首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper is an essential cofactor of two mitochondrial enzymes: cytochrome c oxidase (COX) and Cu-Zn superoxide dismutase (Sod1p). Copper incorporation into these enzymes is facilitated by metallochaperone proteins which probably use copper from a mitochondrial matrix-localized pool. Here we describe a novel conserved mitochondrial metallochaperone-like protein, Cmc1p, whose function affects both COX and Sod1p. In Saccharomyces cerevisiae, Cmc1p localizes to the mitochondrial inner membrane facing the intermembrane space. Cmc1p is essential for full expression of COX and respiration, contains a twin CX9C domain conserved in other COX assembly copper chaperones, and has the ability to bind copper(I). Additionally, mutant cmc1 cells display increased mitochondrial Sod1p activity, while CMC1 overexpression results in decreased Sod1p activity. Our results suggest that Cmc1p could play a direct or indirect role in copper trafficking and distribution to COX and Sod1p.  相似文献   

2.
Horn D  Barrientos A 《IUBMB life》2008,60(7):421-429
Metals are essential elements of all living organisms. Among them, copper is required for a multiplicity of functions including mitochondrial oxidative phosphorylation and protection against oxidative stress. Here we will focus on describing the pathways involved in the delivery of copper to cytochrome c oxidase (COX), a mitochondrial metalloenzyme acting as the terminal enzyme of the mitochondrial respiratory chain. The catalytic core of COX is formed by three mitochondrially-encoded subunits and contains three copper atoms. Two copper atoms bound to subunit 2 constitute the Cu(A) site, the primary acceptor of electrons from ferrocytochrome c. The third copper, Cu(B), is associated with the high-spin heme a(3) group of subunit 1. Recent studies, mostly performed in the yeast Saccharomyces cerevisiae, have provided new clues about 1) the source of the copper used for COX metallation; 2) the roles of Sco1p and Cox11p, the proteins involved in the direct delivery of copper to the Cu(A) and Cu(B) sites, respectively; 3) the action mechanism of Cox17p, a copper chaperone that provides copper to Sco1p and Cox11p; 4) the existence of at least four Cox17p homologues carrying a similar twin CX(9)C domain suggestive of metal binding, Cox19p, Cox23p, Pet191p and Cmc1p, that could be part of the same pathway; and 5) the presence of a disulfide relay system in the intermembrane space of mitochondria that mediates import of proteins with conserved cysteines motifs such as the CX(9)C characteristic of Cox17p and its homologues. The different pathways are reviewed and discussed in the context of both mitochondrial COX assembly and copper homeostasis.  相似文献   

3.
Mia40p and Erv1p are components of a translocation pathway for the import of cysteine-rich proteins into the intermembrane space of mitochondria. We have characterized the redox behavior of Mia40p and reconstituted the disulfide transfer system of Mia40p by using recombinant functional C-terminal fragment of Mia40p, Mia40C, and Erv1p. Oxidized Mia40p contains three intramolecular disulfide bonds. One disulfide bond connects the first two cysteine residues in the CPC motif. The second and the third bonds belong to the twin CX(9)C motif and bridge the cysteine residues of two CX(9)C segments. In contrast to the stabilizing disulfide bonds of the twin CX(9)C motif, the first disulfide bond was easily accessible to reducing agents. Partially reduced Mia40C generated by opening of this bond as well as fully reduced Mia40C were oxidized by Erv1p in vitro. In the course of this reaction, mixed disulfides of Mia40C and Erv1p were formed. Reoxidation of fully reduced Mia40C required the presence of the first two cysteine residues in Mia40C. However, efficient reoxidation of a Mia40C variant containing only the cysteine residues of the twin CX(9)C motif was observed when in addition to Erv1p low amounts of wild type Mia40C were present. In the reconstituted system the thiol oxidase Erv1p was sufficient to transfer disulfide bonds to Mia40C, which then could oxidize the variant of Mia40C. In summary, we reconstituted a disulfide relay system consisting of Mia40C and Erv1p.  相似文献   

