首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The biosynthesis of staurosporine, rebeccamycin, and goadsporin, which are produced by actinomycetes and contain characteristic heterocyclic rings, was characterized by genetic methods. Staurosporine and rebeccamycin contain an indolocarbazole ring synthesized from two molecules of tryptophan, with indolepyruvic acid imine and chromopyrrolic acid as biosynthetic intermediates. A tetrameric hemoprotein synthesizes chromopyrrolic acid, and cytochrome P450 peroxidase catalyzes the intramolecular C–C coupling and decarboxylation of chromopyrrolic acid to form the indolocarbazole core. Goadsporin is a thiopeptide containing thiazole and oxazole heterocyclic rings. The structural gene godA is ribosomally translated to a goadsporin precursor peptide, and oxazole, methyloxazole, and thiazole rings are derived from serine, threonine, and cystein through post-translational modifications. On the basis of these knowledges, a wide variety of indolocarbazole and goadsporin analogs through the rational gene recombination and disruption of these biosynthetic genes were successfully produced.  相似文献   

2.
Rebeccamycin, a member of the tryptophan-derived indolocarbazole family, is produced by Lechevalieria aerocolonigenes ATCC 39243. The biosynthetic pathway that specifies biosynthesis of this important metabolite is comprised of 11 genes spanning 18 kb of DNA. A presumed early enzyme involved in elaboration of the rebeccamycin aglycone is encoded by rebO, located at the left-hand region of the reb gene cluster. The deduced protein product, RebO (51.9 kDa), is an L-amino acid oxidase (L-AAO) that has 27% identity to an L-AAO from Scomber japonicus (animal, mackerel) and is a member of the family of FAD-dependent oxidase enzymes. In order to study the biochemical properties of this key enzyme, the rebO gene was overexpressed and purified from Escherichia coli. Biochemical characterization showed that RebO is dimeric, with a molecular mass of approximately 101 kDa. Further analysis revealed that the enzyme contains a noncovalently bound FAD cofactor and is reoxidized at the expense of molecular oxygen by producing one molecule of hydrogen peroxide. Based on kinetic studies, RebO shows significant preference for 7-chloro-L-tryptophan, suggesting its likely role as the natural early pathway substrate. Furthermore, the native RebO enzyme has evident, albeit limited, flexibility as shown by bioconversion studies with unnatural substrates. This work provides the first analysis of a structural enzyme involved in construction of this important class of indolocarbazole natural products.  相似文献   

3.
Indolocarbazole metabolite K-252a is a natural product that was previously reported as a potent protein kinase C inhibitor with in vitro and in vivo potency. From a biosynthetic viewpoint, this compound possesses structurally interesting features such as an unusual furanosyl sugar moiety, which are absent in the well-studied staurosporine and rebeccamycin. A cosmid library from genomic DNA of Nonomuraea longicatena JCM 11136 was constructed and screened for the presence of genes to be involved in the biosynthesis of indolocarbazole K-252a. Using as a probe an internal fragment of vioB, a Chromobacterium violaceum gene encoding a multifunctional enzyme that catalyzes tryptophan decarboxylation and condensation reaction in violacein biosynthesis, we isolated a DNA region that directed the biosynthesis of K-252a when introduced into the heterologous expression host Streptomyces albus. Sequence analysis of 45 kb revealed genes for indolocarbazole core formation, glycosylation, and sugar methylation, as well as a regulatory gene and two resistance/secretion genes. The cloned genes should help to elucidate the molecular basis for indolocarbazole biosynthesis and generate new indolocarbazole analogues by genetic engineering.  相似文献   

4.
The indolocarbazole family of natural products is a source of lead compounds with potential therapeutic applications in the treatment of cancer and neurodegenerative disorders. Rebeccamycin and staurosporine are two members of this family, which are produced by different actinomycete strains. Although both compounds display antitumor activity, their distinct structural features determine different modes of action: rebeccamycin targets DNA topoisomerase I, while staurosporine is a protein kinase inhibitor. Here we examine the biosyntheses of rebeccamycin and staurosporine while we summarize our recent work concerning (a) identification and characterization of genes involved in the biosynthesis of indolocarbazoles in actinomycetes, and (b) generation of novel indolocarbazole derivatives in microorganisms by combinatorial biosynthesis.  相似文献   

