首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
H Kataoka  J Hall    P Karran 《The EMBO journal》1986,5(12):3195-3200
Dual expression vectors derived from pSV2gpt and encoding all or part of the Escherichia coli ada+ gene have been constructed. Following transformation into an E. coli ada strain or transfection and stable integration into the genome of Chinese hamster ovary (CHO) cells, plasmid vectors containing the whole ada+ gene conferred resistance to both killing and mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Thus, the bacterial DNA repair gene was functionally expressed in the mammalian cells. Plasmids containing an N-terminal fragment of the ada+ gene which encoded only one of the two methyltransferase activities of the Ada protein did not significantly protect E. coli or CHO cells against MNNG. These results are consistent with the central role of the intact ada+ gene in controlling the adaptive response to alkylating agents in E. coli. However, the data further suggest that some alkylation lesions in DNA, such as O6-methylguanine, may exert partly different biological effects in E. coli and mammalian cells.  相似文献   

2.
Bacillus subtilis ada operon encodes two DNA alkyltransferases.   总被引:11,自引:4,他引:7       下载免费PDF全文
  相似文献   

3.
The E. coli ada+ gene product that controls the adaptive response to alkylating agents has been purified to apparent homogeneity using an overproducing expression vector system. This 39 kDa protein repairs 0(6)-methylguanine and 0(4)-methylthymine residues in alkylated DNA by transfer of the methyl group from the base to a cysteine residue in the protein itself. The Ada protein also corrects one of the stereoisomers of methyl phosphotriesters in DNA by the same mechanism, while the other isomer is left unrepaired. Different cysteine residues in the Ada protein are used as acceptors in the repair of methyl groups derived from phosphotriesters and base residues.  相似文献   

4.
The ada+ gene product, a DNA methyltransferase present in extracts from an Escherichia coli strain constitutive for the adaptive response, removes only half of the methyl phosphotriesters from alkylated DNA. Since DNA phosphotriesters occur in two isomeric configurations (denoted Rp and Sp), we examined whether this reflects a stereospecific mode of repair by the methyltransferase. Analysis by reverse-phase HPLC, phosphorus NMR and circular dichroism established that only triesters in the Sp configuration are acted upon by the E. coli extract.  相似文献   

5.
Inducible repair of O-alkylated DNA pyrimidines in Escherichia coli   总被引:41,自引:5,他引:36       下载免费PDF全文
The three miscoding alkylated pyrimidines O2-methylcytosine, O2-methylthymine and O4-methylthymine are specifically recognized by Escherichia coli DNA repair enzymes. The activities are induced as part of the adaptive response to alkylating agents. O2-Methylcytosine and O2-methylthymine are removed by a DNA glycosylase, the alkA+ gene product, which also acts on N3-methylated purines. O4-Methylthymine is repaired by a methyltransferase, previously known to correct O6-methylguanine by transfer of the methyl group to one of its own cysteine residues. It is proposed that certain common structural features of the various methylated bases allow each of the two inducible repair enzymes to recognize and remove several different kinds of lesions from alkylated DNA.  相似文献   

6.
S Riazuddin  A Athar    A Sohail 《Nucleic acids research》1987,15(22):9471-9486
Three peaks of methyltransferase activity specific for MNNG alkylated DNA have been identified from extracts of chemically adapted M. luteus. They are designated as TI to TIII in order to their elution from a Sephadex G-75 column. The first one of these peaks has been purified to homogeneity. TI, is an inducible, unusually salt resistant, heat labile protein which corrects O6-methylguanine in alkylated DNA by the transfer of the O6-alkyl group to a cysteine amino acid in the TI protein. There is a stoichiometric relationship between the loss of O6-methylguanine from the DNA and the production of S-methylcysteine. Partially purified TII & TIII proteins show specificity for O4-alkylthymine and methyl phosphotriesters respectively. The mode of repair by the isolated methyltransferases is similar yet there is no competition for substrate specificity. The apparent molecular weights of TI, TII & TIII proteins are 31Kd, 22Kd, and 13Kd respectively.  相似文献   

