首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liang YY  Zhang LM 《Biomacromolecules》2007,8(5):1480-1486
Functionalized Fe3O4 nanoparticles decorated with carboxymethylated chitosan were developed and used as a novel magnetic support for the covalent conjugation of papain, one of the most important industrial proteases. The analyses of transmission electron micrographs (TEM) and X-ray diffraction (XRD) showed that the size and structure of functionalized Fe3O4 nanoparticles had no significant changes after conjugation with papain. Magnetic measurement revealed that the resultant papain-conjugated nanoparticles were superparamagnetic with a saturation magnetization of 59.3 emu/g. Analyses of Fourier transform infrared (FTIR) spectroscopy and measurement of zeta potentials confirmed the conjugation of papain with the functionalized Fe3O4 nanoparticles. Compared with the native papain, the conjugated papain was found to exhibit enhanced enzyme activity, better tolerance to the variations of medium pH and temperature, and improved storage stability as well as good reusability. Considering that the magnetic separation technique possesses the advantages of rapidity, high efficiency, cost-effectiveness, and lack of negative effect on biological activity, such a bioconjugate system may hold potential applications in food, pharmaceutical, leather, cosmetic, and textile industries.  相似文献   

2.

Background  

Bio-conjugated nanoparticles are important analytical tools with emerging biological and medical applications. In this context, in situ conjugation of nanoparticles with biomolecules via laser ablation in an aqueous media is a highly promising one-step method for the production of functional nanoparticles resulting in highly efficient conjugation. Increased yields are required, particularly considering the conjugation of cost-intensive biomolecules like RNA aptamers.  相似文献   

3.
Methodological approaches to the creation of nanoparticles based on chitosan derivatives and targeted to the GD2-positive tumor cells were developed. The GD2-specific monoclonal antibodies and their Fab-fragments and scFv-fragments were obtained and studied as vector molecules. Various methods for covalent conjugation of these molecules to the nanoparticles were also studied. It was shown that site-specific conjugation of scFv-fragments of GD2-specific antibodies to the chitosan nanoparticles by using a reagent BMPS is the optimal approach to create targeted chitosan-based nanoparticles directed to tumor-associated ganglioside GD2.  相似文献   

4.
Molecular optical imaging has shown promise in visualizing molecular biomarkers with subcellular resolution both noninvasively and in real-time. Here, we use gold nanoparticles as optical probes to provide meaningful signal in the presence of targeted biomarkers. We present a novel conjugation technique to control the binding orientation of antibodies on the surface of gold nanoparticles to maximize antibody functionality. Briefly, a heterobifunctional linker, hydrazide-polyethylene glycol-dithiol, is used to directionally attach the Fc, or nonbinding region of the antibody, to the gold nanoparticle surface. The conjugation strategy allows for multiplexing various glycosylated antibodies on a single nanoparticle. We present a method to prepare multifunctional nanoparticles by incorporating targeting and delivery moieties on the same nanoparticle that addresses the challenge of imaging intracellular biomarkers. The time estimate for the entire protocol is approximately 6 h.  相似文献   

5.

Aptamers are DNA or RNA single-stranded molecules that bind specifically to target molecules with high affinity. Function of nucleic acid aptamers is based on organized tertiary structure of them that is related to primary sequence, length of nucleic acid molecule, and environmental conditions. Herein, a localized surface plasmon resonance (LSPR) nanobioprobe has been developed based on specific aptamer-conjugated gold nanoparticles for rapid detection of methamphetamine. Detection of methamphetamine was studied via monitoring the gold nanoparticles (GNPs) LSPR band alterations in the presence of different concentrations. The covalent conjugation has been confirmed with FT-IR spectroscopy, and size alterations of gold nanoparticles before and after the conjugation state were monitored using dynamic light scattering (DLS) technique. The results show high affinity of aptamer to methamphetamine. Moreover, the results show conjugated aptamer with GNP in different concentrations of methamphetamine that contribute to color changes that is visible with unaided eye. Also, 14 nm LSPR shift was seen after conjugation of aptamer with GNP. Nanoparticle diameter after conjugation with aptamer was increased from 30 to 91 nm and decreased after incubation with methamphetamine (due to folding) from 91 to 84 nm. Detection limit of this designed nanoprobe is 500 nM. Plasmonic nanoparticle-based nanobioprobe is a new field for development of sensitive detection systems.

