首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat liver methylating enzymes could methylate tRNA extracted from the livers of rats treated with 35 mg/100 g L-ethionine 19 h prior to sacrifice. 1-methylhypoxanthine and 3-methylcytosine were among the methylated bases synthesized in vitro. The synthesis of 3-methylcytosine was dependent on the presence of Mg++ although this ion inhibited the overall methylation of the tRNA.  相似文献   

2.
The nucleoside composition of tRNA from highly purified yeast mitochondria shows the presence of T, ψ, hU, m1G, m2G, m22G, I and t6A whereas neither m7G, m5C, m3C, m1A, i6A and Y nor O′-methylated nucleosides (which are common in yeast cytoplasmic tRNA) were found. The G+C content is very low (35%). The overall methylation content is 2.7% which is about half the content of yeast cytoplasmic tRNA but similar to that of E. coli tRNA. Some rare nucleosides however which are found in E. coli (s4U, acp3U, m2A, m6A, ms2i6A, Q) were not found in yeast mitochondrial tRNA.  相似文献   

3.
When murine sarcoma virus-transformed cells are labeled with [3H]lysine invivo for various periods, 5 of 6 isoaccepting lysine tRNAs separable by RPC-5 chromatography are aminoacylated in 1 hr to the same extent that they are aminoacylated invitro. The sixth isoacceptor, tRNA6Lys, is not aminoacylated invivo to a measurable extent in 1 hr, although it is present in the tRNA prepared from the cells. All six isoacceptors are aminoacylated with [3H]lysine invivo when the labeling period is 2 or 3 hr. These results further show that invitro correlations of the amount of tRNA4Lys with cell division accurately reflect the situation invivo. Results of differential centrifugation indicate that tRNA6Lys occurs in mitochondria.  相似文献   

4.
Whereas m1G, m2G, m22G, m7G, T, m1A, m5C and Cm methylase activities were found in total cell enzyme of Saccharomyces cerevisiae using under-methylated E. coli tRNA and E. coli B tRNA in reaction with or without Mg++, only m1G, m2G, m22G and T methylases occurred in mitochondria. Mitochondrial and cytoplasmic tRNA cannot be methylated by their homologous enzymes; only mitochondrial tRNA can be methylated in a heterologous reaction by total cell enzyme with formation of T, m5C, m1A and low amounts of m2G and m22G.  相似文献   

5.
Nucleotide sequence comparison of tRNAs aminoacylated by yeast phenylalanyl tRNA synthetase (PRS) have lead to the proposal that the specific nucleotides of the dihydrouridine (diHU) stem region and adenosine at the fourth position from the 3′ end are involved in the PRS recognition site. Kinetic analysis and enzymatic methylation have shown that the size of the diHU loop and the methylation of guanine at position 10 from the 5′ end both directly affect the PRS aminoacylation kinetics. E. coli tRNA1A1a, which is aminoacylated by PRS, should therefore have 1- the specific nucleotides of the diHU stem region and, 2- adenosine at position 4 from the 3′ end. The PRS aminoacylation kinetics of this tRNA indicates that this molecule 3- has a diHU loop of 8 nucleotides and 4- has an unmethylated guanine at position 10 from the 5′ end. We report here the complete sequence of E. coli tRNA1A1a and confirmation of each of these four predictions.  相似文献   

6.
Ribothymidine, generally considered a universal nucleotide in tRNA, is completely absent in five specific wheat embryo tRNAs. These consist of two species of glycine tRNA and three species of threonine tRNA. These tRNAs, all extensively purified, are acceptable substrates for E. coli - ribothymidine forming-uracil methylase, which produces one mole of ribothymidine per mole of tRNA. These five tRNAs account for about 90% of the wheat embryo tRNAs which are substrates for this methylase. Nucleotide sequence analysis of one of these tRNAs, tRNAGlyI, confirmed both the complete absence of ribothymidine at position 23 from the 3′end, and the presence of uridine at that site instead. In addition, it is shown that methylation with E. coli uracil methylase quantitatively converts uridine at position 23 to ribothymidine, while no other uridine in the molecule is affected.Using E. coli uracil methylase as an assay we have detected this class of ribothymidine lacking tRNA, in each case consisting of a few specific species, in other higher organisms, such as wheat seedling, fetal calf liver and beef liver, in addition to wheat embryo. We could not detect this class of tRNA in E. coli or yeast tRNA.  相似文献   