5.
Howard-Jones AR  Walsh CT 《Biochemistry》2005,44(48):15652-15663
During the biosynthesis of the fused six-ring indolocarbazole scaffolds of rebeccamycin and staurosporine, two molecules of L-tryptophan are processed to a pyrrole-containing five-ring intermediate known as chromopyrrolic acid. We report here the heterologous expression of RebO and RebD from the rebeccamycin biosynthetic pathway in Escherichia coli, and tandem action of these two enzymes to construct the dicarboxypyrrole ring of chromopyrrolic acid. Chromopyrrolic acid is oxidized by six electrons compared to the starting pair of L-tryptophan molecules. RebO is an L-tryptophan oxidase flavoprotein and RebD a heme protein dimer with both catalase and chromopyrrolic acid synthase activity. Both enzymes require dioxygen as a cosubstrate. RebD on its own is incompetent with L-tryptophan but will convert the imine of indole-3-pyruvate to chromopyrrolic acid. It displays a substrate preference for two molecules of indole-3-pyruvic acid imine, necessitating a net two-electron oxidation to give chromopyrrolic acid.  相似文献   

6.
Tri1 in Fusarium graminearum encodes a P450 oxygenase   总被引:1,自引:0,他引:1  
Gibberella zeae (asexual state Fusarium graminearum) is a major causal agent of wheat head blight and maize ear rot in North America and is responsible for contamination of grain with deoxynivalenol and related trichothecene mycotoxins. To identify additional trichothecene biosynthetic genes, cDNA libraries were prepared from fungal cultures under trichothecene-inducing conditions in culture and in planta. A gene designated LH1 that was highly expressed under these conditions exhibited only moderate (59%) similarity to known trichothecene biosynthetic cytochrome P450s. To determine the function of LH1, gene disruptants were produced and assessed for trichothecene production. Gene disruptants no longer produced 15-acetyldeoxynivalenol, which is oxygenated at carbon 7 (C-7) and C-8, but rather accumulated calonectrin and 3-deacetylcalonectrin, which are not oxygenated at either C-7 or C-8. These results indicate that gene LH1 encodes a cytochrome P450 responsible for oxygenation at one or both of these positions. Despite the relatively low level of DNA and amino acid sequence similarity between the two genes, LH1 from G. zeae is the probable homologue of Tri1, which encodes a cytochrome P450 required for C-8 oxygenation in F. sporotrichioides.  相似文献   

7.
The staurosporine biosynthetic gene cluster in Streptomyces sp. TP-A0274 consists of 15 sta genes. In the cluster, it was predicted that staN, which shows high similarity to cytochrome P450 is involved in C-N bond formation between the nitrogen at N-12 of aglycone and the carbon at C-5' of deoxysugar. The staN disruptant produced holyrine A instead of staurosporine. The structure of holyrine A is aglycone linking to 2,3,6-trideoxy-3-aminoaldohexose between N-13 and C-1' of deoxysugar. Holyrine A was converted to staurosporine by the staD disruptant. These results indicate that StaN, cytochrome P450 is responsible for C-N bond formation. This is the first example of C-N bond formation catalyzed by cytochrome P450. In addition, holyrine A was confirmed to be an intermediate of staurosporine biosynthesis, which suggests that the N- and O-methylation at C-3' and C-4' takes place after the formation of the C-N bond between C-5' and N-12 in the biosynthetic pathway.  相似文献   

8.
The indolocarbazole staurosporine is a potent inhibitor of a variety of protein kinases. It contains a sugar moiety attached through C-N linkages to both indole nitrogen atoms of the indolocarbazole core. Staurosporine biosynthesis was reconstituted in vivo in a heterologous host Streptomyces albus by using two different plasmids: the 'aglycone vector' expressing a set of genes involved in indolocarbazole biosynthesis together with staG (encoding a glycosyltransferase) and/or staN (coding for a P450 oxygenase), and the 'sugar vector' expressing a set of genes responsible for the biosynthesis of the sugar moiety. Attachment of the sugar to the two indole nitrogens of the indolocarbazole core was dependent on the combined action of StaG and StaN. When StaN was absent, the sugar was attached only to one of the nitrogen atoms, through an N-glycosidic linkage, as in the indolocarbazole rebeccamycin. The StaG glycosyltransferase showed flexibility with respect to the sugar donor. When the 'sugar vector' was substituted by constructs directing the biosynthesis of l-rhamnose, L-digitoxose, L-olivose and D-olivose, respectively, StaG and StaN were able to transfer and attach all of these sugars to the indolocarbazole aglycone.  相似文献   