7.
8.
9.
B Demple 《Nucleic acids research》1986,14(14):5575-5589
The activated Ada protein triggers expression of DNA repair genes in Escherichia coli in response to alkylation damage. Ada also possesses two distinct suicide alkyltransferase activities, for O6-alkylguanines and for alkyl phosphotriesters in DNA. The mutant Ada3 and Ada5 transferases repair O6-methylguanine in DNA 20 and 3000 times more slowly, respectively, than the wild-type Ada protein, but both exhibit normal DNA phosphotriester repair. These same proteins also exhibit delayed and sluggish induction of the ada and alkA genes. Since the C-terminal O6-methylguanine methyltransferase domain of Ada is not implicated in the direct binding of specific DNA sequences, this part of the Ada protein is likely to play an alternative mechanistic role in gene activation, either by promoting Ada dimerization, or via direct contacts with RNA polymerase.  相似文献   

10.
A partially purified extract prepared from adapted M. luteus cells contains repair functions for oxygen methylated pyrimidine residues present in alkylated DNA. The removal of O2-MeT is mediated by a DNA glycosylase enzyme whereas disappearance of O4-MeT is effected by a methyltransferase in a manner similar to the in situ repair of O6-MeG. O4-MeT methyltransferase enzyme is unusually heat resistant. Synthesis of these repair proteins, which are distinctly different from the previously known inducible 3-MeA DNA glycosylase and O6-MeG methyltransferase activities, forms a part of the adaptive response.  相似文献   

11.
12.
The ada gene of Escherichia coli encodes O6-methylguanine-DNA methyltransferase, which serves as a positive regulator of the adaptive response to alkylating agents and as a DNA repair enzyme. The gene which can make an ada-deficient strain of E. coli resistant to the cell-killing and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) has been cloned from Salmonella typhimurium TA1538. DNA sequence analysis indicated that the gene potentially encoded a protein with a calculated molecular weight of 39,217. Since the nucleotide sequence of the cloned gene shows 70% similarity to the ada gene of E. coli and there is an ada box-like sequence (5'-GAATTAAAACGCA-3') in the promoter region, we tentatively refer to this cloned DNA as the adaST gene. The gene encodes Cys-68 and Cys-320, which are potential acceptor sites for the methyl group from the damaged DNA. The multicopy plasmid carrying the adaST gene significantly reduced the frequency of mutation induced by MNNG both in E. coli and in S. typhimurium. The AdaST protein encoded by the plasmid increased expression of the ada'-lacZ chromosome fusion about 5-fold when an E. coli strain carrying both the fusion operon and the plasmid was exposed to a low concentration of MNNG, whereas the E. coli Ada protein encoded by a low-copy-number plasmid increased it about 40-fold under the same conditions. The low ability of AdaST to function as a positive regulator could account for the apparent lack of an adaptive response to alkylation damage in S. typhimurium.  相似文献   

13.
14.
The mutagenic and carcinogenic effects of simple alkylating agents are mainly due to methylation at the O6 position of guanine in DNA. O6-methylguanine directs the incorporation of either thymine or cytosine without blocking DNA replication, resulting in GC to AT transition mutations. In prokaryotic and eukaryotic cells antimutagenic repair is effected by direct reversal of this DNA damage. A suicidal methyltransferase repair protein removes the methyl group from DNA to one of its own cysteine residues. The resulting self-methylation of the active site cysteine renders the protein inactive. Here we report the X-ray structure of the 19 kDa C-terminal domain of the Escherichia coli ada gene product, the prototype of these suicidal methyltransferases. In the crystal structure the active site cysteine is buried. We propose a model for the significant conformational change that the protein must undergo in order to bind DNA and effect methyl transfer.  相似文献   

15.
Escherichia coli expresses two DNA repair methyltransferases (MTases) that repair the mutagenic O6-methylguanine (O6MeG) and O4-methylthymine (O4MeT) DNA lesions; one is the product of the inducible ada gene, and here we confirm that the other is the product of the constitutive ogt gene. We have generated various ogt disruption mutants. Double mutants (ada ogt) do not express any O6MeG/O4MeT DNA MTases, indicating that Ada and Ogt are probably the only two O6MeG/O4MeT DNA MTases in E. coli. ogt mutants were more sensitive to alkylation-induced mutation, and mutants arose linearly with dose, unlike ogt+ cells, which had a threshold dose below which no mutants accumulated; this ogt(+)-dependent threshold was seen in both ada+ and ada strains. ogt mutants were also more sensitive to alkylation-induced killing (in an ada background), and overexpression of the Ogt MTase from a plasmid provided ada, but not ada+, cells with increased resistance to killing by alkylating agents. The induction of the adaptive response was normal in ogt mutants. We infer from these results that the Ogt MTase prevents mutagenesis by low levels of alkylating agents and that, in ada cells, the Ogt MTase also protects cells from killing by alkylating agents. We also found that ada ogt E. coli had a higher rate of spontaneous mutation than wild-type, ada, and ogt cells and that this increased mutation occurred in nondividing cells. We infer that there is an endogenous source of O6MeG or O4MeT DNA damage in E. coli that is prevalent in nondividing cells.  相似文献   