  相似文献   

6.
Incubation of rat brain mitochondria with ubiquitin and ATP followed by subsequent mitochondria sedimentation was accompanied by reduction of ubiquitin content in the supernatant. This decrease was more pronounced in the presence of ATP-regenerating system in the incubation medium (creatine phosphate/creatine phosphokinase). This ubiquitin incorporation into brain mitochondria observed only in the presence of ATP in the incubation medium increased sensitivity of monoamine oxidases (MAO) A and B to proteolytic inactivation by trypsin and papain, respectively. (Ubiquitin did not influence sensitivity of MAO B to trypsin and MAO A to papain). The data obtained suggest that ubiquitin incorporation into rat brain mitochondria increases susceptibility of MAOs to certain exogenous proteases, however, it remains unclear whether these changes stem from direct MAO-ubiquitin conjugation or reflect alterations in the membrane environment of these enzymes.  相似文献   

7.
Srinivasan B  Huang X 《Chirality》2008,20(3-4):265-277
A general method is introduced to immobilize organic molecules on magnetic nanoparticles through silanization reactions and determine the maximum loading level by UV-vis spectroscopy. Loading levels of 1.5 x 10(-3) mol per gram of nanoparticle were obtained with structurally diverse compounds such as rhodamine B and glucosamine. The length of the linker did not have a significant effect on loading as comparable maximum amounts of rhodamine B were immobilized on magnetic nanoparticles regardless of the linker length. Interestingly, rhodamine B derivatives lost conjugation during synthetic manipulations due to reversible spiroisobenzofuran formation. Full regeneration of conjugation was found to be slow with rhodamine B attached on magnetic nanoparticles. The results obtained from these studies will be useful for studying surface functionalization of MNPs in general.  相似文献   

8.
We successfully conjugated 1-2 nm diameter silicon nanoparticles to a 5'-amino-modified oligonucleotide (60mer) that contains a C6 linker between amide and phosphate groups. The conjugation was implemented via two photoinduced reactions followed by a DNA labeling step through formation of a carboxamide bond. Photoluminescence of the conjugates is dominated by two blue bands (400 and 450 nm maximal) under 340 nm excitation. The quantum yield of oligonucleotide-conjugated nanoparticles was determined to be 0.08 as measured against quinine sulfate in 0.1 M HClO(4) as a reference standard. We report a conjugation process that allows labeling of Si nanoparticles to an oligonucleotide in aqueous solutions. Ways to further optimize the procedure in order to achieve narrower and brighter photoluminescence are discussed.  相似文献   

9.
Self-assembled inorganic-protein arrays with well-defined and controllable size and structure were obtained through the Fe(II) complexation of protein-conjugated terpyridine units (ligand). The atom-level control of the ligand is obtained through residue-specific conjugation between the complexing unit (terpy) containing an activity-based probe and a corresponding active enzyme (papain). The Fe(II)-based self-assembly performed on this unique building block (ligand) leads to chemical species of unprecedented constitution. The first example presented herein opens the way to a shape and size regime usually reserved to polymers.  相似文献   

10.
We investigated the bioconjugation of enzymes on polymer nanoparticles covered with bioinert phosphorylcholine groups. A water-soluble amphiphilic phospholipid polymer (PMBN) was specially designed for preparation of nanoparticles and conjugation with enzymes on them. The PMBN was prepared by random copolymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC), n-butyl methacrylate, and p-nitrophenylester bearing methacrylate. The PMBN was used as an emulsifier and a surface modifier to prepare the poly(l-lactic acid) nanoparticles by a solvent evaporation technique in aqueous medium. The nanoparticles covered with phosphorylcholine groups were stably dispersed in an aqueous solution and a phosphate buffered saline. The diameter and surface zeta-potential of the nanoparticles were ca. 200 nm and -6 mV, respectively. The p-nitrophenyl ester groups, which are active ester units for the amino groups of the protein, were located at the surface of the nanoparticles. Both acetylcholine esterase and choline oxidase were co-immobilized (dual-mode conjugation) by the reaction between the p-nitrophenyl ester group and the amino group of these enzymes. The enzymatic reactions on the nanoparticles were followed using a microdialysis biosensor system with a microtype hydrogen peroxide electrode in the probe. The nanoparticles conjugated with these enzymes could detect the acetylcholine chloride as hydrogen peroxide, which is a product of the enzymatic reactions on the surface of the nanoparticles in the probe. Namely, continuous enzyme reactions could be occurring on the surface of the nanoparticles. It is concluded that the nanoparticles are a promising tool for a highly sensitive and microdiagnostic system.  相似文献   