9.
Gibberella zeae (asexual state Fusarium graminearum) is a major causal agent of wheat head blight and maize ear rot in North America and is responsible for contamination of grain with deoxynivalenol and related trichothecene mycotoxins. To identify additional trichothecene biosynthetic genes, cDNA libraries were prepared from fungal cultures under trichothecene-inducing conditions in culture and in planta. A gene designated LH1 that was highly expressed under these conditions exhibited only moderate (59%) similarity to known trichothecene biosynthetic cytochrome P450s. To determine the function of LH1, gene disruptants were produced and assessed for trichothecene production. Gene disruptants no longer produced 15-acetyldeoxynivalenol, which is oxygenated at carbon 7 (C-7) and C-8, but rather accumulated calonectrin and 3-deacetylcalonectrin, which are not oxygenated at either C-7 or C-8. These results indicate that gene LH1 encodes a cytochrome P450 responsible for oxygenation at one or both of these positions. Despite the relatively low level of DNA and amino acid sequence similarity between the two genes, LH1 from G. zeae is the probable homologue of Tri1, which encodes a cytochrome P450 required for C-8 oxygenation in F. sporotrichioides.  相似文献   

10.
Cloning of genes encoding polyketide synthases (PKSs) has allowed us to identify a gene cluster for ML-236B biosynthesis in Penicillium citrinum. Like lovastatin, which is produced by Aspergillus terreus, ML-236B (compactin) inhibits the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Genomic sequencing and Northern analysis showed that nine predicted genes for ML-236B biosynthesis were located within a 38-kb region and were transcribed when ML-236B was produced. The predicted amino acid sequences encoded by these nine genes, designated mlcA- mlcH and mlcR, were similar to those encoded by the genes for lovastatin synthesis, and were therefore assumed to be involved either directly or indirectly in ML-236B biosynthesis. Targeted disruption experiments provided evidence that two PKS genes in the cluster, mlcA and mlcB, are required for the biosynthesis of the nonaketide and the diketide moieties, respectively, of ML-236B, suggesting that the gene cluster as a whole is responsible for ML-236B biosynthesis in P. citrinum. Bioconversion of some of the predicted intermediates by an mlcA-disrupted mutant was also investigated in order to analyze the ML-236B biosynthetic pathway. The molecular organization of the gene cluster and proposed functions for the ML-236B biosynthetic genes in P. citrinum are described.  相似文献   

11.
WYK-1 is a dipeptidyl peptidase IV inhibitor produced by Aspergillus oryzae strain AO-1. Because WYK-1 is an isoquinoline derivative consisting of three l-amino acids, we hypothesized that a nonribosomal peptide synthetase was involved in its biosynthesis. We identified 28 nonribosomal peptide synthetase genes in the sequenced genome of A. oryzae RIB40. These genes were also identified in AO-1. Among them, AO090001000009 (wykN) was specifically expressed under WYK-1-producing conditions in AO-1. Therefore, we constructed wykN gene disruptants of AO-1 after nonhomologous recombination was suppressed by RNA interference to promote homologous recombination. Our results demonstrated that the disruptants did not produce WYK-1. Furthermore, the expression patterns of 10 genes downstream of wykN were similar to the expression pattern of wykN under several conditions. Additionally, homology searches revealed that some of these genes were predicted to be involved in WYK-1 biosynthesis. Therefore, we propose that wykN and the 10 genes identified in this study constitute the WYK-1 biosynthetic gene cluster.  相似文献   

12.
We report the results of cloning genes for two key biosynthetic enzymes of different 5-aminolevulinic acid (ALA) biosynthetic routes from Streptomyces. The genes encode the glutamyl-tRNAGlu reductase (GluTR) of the C5 pathway and the ALA synthase (ALAS) of the Shemin pathway. While Streptomyces coelicolor A3(2) synthesizes ALA via the C5 route, both pathways are operational in Streptomyces nodosus subsp. asukaensis, a producer of asukamycin. In this strain, the C5 route produces ALA for tetrapyrrole biosynthesis; the ALA formed by the Shemin pathway serves as a precursor of the 2-amino-3-hydroxycyclopent-2-enone moiety (C5N unit), an antibiotic component. The growth of S. nodosus and S. coelicolor strains deficient in the GluTR genes (gtr) is strictly dependent on ALA or heme supplementation, whereas the defect in the ALAS-encoding gene (hemA-asuA) abolishes the asukamycin production in S. nodosus. The recombinant hemA-asuA gene was expressed in Escherichia coli and in Streptomyces, and the encoded enzyme activity was demonstrated both in vivo and in vitro. The hemA-asuA gene is situated within a putative cluster of asukamycin biosynthetic genes. This is the first report about the cloning of genes for two different ALA biosynthetic routes from a single bacterium.  相似文献   