4.
The TIM10 complex, composed of the homologous proteins Tim10 and Tim9, chaperones hydrophobic proteins inserted at the mitochondrial inner membrane. A salient feature of the TIM10 complex subunits is their conserved "twin CX3C" motif. Systematic mutational analysis of all cysteines of Tim10 showed that their underlying molecular defect is impaired folding (demonstrated by circular dichroism, aberrant homo-oligomer formation, and thiol trapping assays). As a result of defective folding, clear functional consequences were manifested in (i) complex formation with Tim9, (ii) chaperone activity, and (iii) import into tim9ts mitochondria lacking both endogenous Tim9 and Tim10. The organization of the four cysteines in intrachain disulfides was determined by trypsin digestion and mass spectrometry. The two distal CX3C motifs are juxtaposed in the folded structure and disulfide-bonded to each other rather than within each other, with an inner cysteine pair connecting Cys44 with Cys61 and an outer pair between Cys40 and Cys65. These cysteine pairs are not equally important for folding and assembly; mutations of the inner Cys are severely affected and form wrong, non-native disulfides, in contrast to mutations of the outer Cys that can still maintain the native inner disulfide pair and display weaker functional defects. Taken together these data reveal this specific intramolecular disulfide bonding as the crucial mechanism for Tim10 folding and show that the inner cysteine pair has a more prominent role in this process.  相似文献   

5.
The Mia40-Erv1 disulfide relay system is of high importance for mitochondrial biogenesis. Most so far identified substrates of this machinery contain either two cysteine-x3-cysteine (twin Cx3C) or two cysteine-x9-cysteine (twin Cx9C) motifs. While the first group is composed of well-characterized components of the mitochondrial import machinery, the molecular function of twin Cx9C proteins still remains unclear. To systematically characterize this protein family, we performed a database search to identify the full complement of Cx9C proteins in yeast. Thereby, we identified 14 potential family members, which, with one exception, are conserved among plants, fungi, and animals. Among these, three represent novel proteins, which we named Cmc2 to 4 (for Cx9C motif-containing protein) and which we demonstrated to be dependent for import on the Mia40-Erv1 disulfide relay. By testing deletion mutants of all 14 proteins for function of the respiratory chain, we found a critical function of most of these proteins for the assembly or stability of respiratory chain complexes. Our data suggest that already early during the evolution of eukaryotic cells, a multitude of twin Cx9C proteins developed, which exhibit largely nonredundant roles critical for the biogenesis of enzymes of the respiratory chain in mitochondria.  相似文献   

6.
Mitochondria consist of four compartments, the outer membrane, intermembrane space (IMS), inner membrane and the matrix. Most mitochondrial proteins are synthesized as precursors in the cytosol and have to be imported into these compartments. While the protein import machineries of the outer membrane, inner membrane and matrix have been investigated in detail, a specific mitochondrial machinery for import and assembly of IMS proteins, termed MIA, was identified only recently. To date, only a very small number of substrate proteins of the MIA pathway have been identified. The substrates contain characteristic cysteine motifs, either a twin Cx(3)C or a twin Cx(9)C motif. The largest MIA substrates known possess a molecular mass of 11 kDa, implying that this new import pathway has a very small size limit. Here, we have compiled a list of Saccharomyces cerevisiae proteins with a twin Cx(9)C motif and identified three IMS proteins that were previously localized to incorrect cellular compartments by tagging approaches. Mdm35, Mic14 (YDR031w) and Mic17 (YMR002w) require the two essential subunits, Mia40 and Erv1, of the MIA machinery for their localization in the mitochondrial IMS. With a molecular mass of 14 kDa and 17 kDa, respectively, Mic14 and Mic17 are larger than the known MIA substrates. Remarkably, the precursor of Erv1 itself is imported via the MIA pathway. As Erv1 has a molecular mass of 22 kDa and a twin Cx(2)C motif, this study demonstrates that the MIA pathway can transport substrates that are twice as large as the substrates known to date and is not limited to proteins with twin Cx(3)C or Cx(9)C motifs. However, tagging of MIA substrates can interfere with their subcellular localization, indicating that the proper localization of mitochondrial IMS proteins requires the characterization of the authentic untagged proteins.  相似文献   