11.
Targeted metallic nanoparticles have shown potential as a platform for development of molecular-specific contrast agents. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In this study, we investigated the development of aptamer-based gold nanoparticles as contrast agents, using aptamers as targeting agents and gold nanoparticles as imaging agents. We devised a novel conjugation approach using an extended aptamer design where the extension is complementary to an oligonucleotide sequence attached to the surface of the gold nanoparticles. The chemical and optical properties of the aptamer-gold conjugates were characterized using size measurements and oligonucleotide quantitation assays. We demonstrate this conjugation approach to create a contrast agent designed for detection of prostate-specific membrane antigen (PSMA), obtaining reflectance images of PSMA(+) and PSMA(-) cell lines treated with the anti-PSMA aptamer-gold conjugates. This design strategy can easily be modified to incorporate multifunctional agents as part of a multimodal platform for reflectance imaging applications.  相似文献   

12.
Immobilized papain on gold nanorods as heterogeneous biocatalysts   总被引:1,自引:0,他引:1  
Papain, a thiol protease present in the latex of Carica papaya, is an enzyme which exhibits broad proteolytic activity, and, for this reason, it is utilized in a variety of industrial applications. Immobilization of papain on gold nanoparticles highly preserves its activity and enhances the stability, allowing the reuse of the linked enzyme many times without any significant loss of its catalytic performance. In particular, k cat and K M values remain substantially unchanged, while immobilized form shows a higher activity on a wider pH range retains 80 % residual activity also at 90 °C and shows higher functionality than the free form when incubated for long time (1 h) at 90 °C and at extreme pH values (3 and 12). A higher activity of immobilized papain with respect to the free form in the presence of various bivalent metal ions, known as strong inhibitors of papain, was also found. The reasons of this enhanced stability of gold nanorods immobilized papain are discussed.  相似文献   

13.
Cellular apoptosis is a prominent feature of many diseases, and this programmed cell death typically occurs before clinical manifestations of disease are evident. A means to detect apoptosis in its earliest, reversible stages would afford a pre-clinical ''window'' during which preventive or therapeutic measures could be taken to protect the heart from permanent damage. We present herein a simple and robust method to conjugate human Annexin V (ANX), which avidly binds to cells in the earliest, reversible stages of apoptosis, to superparamagnetic iron oxide (SPIO) nanoparticles, which serve as an MRI-detectable contrast agent. The conjugation method begins with an oxidation of the SPIO nanoparticles, which oxidizes carboxyl groups on the polysaccharide shell of SPIO. Purified ANX protein is then added in the setting of a sodium borate solution to facilitate covalent interaction of ANX with SPIO in a reducing buffer. A final reduction step with sodium borohydride is performed to complete the reduction, and then the reaction is quenched. Unconjugated ANX is removed from the mix by microcentrifuge filtration. The size and purity of the ANX-SPIO product is verified by dynamic light scattering (DLS). This method does not require addition to, or modification of, the polysaccharide SPIO shell, as opposed to cross-linked iron oxide particle conjugation methods or biotin-labeled nanoparticles. As a result, this method represents a simple, robust approach that may be extended to conjugation of other proteins of interest.  相似文献   

14.
The aim of this research was to design a method of immobilization of high-purity human butyrylcholinesterase on the surface of gold nanoparticles preserving the activity of the enzyme. In order to achieve this aim, the method of fractionation and purification of human butyrylcholinesterase from plasma was modified. The synthesis of 15-nm gold nanoparticles was carried out by citrated method. A method of conjugation of the high-purity butyrylcholinesterase with gold nanoparticles was developed. It was found that the Immobilization of butyrylcholinesterase on the surface of gold nanoparticles resulted in a significant (to 23%) increase in the specific activity of the enzyme.  相似文献   

15.
The efficiency of the treatments involving CNS disorders is commonly diminished by the toxicity, reduced stability and lack of targeting of the administered neuroactive compounds. In this study, we have successfully multifunctionalized CMCht/PAMAM dendrimer nanoparticles by coupling the CD11b antibody and loading MP into the nanoparticles. The modification of the new antibody-conjugated nanoparticles was confirmed by S-TEM observation and (1) H NMR and FTIR spectroscopy. Cytotoxicity assays revealed that the conjugates did not affect the viability of both primary cultures of glial and microglial cells. Trace analyses of FITC-labelled nanoparticles revealed that the uptake of antibody-conjugated nanoparticles was conserved in microglial cells but significantly decreased in astrocytes and oligodendrocytes. Thus, this study demonstrates that antibody conjugation contributes to a modulation of the internalization of these nanocarriers by different cell types, which might be of relevance for specific targeting of CNS cell populations.  相似文献   