13.
Elloramycin and oleandomycin are two polyketide compounds produced by Streptomyces olivaceus Tü2353 and Streptomyces antibioticus ATCC11891, respectively. Elloramycin is an anthracycline-like antitumor drug and oleandomycin a macrolide antibiotic. Expression in S. albus of a cosmid (cos16F4) containing part of the elloramycin biosynthetic gene cluster produced the elloramycin non-glycosylated intermediate 8-demethyl-tetracenomycin C. Several plasmid constructs harboring different gene combinations of L-oleandrose (neutral 2,6-dideoxyhexose attached to the macrolide antibiotic oleandomycin) biosynthetic genes of S. antibioticus that direct the biosynthesis of L-olivose, L-oleandrose and L-rhamnose were coexpressed with cos16F4 in S. albus. Three new hybrid elloramycin analogs were produced by these recombinant strains through combinatorial biosynthesis, containing elloramycinone or 12a-demethyl-elloramycinone (= 8-demethyl-tetracenomycin C) as aglycone moiety encoded by S. olivaceus genes and different sugar moieties, coded by the S. antibioticus genes. Among them is L-olivose, which is here described for the first time as a sugar moiety of a natural product.  相似文献   

14.
A bacterial artificial chromosome (BAC) library was constructed to isolate the biosynthetic gene cluster for the polyketide/peptide hybrid-type antibiotic cystothiazole A from the myxobacterium Cystobacter fuscus strain AJ-13278. Sequence analysis of a 63.9 kb contiguous region that encompasses the biosynthetic gene cluster (cta) led to the identification of a polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) hybrid gene cluster 32.1 kb in size, which consists of six open reading frames (ORFs), ctaB to ctaG, as well as downstream genes ctaJ and ctaK (1.0 and 0.9 kb, respectively) responsible for the final biosynthetic steps. The genes ctaB, ctaE, and ctaF encode PKSs, the genes ctaC and ctaG encode NRPSs, and ctaD encodes an NRPS-PKS hybrid enzyme. Disruption of ctaD impaired cystothiazole A production. Additionally, two downstream genes, ctaJ and ctaK, which encode a nitrilase and an O-methyltransferase, respectively, must be responsible for the final methyl ester formation in the cystothiazole A biosynthesis.  相似文献   

15.
The diversity of indolocarbazole natural products results from the differences in oxidation states of the pyrroline ring moiety. In the biosynthetic pathways for staurosporine and rebeccamycin, two homologous enzymes having 64% identity, StaC and RebC, are responsible for the selective production of K252c, which has one oxo group at the pyrroline ring, and arcyriaflavin A, which has two. Although StaC has a FAD-binding motif, most StaC molecules do not contain FAD, and the protein cannot be reconstituted with FAD in vitro. In this study, we mutated Ala-118 in StaC by replacing a glutamine that is conserved in FAD monooxygenases, resulting in increased FAD content as well as catalytic activity. In addition, mutations around the substrate-binding sites of StaC and RebC can change the product selectivity. Specifically, StaC-N244R-V246T and RebC-F216V-R239N mutants produced substantial amounts of arcyriaflavin A and K252c, respectively.  相似文献   

16.
The diversity of indolocarbazole natural products results from the differences in oxidation states of the pyrroline ring moiety. In the biosynthetic pathways for staurosporine and rebeccamycin, two homologous enzymes having 64% identity, StaC and RebC, are responsible for the selective production of K252c, which has one oxo group at the pyrroline ring, and arcyriaflavin A, which has two. Although StaC has a FAD-binding motif, most StaC molecules do not contain FAD, and the protein cannot be reconstituted with FAD in vitro. In this study, we mutated Ala-118 in StaC by replacing a glutamine that is conserved in FAD monooxygenases, resulting in increased FAD content as well as catalytic activity. In addition, mutations around the substrate-binding sites of StaC and RebC can change the product selectivity. Specifically, StaC-N244R-V246T and RebC-F216V-R239N mutants produced substantial amounts of arcyriaflavin A and K252c, respectively.  相似文献   