7.
The small Tim proteins in the mitochondrial intermembrane space participate in the TIM22 import pathway for assembly of the inner membrane. Assembly of the small TIM complexes requires the conserved "twin CX3C" motif that forms juxtapositional intramolecular disulfide bonds. Here we identify a new intermembrane space protein, Hot13p, as the first component of a pathway that mediates assembly of the small TIM complexes. The small Tim proteins require Hot13p for assembly into a 70-kDa complex in the intermembrane space. Once assembled the small TIM complexes escort hydrophobic inner membrane proteins en route to the TIM22 complex. The mechanism by which the small Tim proteins bind and release substrate is not understood, and we investigated the affect of oxidant/reductant treatment on the TIM22 import pathway. With in organello import studies, oxidizing agents arrest the ADP/ATP carrier (AAC) bound to the Tim9p-Tim10p complex in the intermembrane space; this productive intermediate can be chased into the inner membrane upon subsequent treatment with reductant. Moreover, AAC import is markedly decreased by oxidant treatment in Deltahot13 mitochondria and improved when Hot13p is overexpressed, suggesting Hot13p may function to remodel the small TIM complexes during import. Together these results suggest that the small TIM complexes have a specialized assembly pathway in the intermembrane space and that the local redox state of the TIM complexes may mediate translocation of inner membrane proteins.  相似文献   

8.
Tim23p is imported via the TIM (translocase of inner membrane)22 pathway for mitochondrial inner membrane proteins. In contrast to precursors with an NH2-terminal targeting presequence that are imported in a linear NH2-terminal manner, we show that Tim23p crosses the outer membrane as a loop before inserting into the inner membrane. The Tim8p-Tim13p complex facilitates translocation across the intermembrane space by binding to the membrane spanning domains as shown by Tim23p peptide scans with the purified Tim8p-Tim13p complex and crosslinking studies with Tim23p fusion constructs. The interaction between Tim23p and the Tim8p-Tim13p complex is not dependent on zinc, and the purified Tim8p-Tim13p complex does not coordinate zinc in the conserved twin CX3C motif. Instead, the cysteine residues seemingly form intramolecular disulfide linkages. Given that proteins of the mitochondrial carrier family also pass through the TOM (translocase of outer membrane) complex as a loop, our study suggests that this translocation mechanism may be conserved. Thus, polytopic inner membrane proteins, which lack an NH2-terminal targeting sequence, pass through the TOM complex as a loop followed by binding of the small Tim proteins to the hydrophobic membrane spanning domains.  相似文献   

9.
Tim9 and Tim10 belong to the small Tim family of mitochondrial ATP-independent chaperones. They are organised in a specific hetero-oligomeric complex (TIM10) that escorts polytopic proteins into the mitochondrial inner membrane. The contributions of the individual subunits to the assembly and function of the TIM10 complex remain poorly understood. Here, we show that substrate recognition and assembly of the complex are mediated by distinct domains of the subunits. These are unrelated to the characteristic "twin CX3C" motif that is present in all small Tims and ensures proper folding of the unassembled subunits. Specifically, we show that substrate recognition is achieved by the Tim10 subunit, whilst Tim9 serves a more structural role. The N-terminal domain of Tim10 is a substrate sensor whilst its C-terminal part is essential for complex formation. By contrast, both N and C-terminal domains of Tim9 are involved in the stability of the complex.  相似文献   

10.
Import of proteins into mitochondria occurs by coordinated actions of preprotein translocases in the outer and inner membranes. Tim9 and Tim10 are translocase components of the intermembrane space, related to deafness-dystonia peptide 1 (DDP1). They coassemble into a hexamer, TIM9.10, which captures and chaperones precursors of inner membrane metabolite carriers as they exit the TOM channel in the outer membrane. The crystal structure of TIM9.10 reveals a previously undescribed alpha-propeller topology in which helical "blades" radiate from a narrow central pore lined with polar residues. The propeller blades are reminiscent of "tentacles" in chaperones Skp and prefoldin. In each TIM9.10 subunit, a signature "twin CX3C" motif forms two intramolecular disulfides. There is no obvious binding pocket for precursors, which we suggest employ the chaperone-like tentacles of TIM9.10 as surrogate lipid contacts. The first reported crystal structure of a mitochondrial translocase assembly provides insights into selectivity and regulation of precursor import.  相似文献   