16.
In the present work, we report the conjugation of superparamagnetic nanoparticles to a fluorescently labeled oligodeoxyribonucleotide (ODN) able to fold into stable unimolecular guanine quadruple helix under proper ion conditions by means of its thrombin-binding aptamer (TBA) sequence. The novel modified ODN, which contained a fluorescent dU(Py) unit at 3'-end and a 12-amino-dodecyl spacer (C(12)-NH(2)) at 5' terminus, was characterized by ESI-MS and optical spectroscopy (UV, CD, fluorescence), and analyzed by RP-HPLC chromatography and electrophoresis. From CD and fluorescence experiments, we verified that dU(Py) and C(12)-NH(2) incorporation does not interfere with the conformational stability of the G-quadruplex. Subsequently, the conjugation of the pyrene-labeled ODN with the magnetite particles was performed, and the ODN-conjugated nanoparticles were studied through optical spectroscopy (UV, CD, fluorescence) and by enzymatic and chemical assays. We found that the nanoparticles enhanced the stability of the TBA ODN to enzymatic degradation. Finally, we evaluated the amount of the TBA-conjugated nanoparticles immobilized on a magnetic separator in view of the potential use of the nanosystem for the magnetic capture of thrombin from complex mixtures.  相似文献   

17.
Polymer biomolecule hybrids represent a powerful class of highly customizable nanomaterials. Here, we report star-polymer conjugates with DNA using a "ligandless" Cu(I) promoted azide-alkyne cycloaddition click reaction. The multivalency of the star-polymer architecture allows for the concomitant conjugation of other molecules along with the DNA, and the conjugation method provides control over the DNA orientation. The star-polymer DNA nanoparticles are shown to assemble into higher-order nanoassemblies through hybridization. Further, we show that the DNA strands can be utilized in controlled disassembly of the nanostructures.  相似文献   

18.
A simple, cost-effective and rapid colorimetric method for any or all of Hg(2+), Pb(2+) and Cu(2+) detection using papain-functionalized gold nanoparticles (P-AuNPs) has been developed. Papain is a protein with seven cystein residues, which can selectively bind with Hg(2+), Pb(2+) and Cu(2+). We functionalized gold nanoparticles with papain. The P-AuNPs could be used to simultaneously detect Hg(2+), Pb(2+) and Cu(2+), and showed different responses to the three ions in an aqueous solution based on the aggregation-induced color change of gold nanoparticles. The P-AuNPs displayed the most obvious response to mercury ions in water in contrast to lead and copper ions, and the real water sample analysis verified the conclusion. The sensitivity of the detection system was influenced by the pH of the P-AuNPs solution, the concentration of P-AuNPs and the size of gold nanoparticles, and we found that larger gold nanoparticles contributed to more sensitive results. The detection system can detect as low as 200 nM Hg(2+), Pb(2+) or Cu(2+) using 42 nm gold nanoparticles. We expect our approach to have wide-ranging applications in the developing region for monitoring water quality in some areas.  相似文献   

19.
This paper describes the extracellular synthesis of silver nanoparticles from waste part of lychee fruit (peel) and their conjugation with selected antibiotics (amoxicillin, cefixim, and streptomycin). FTIR studies revealed the reduction of metallic silver and stabilization of silver nanoparticles and their conjugates due to the presence of CO (carboxyl), OH (hydroxyl) and CH (alkanes) groups. The size of conjugated nanoparticles varied ranging from 3 to 10 nm as shown by XRD. TEM image revealed the spherical shape of biosynthesized silver nanoparticles. Conjugates of amoxicillin and cefixim showed highest antibacterial activity (147.43 and 107.95%, respectively) against Gram-negative bacteria i.e. Alcaligenes faecalis in comparison with their control counterparts. The highest reduction in MIC was noted against Gram-positive strains i.e. Enterococcus faecium (75%) and Microbacterium oxydans (75%) for amoxicillin conjugates. Anova two factor followed by two-tailed t test showed non-significant results both in case of cell leakage and protein estimation between nanoparticles and conjugates of amoxicillin, cefixime and streptomycin. In case of MDA release, non-significant difference among the test samples against the selected strains. Our study found green-synthesized silver nanoparticles as effective antibacterial bullet against both Gram positive and Gram negative bacteria, but they showed a more promising effect on conjugation with selected antibiotics against Gram negative type.  相似文献   

20.
The electrospray ionization-mass spectrometry (ESI-MS) analysis of three sets of monoclonal antibody-acridinium-9-carboxamide conjugates is described. The conjugates (nine total) were enzymatically digested using papain and the resulting fragments [Fc heavy chain, Fab, or F(ab')(2)] were analyzed using liquid chromatography/ESI-MS. The average number of labels per fragment were calculated using Sigma nx%, where n is the number of acridinium molecules covalently bound to the fragment and x% is the percent relative area of the corresponding peaks in the mass spectrum. When these values were normalized against the molecular weight of their respective region, antibody-dependent labeling patterns were observed. For antibodies T (anti-L-T(4)) and F (anti-FITC), there was a preference for conjugation of the Fab region over the Fc region. For antibody B (anti-biotin), the trend was reversed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号