant gene duplication within placental species, suggesting that selection pressures against gene duplication events could be operating for imprinted loci. As antagonistic co-evolution between imprinted genes can regulate offspring growth, proteins mediating this interaction could be subject to rapid evolution via positive selection. Supporting this, we detect evidence of site specific positive selection for the imprinted genes OSBPL5 (and GNASXL), and detect lineage-specific positive selection for 14 imprinted genes where it is known that the gene is imprinted in a specific lineage, namely for: PLAGL1, IGF2, SLC22A18, OSBPL5, DCN, DLK1, RASGRF1, IGF2R, IMPACT, GRB10, NAPIL4, UBE3A, GATM and GABRG3. However, there is an overall lack of concordance between the known imprinting status of each gene (i.e. whether the gene is imprinted or biallelically expressed in a particular mammalian lineage) and positive selection. While only a small number of orthologs of imprinted loci display evidence of positive selection, we observe that the majority of orthologs of imprinted loci display high levels of micro-synteny conservation and have undergone very few cis- or trans-duplications in placental mammalian lineages.  相似文献   

16.

Background

Beckwith-Wiedemann syndrome (BWS) is a loss-of-imprinting pediatric overgrowth syndrome. The primary features of BWS include macrosomia, macroglossia, and abdominal wall defects. Secondary features that are frequently observed in BWS patients are hypoglycemia, nevus flammeus, polyhydramnios, visceromegaly, hemihyperplasia, cardiac malformations, and difficulty breathing. BWS is speculated to occur primarily as the result of the misregulation of imprinted genes associated with two clusters on chromosome 11p15.5, namely the KvDMR1 and H19/IGF2. A similar overgrowth phenotype is observed in bovine and ovine as a result of embryo culture. In ruminants this syndrome is known as large offspring syndrome (LOS). The phenotypes associated with LOS are increased birth weight, visceromegaly, skeletal defects, hypoglycemia, polyhydramnios, and breathing difficulties. Even though phenotypic similarities exist between the two syndromes, whether the two syndromes are epigenetically similar is unknown. In this study we use control Bos taurus indicus X Bos taurus taurus F1 hybrid bovine concepti to characterize baseline imprinted gene expression and DNA methylation status of imprinted domains known to be misregulated in BWS. This work is intended to be the first step in a series of experiments aimed at determining if LOS will serve as an appropriate animal model to study BWS.

Results

The use of F1 B. t. indicus x B. t. taurus tissues provided us with a tool to unequivocally determine imprinted status of the regions of interest in our study. We found that imprinting is conserved between the bovine and human in imprinted genes known to be associated with BWS. KCNQ1OT1 and PLAGL1 were paternally-expressed while CDKN1C and H19 were maternally-expressed in B. t. indicus x B. t. taurus F1 concepti. We also show that in bovids, differential methylation exists at the KvDMR1 and H19/IGF2 ICRs.

Conclusions

Based on these findings we conclude that the imprinted gene expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 ICRs are conserved between human and bovine. Future work will determine if LOS is associated with misregulation at these imprinted loci, similarly to what has been observed for BWS.  相似文献   

17.
18.
Imprinting centers (IC) can be defined as cis-elements that are recognized in the germ line and are epigenetically modified to bring about the full imprinting program in a somatic cell. Two paternally expressed human genes, HYMAI and PLAGL1 (LOT1/ZAC), are located within human chromosome 6q24. Within this region lies a 1-kb CpG island that is differentially methylated in somatic cells, unmethylated in sperm, and methylated in mature oocytes in mice, characteristic features of an IC. Loss of methylation of the homologous region in humans is observed in patients with transient neonatal diabetes mellitus and hypermethylation is associated with a variety of cancers, suggesting that this region regulates the expression of one or more key genes in this region involved in these diseases. We now report that a transgene carrying the human HYMAI/PLAGL1 DMR was methylated in the correct parent-origin-specific manner in mice and this was sufficient to confer imprinted expression from the transgene. Therefore, we propose that this DMR functions as the IC for the HYMAI/PLAGL1 domain.  相似文献   

19.
20.
DNA methylation is a hallmark of genomic imprinting and differentially methylated regions (DMRs) are found near and in imprinted genes. Imprinted genes are expressed only from the maternal or paternal allele and their normal balance can be disrupted by uniparental disomy (UPD), the inheritance of both chromosomes of a chromosome pair exclusively from only either the mother or the father. Maternal UPD for chromosome 7 (matUPD7) results in Silver-Russell syndrome (SRS) with typical features and growth retardation, but no gene has been conclusively implicated in SRS. In order to identify novel DMRs and putative imprinted genes on chromosome 7, we analyzed eight matUPD7 patients, a segmental matUPD7q31-qter, a rare patUPD7 case and ten controls on the Infinium HumanMethylation450K BeadChip with 30 017 CpG methylation probes for chromosome 7. Genome-scale analysis showed highly significant clustering of DMRs only on chromosome 7, including the known imprinted loci GRB10, SGCE/PEG10, and PEG/MEST. We found ten novel DMRs on chromosome 7, two DMRs for the predicted imprinted genes HOXA4 and GLI3 and one for the disputed imprinted gene PON1. Quantitative RT-PCR on blood RNA samples comparing matUPD7, patUPD7, and controls showed differential expression for three genes with novel DMRs, HOXA4, GLI3, and SVOPL. Allele specific expression analysis confirmed maternal only expression of SVOPL and imprinting of HOXA4 was supported by monoallelic expression. These results present the first comprehensive map of parent-of-origin specific DMRs on human chromosome 7, suggesting many new imprinted sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号