11.
Mitochondria are responsible for many vital cellular functions in eukaryotic cells, such as ATP production, steroid synthesis and prosthetic group biogenesis. The vital functions of mitochondria are possible due to the compartmental nature of this organelle. Mitochondria form a dynamic network that can exist as a network throughout a cell or as distinct individual structures. Mitochondria are also composed of two membranes, an inner and outer membrane. The inner mitochondrial membrane (IMM) is significantly larger than the outer membrane and must fold upon itself to be contained within the outer mitochondrial membrane (OMM). These folds are known as cristae. Altogether these different membrane compartments specialize in different functions of the mitochondria. The OMM is responsible for passage of small metabolites into and out of the mitochondria while excluding macromolecules. The IMM is a highly selective barrier between the solutes of the cytosol and those within the mitochondrial matrix. Cristae specialize in oxidative phosphorylation. The functions of these membranes are afforded by membrane proteins that are able to transport specific solutes. The appropriate localization, assembly into multi-subunit protein complexes, and wild-type function of these membrane proteins therefore is vital for mitochondria to maintain appropriate function and support cellular survival. This review will address the composition and functions of mitochondrial membrane localized multi-subunit protein complexes along with how these proteins undergo degradation to maintain homeostatic functions of mitochondria in the context of mitochondria specific transporters and ion channels. Due to the large number of known mitochondrial membrane transporters and ion channels this review will focus on the topics presented at the Mitochondrial Ion Channels and Transporters Symposium hosted by the New York University College of Dentistry in September 2015 in honor of Casey Kinnally.  相似文献   

12.
All small Tim proteins of the mitochondrial intermembrane space contain two conserved CX(3)C motifs, which form two intramolecular disulfide bonds essential for function, but only the cysteine-reduced, but not oxidized, proteins can be imported into mitochondria. We have shown that Tim10 can be oxidized by glutathione under cytosolic concentrations. However, it was unknown whether oxidative folding of other small Tims can occur under similar conditions and whether oxidative folding competes kinetically with mitochondrial import. In the present study, the effect of glutathione on the cysteine-redox state of Tim9 was investigated, and the standard redox potential of Tim9 was determined to be approx. -0.31 V at pH 7.4 and 25 degrees C with both the wild-type and Tim9F43W mutant proteins, using reverse-phase HPLC and fluorescence approaches. The results show that reduced Tim9 can be oxidized by glutathione under cytosolic concentrations. Next, we studied the rate of mitochondrial import and oxidative folding of Tim9 under identical conditions. The rate of import was approx. 3-fold slower than that of oxidative folding of Tim9, resulting in approx. 20% of the precursor protein being imported into an excess amount of mitochondria. A similar correlation between import and oxidative folding was obtained for Tim10. Therefore we conclude that oxidative folding and mitochondrial import are kinetically competitive processes. The efficiency of mitochondrial import of the small Tim proteins is controlled, at least partially in vitro, by the rate of oxidative folding, suggesting that a cofactor is required to stabilize the cysteine residues of the precursors from oxidation in vivo.  相似文献   

13.
The Mia40 import pathway facilitates the import and oxidative folding of cysteine-rich protein substrates into the mitochondrial intermembrane space. Here we describe the in vitro and in organello oxidative folding of Cmc1, a twin CX(9)C-containing substrate, which contains an unpaired cysteine. In vitro, Cmc1 can be oxidized by the import receptor Mia40 alone when in excess or at a lower rate by only the sulfhydryl oxidase Erv1. However, physiological and efficient Cmc1 oxidation requires Erv1 and Mia40. Cmc1 forms a stable intermediate with Mia40 and is released from this interaction in the presence of Erv1. The three proteins are shown to form a ternary complex in mitochondria. Our results suggest that this mechanism facilitates efficient formation of multiple disulfides and prevents the formation of non-native disulfide bonds.  相似文献   