17.
GERI-155 is a macrolide antibiotic containing two deoxyhexose molecules which has antimicrobial activities against gram-positive bacteria. The deoxyhexose biosynthetic gene cluster of GERI-155 from Streptomyces sp. GERI-155 genome has now been isolated. Four orf were identified and a putative orf, supposed to code for the dTDP-deoxyglucose epimerase gene, was designated as gerF. gerF was expressed in E. coli using recombinant expression vector pHJ3. The recombinant protein expressed in a soluble form. The enzyme was purified by Ni-affinity column using imidazole buffer as eluents. The molecular mass of the expressed protein correlated with the predicted mass (36,000 Da) deduced from the cloned gene sequence data. The purified enzyme produced maltol from dTDP-4-keto-6-deoxyglucose and it was confirmed that the expressed protein was dTDP-deoxyglucose epimerase catalyzing epimerization of C-3 and C-5 or C-3 of dTDP-4-keto-6-deoxyglucose.  相似文献   

18.
KS-505a (longestin), produced by Streptomyces argenteolus, has a unique structure that consists of a tetraterpene (C40) skeleton, to which a 2-O-methylglucuronic acid and an o-succinyl benzoate moiety are attached. It is a novel inhibitor of calmodulin-dependent cyclic-nucleotide phosphodiesterase, which is representative of a potent anti-amnesia drug. As a first step to understanding the biosynthetic machinery of this unique and pharmaceutically useful compound, we cloned a KS505a biosynthetic gene cluster. First we searched for a gene encoding octaprenyl diphosphates, which yielded a C40 precursor by PCR, and four candidate genes were obtained. Among these, one was confirmed to have the expected enzyme activity by recombinant enzyme assay. On the basis of an analysis of the flanking regions of the gene, a putative KS-505a biosynthetic gene cluster consisting of 24 ORFs was judged perhaps to be present on a 28-kb DNA fragment. A gene disruption experiment was also employed to confirm that the cluster indeed participated in KS-505a biosynthesis. This is believed to be the first report detailing the gene cluster of a cyclized tetraterpenoid.  相似文献   

19.
Geldanamycin and the closely related herbimycins A, B, and C were the first benzoquinone ansamycins to be extensively studied for their antitumor properties as small-molecule inhibitors of the Hsp90 protein chaperone complex. These compounds are produced by two different Streptomyces hygroscopicus strains and have the same modular polyketide synthase (PKS)-derived carbon skeleton but different substitution patterns at C-11, C-15, and C-17. To set the stage for structural modification by genetic engineering, we previously identified the gene cluster responsible for geldanamycin biosynthesis. We have now cloned and sequenced a 115-kb segment of the herbimycin biosynthetic gene cluster from S. hygroscopicus AM 3672, including the genes for the PKS and most of the post-PKS tailoring enzymes. The similarities and differences between the gene clusters and biosynthetic pathways for these closely related ansamycins are interpreted with support from the results of gene inactivation experiments. In addition, the organization and functions of genes involved in the biosynthesis of the 3-amino-5-hydroxybenzoic acid (AHBA) starter unit and the post-PKS modifications of progeldanamycin were assessed by inactivating the subclusters of AHBA biosynthetic genes and two oxygenase genes (gdmM and gdmL) that were proposed to be involved in formation of the geldanamycin benzoquinoid system. A resulting novel geldanamycin analog, KOS-1806, was isolated and characterized.  相似文献   

20.
Ryan KS 《PloS one》2011,6(8):e23694
The cladoniamides are bis-indole alkaloids isolated from Streptomyces uncialis, a lichen-associated actinomycete strain. The cladoniamides have an unusual, indenotryptoline structure rarely observed among bis-indole alkaloids. I report here the isolation, sequencing, and annotation of the cladoniamide biosynthetic gene cluster and compare it to the recently published gene cluster for BE-54017, a closely related indenotryptoline natural product. The cladoniamide gene cluster differs from the BE-54017 gene cluster in gene organization and in the absence of one N-methyltransferase gene but otherwise contains close homologs to all genes in the BE-54017 cluster. Both gene clusters encode enzymes needed for the construction of an indolocarbazole core, as well as flavin-dependent enzymes putatively involved in generating the indenotryptoline scaffold from an indolocarbazole. These two bis-indolic gene clusters exemplify the diversity of biosynthetic routes that begin from the oxidative dimerization of two molecules of L-tryptophan, highlight enzymes for further study, and provide new opportunities for combinatorial engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号