16.
DNA repair by O6-methylguanine-DNA methyltransferase (O6-MT) is accomplished by removal by the enzyme of the methyl group from premutagenic O6-methylguanine-DNA, thereby restoring native guanine in DNA. The methyl group is transferred to an acceptor site cysteine thiol group in the enzyme, which causes the irreversible inactivation of O6-MT. We detected a variety of different forms of the methylated, inactivated enzyme in crude extracts of human spleen of molecular weights higher and lower than the usually observed 21-24kDa for the human O6-MT. Several apparent fragments of the methylated form of the protein were purified to homogeneity following reaction of partially-purified extract enzyme with O6-[3H-CH3]methylguanine-DNA substrate. One of these fragments yielded amino acid sequence information spanning fifteen residues, which was identified as probably belonging to human methyltransferase by virtue of both its significant sequence homology to three procaryote forms of O6-MT encoded by the ada, ogt (both from E. coli) and dat (B. subtilis) genes, and sequence position of the radiolabelled methyl group which matched the position of the conserved procaryote methyl acceptor site cysteine residue. Statistical prediction of secondary structure indicated good homologies between the human fragment and corresponding regions of the constitutive form of O6-MT in procaryotes (ogt and dat gene products), but not with the inducible ada protein, indicating the possibility that we had obtained partial amino acid sequence for a non-inducible form of the human enzyme. The identity of the fragment sequence as belonging to human methyltransferase was more recently confirmed by comparison with cDNA-derived amino acid sequence from the cloned human O6-MT gene from HeLa cells (1). The two sequences compared well, with only three out of fifteen amino acids being different (and two of them by only one nucleotide in each codon).  相似文献   

17.
The O6-methylguanine-DNA methyltransferase of Escherichia coli acts rapidly and stoichiometrically to convert a mutagenic O6-methylguanine residue in DNA to unsubstituted guanine. Even at low protein concentrations and in the absence of any cofactors, the transfer of a methyl group to one of the protein's own cysteine residues occurs in less than 2 s at 37 degrees C. The entire kinetic process can be followed experimentally at 5 degrees C. Formation of S-methylcysteine in the protein is accompanied by loss of activity and accounts for the exceptional suicide kinetics of this enzyme as well as for the sharp saturation of O6-methylguanine repair observed in vivo. The enzyme can remove greater than 98% of the methyl groups from O6-methylguanine present in alkylated DNA, but leaves N-alkylated purines untouched. Single-stranded DNA containing O6-methylguanine is a poor substrate, with the methyl transfer occurring at approximately 0.1% of the rate for duplex DNA. This latter observation may explain the high frequency of mutations induced by alkylating agents at DNA replication forks.  相似文献   

18.
19.
20.
DNA methyltransferase activity has been identified in crude extracts of Drosophila melanogaster pupae for the removal of methyl groups from O-6 methylguanine appearing in alkylated DNA. Additionally, N-7 methylguanine and 3 methyladenine appear to be uniquely susceptible to methyltransferase activity that resides in Drosophila pupae. Consistent with this, tests to detect DNA glycosylase activity for the repair of the latter two modified bases was unsuccessful, even though a substantial loss of methyl groups from these bases was observed. Conversely, the repair of methylated purines was not detected in extracts of Drosophila embryos. The removal of methyl groups from methylated purines was dependent upon incubation temperature and was proportional to the amount of protein added to reaction mixtures. Results indicate that the methyl group is attached to protein during the repair of methylated DNA, suggesting that it is similar to the O6-methylguanine-DNA methyltransferase identified in other organisms. Although other explanations are possible, the inability to detect DNA glycosylase activity suggests that Drosophila may not rely on base excision repair for the removal of modified or nonconventional basis in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号