14.
The Archaeoglobus fulgidis gene RS27_ARCFU encodes the 30S ribosomal protein S27e. Here, we present the high-quality NMR solution structure of this archaeal protein, which comprises a C4 zinc finger motif of the CX(2)CX(14-16)CX(2)C class. S27e was selected as a target of the Northeast Structural Genomics Consortium (target ID: GR2), and its three-dimensional structure is the first representative of a family of more than 116 homologous proteins occurring in eukaryotic and archaeal cells. As a salient feature of its molecular architecture, S27e exhibits a beta-sandwich consisting of two three-stranded sheets with topology B(decreasing), A(increasing), F(decreasing), and C(increasing), D(decreasing), E(increasing). Due to the uniqueness of the arrangement of the strands, the resulting fold was found to be novel. Residues that are highly conserved among the S27 proteins allowed identification of a structural motif of putative functional importance; a conserved hydrophobic patch may well play a pivotal role for functioning of S27 proteins, be it in archaeal or eukaryotic cells. The structure of human S27, which possesses a 26-residue amino-terminal extension when compared with the archaeal S27e, was modeled on the basis of two structural templates, S27e for the carboxy-terminal core and the amino-terminal segment of the archaeal ribosomal protein L37Ae for the extension. Remarkably, the electrostatic surface properties of archaeal and human proteins are predicted to be entirely different, pointing at either functional variations among archaeal and eukaryotic S27 proteins, or, assuming that the function remained invariant, to a concerted evolutionary change of the surface potential of proteins interacting with S27.  相似文献   

15.
The Saccharomyces cerevisiae TIM10 complex (TIM10c) is an ATP-independent chaperone of the mitochondrial intermembrane space, involved in transport of polytopic membrane proteins. The complex is an alpha(3)beta(3) hexamer of Tim9 and Tim10 subunits. We have generated specific mutations in charged residues in the central core domain of each subunit delineated by the characteristic twin CX(3)C motif, and investigated the effect of these mutations on subunit folding, complex assembly and TIM10 function in vitro and in vivo. Any combination of mutations that included a specific glutamate residue, conserved in all known Tim9 and Tim10 sequences, abolished assembly of the TIM10 complex. In vivo complementation analyses using a MET3-TIM10 strain that is selectively inactivated for the expression of wild-type Tim10 showed that (i) an N-terminal deleted version of Tim10 that was previously shown to be defective in substrate binding is lethal under all conditions, but (ii) the charged residues mutant of Tim10 that is defective in assembly with Tim9 can restore growth in glucose, but not in non-fermentable carbon sources. These data suggest that formation of the hexamer is beneficial but not vital for TIM10 function, whilst the N-terminal substrate-binding region of Tim10 is essential in vivo.  相似文献   

16.
The minichromosome maintenance (MCM) proteins, a family of six conserved polypeptides found in all eukaryotes, are essential for DNA replication. The archaeon Methanobacterium thermoautotrophicum Delta H contains a single homologue of MCM with biochemical properties similar to those of the eukaryotic enzyme. The amino acid sequence of the archaeal protein contains a putative zinc-binding domain of the CX(2)CX(n)CX(2)C (C(4)) type. In this study, the roles of the zinc finger domain in MCM function were examined using recombinant wild-type and mutant proteins expressed and purified from Escherichia coli. The protein with a mutation in the zinc motif forms a dodecameric complex similar to the wild-type enzyme. The mutant enzyme, however, is impaired in DNA-dependent ATPase activity and single-stranded DNA binding, and it does not possess helicase activity. These results illustrate the importance of the zinc-binding domain for archaeal MCM function and suggest a role for zinc binding in the eukaryotic MCM complex as well, since four out of the six eukaryotic MCM proteins contain a similar zinc-binding motif.  相似文献   

17.
Connexins (CXs), as a component of gap junction channel, are homologous four transmembrane-domain proteins, with numerous studies confirming their auditory functions. Among a cohort of patients having incurred non-syndromic hearing loss, we identified two novel missense mutations, p.R15G and p.L23H, in the GJC3 gene encoding CX30.2/CX31.3, as causally related to hearing loss in previous study. However, the functional alteration of CX30.2/CX31.3 caused by the mutant GJC3 gene remains unknown. In this study, we compared the intracellular distribution of mutant CX30.2/CX31.3 (p.R15G and p.L23H) with the wild-type (WT) protein in HeLa cells and the effect of the mutant protein had on those cells. Analytical results indicated that p.R15G and p.L23H mutant exhibited continuous staining along apposed cell membranes in the fluorescent localization assay, which is the same with the WT. Moreover, ATP release (hemichannel function) is less in HeLa cells carrying mutant GJC3 genes than those of WT expressing cells. We believe that although p.R15G and p.L23H mutants do not decrease the trafficking of CX proteins, mutations in GJC3 genes result in a loss of hemichannel function of CX30.2/CX31.3 protein, possibly causing hearing loss. Results of this study provide a novel molecular explanation for the role of GJC3 in hearing loss.  相似文献   

18.
The mitochondrion is known as the “powerhouse” of eukaryotic cells since it is the main site of adenosine 5′‐triphosphate (ATP) production. Using a temperature‐sensitive fluorescent probe, it has recently been suggested that the stray free energy, not captured into ATP, is potentially sufficient to sustain mitochondrial temperatures higher than the cellular environment, possibly reaching up to 50 °C. By 50 °C, some DNA and mitochondrial proteins may reach their melting temperatures; how then do these biomolecules maintain their structure and function? Further, the production of reactive oxygen species (ROS) accelerates with temperature, implying higher oxidative stresses in the mitochondrion than generally appreciated. Herein, it is proposed that mitochondrial heat shock proteins (particularly Hsp70), in addition to their roles in protein transport and folding, protect mitochondrial proteins and DNA from thermal and ROS damage. Other thermoprotectant mechanisms are also discussed.  相似文献   

19.
Cell survival depends on essential processes in mitochondria. Various proteases within these organelles regulate mitochondrial biogenesis and ensure the complete degradation of excess or damaged proteins. Many of these proteases are highly conserved and ubiquitous in eukaryotic cells. They can be assigned to three functional classes: processing peptidases, which cleave off mitochondrial targeting sequences of nuclearly encoded proteins and process mitochondrial proteins with regulatory functions; ATP-dependent proteases, which either act as processing peptidases with regulatory functions or as quality-control enzymes degrading non-native polypeptides to peptides; and oligopeptidases, which degrade these peptides and mitochondrial targeting sequences to amino acids. Disturbances of protein degradation within mitochondria cause severe phenotypes in various organisms and can lead to the induction of apoptotic programmes and cell-specific neurodegeneration in mammals. After an overview of the proteolytic system of mitochondria, we will focus on versatile functions of ATP-dependent AAA proteases in the inner membrane. These conserved proteolytic machines conduct protein quality surveillance of mitochondrial inner membrane proteins, mediate vectorial protein dislocation from membranes, and, acting as processing enzymes, control ribosome assembly, mitochondrial protein synthesis, and mitochondrial fusion. Implications of these functions for cell-specific axonal degeneration in hereditary spastic paraplegia will be discussed.  相似文献   

20.
Tim10 and all the small Tim proteins of the mitochondrial intermembrane space contain a consensus twin CX3C Zn2+-finger motif. While disulphide bond formation between the Cys residues of this motif is essential for complex formation by the small Tim proteins, the specific role of Zn2+-binding during the import and assembly of these proteins is not clear. In this study, we investigated the effects of the biologically relevant thiol-disulphide redox molecule, glutathione, and Zn2+-binding on the oxidative folding of yeast mitochondrial Tim10 using both biochemical and biophysical methods in vitro. We show that, whilst oxidized Tim10 cannot be reduced by reduced glutathione, reduced Tim10 is effectively oxidized at levels of glutathione comparable to those found in the cytosol. The oxidized Tim10 generated in the presence of glutathione is competent for complex formation with its partner protein Tim9, confirming it has a native fold. The standard redox potential of Tim10 at pH 7.4 was determined to be -0.32 V, confirming that Tim10 is a much stronger reductant than glutathione (-0.26 V, at pH 7.4) and could therefore be oxidized rapidly by oxidized glutathione in the cytosol. However, we found that Zn2+-binding can stabilize the reduced Tim10, decreasing the rate of the oxidative folding more than tenfold. In addition, we show that protein disulphide isomerase can catalyse the oxidative folding of Tim10 provided that Zn2+ was removed. We propose that Zn2+-binding is essential to maintain the protein in a reduced and import-competent state in the cytosol, and that zinc has to be removed after the protein is imported into mitochondria to initiate protein oxidative folding and assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号