7.
Several plant and animal viral RNAs contain a tRNA like structure at their 3′ ends. In this communication we show that tobacco mosaic virus (TMV) RNA is an acceptable substrate for a specific tRNA methyltransferase. Using a crude preparation of E. coli ribothymidine (rT) forming uracil methylase and (methyl 3H) S-adenosyl-L-methionine (SAM) as a methyl donor, 0.7 moles of methyl group is incorporated per mole of TMV RNA in 10 hours at 30°C. Upon T2 RNAse digestion of the labeled RNA, all of the radioactivity was found to be in TMP. T1 RNAse digestion of 3H methylated TMV RNA showed that all of the label was located in a tetranucleotide which co-migrated with authentic TpψpCpGp, an oligonucleotide characteristically found in normal cellular tRNA.The use of this specific methyl transferase reaction may provide a simple assay for the detection of tRNA like structures in large RNAs.  相似文献   

8.
Two dimensional tryptic peptide maps have been obtained from 2 μg (40 pmol) of protein digest following labeling with 3H or 14C via reductive methylation. A simple labeling procedure is complete within 1 h; autoradiographs of 14C-labeled maps and fluorographs of 3H-labeled maps are obtained in 72 and 24 h, respectively. Tryptic peptide maps of 14C3H methylated α- and β-tubulin, and rabbit muscle, chick muscle, and chick brain actins show approximately the expected number of peptides. Methylation does not appear to measurably alter the map positions of the peptides relative to unmethylated peptides in the solvent systems used for either electrophoresis or chromatography.  相似文献   

9.
Information has been lacking as to whether mitochondrial DNA of animal cells is methylated. The methylation patterns of mitochondrial and nuclear DNAs of several mammalian cell lines have therefore been compared by four methods: (1) in vivo transfer of the methyl group from [methyl-3H]methionine; (2) in vivo incorporation of [32P]orthophosphate and a combination of (1) and (2); (3) in vivo incorporation of [3H]deoxycytidine; (4) in vitro methylation of DNAs with 3H-labeled S-adenosylmethionine as methyl donor and DNA methylase preparations from L cell nuclei. The cell lines were mouse L cells, BHK21C13, C13B4 (baby hamster kidney cells transformed by the Bryan strain of Rouse sarcoma virus), and PyY (BHK cells transformed by polyoma virus). DNA bases were separated chromatographically, using 5-methylcytosine, 6-methylaminopurine and, in some cases, 7-methylguanine as markers.Mitochondrial DNA was found to be significantly less methylated than nuclear DNA with respect to 5-methylcytosine in all cell types studied and by all methods used. The relative advantages and disadvantages of each method have been discussed. The level of 5-methylcytosine in mitochondrial DNA as compared with that in nuclear DNA was estimated as one-fourth to one-fourteenth in various cell lines. The estimated 5-methylcytosine content per circular mitochondrial DNA molecule (mol. wt 10 × 106) was about 12 methylcytosine residues for L cells and 24, 30 and 36 methylcytosine residues for BHK, B4 and PyY cells, respectively. Relative to cytosine residues, the estimate was one 5-methylcytosine per 500 cytosine residues of mitochondrial DNA and one 5-methylcytosine per 36 cytosine residues of nuclear DNA from L-cells. The values for methylcytosine of mitochondrial DNA are presumed to be maximal. PyY cells as compared with other cells had the highest methylcytosine content of both mitochondrial and nuclear DNA as estimated by method (3). No methylation of nuclear DNA was observed in confluent L cells.Evidence for the presence of DNA methylase activity associated with mitochondrial fractions was obtained. This activity could be distinguished from other cellular DNA methylase activity by differential response to mercaptoethanol. Radioactivity from 3H-labeled S-adenosylmethionine was found only in 5-methyl-cytosine of DNA.  相似文献   

10.
The excision of N7-methylguanine (N7-meGua) and O6-methylguanine (O6-meGua) lesions in DNA caused by treatment of 10T12 cells with N-methyl-N′-nitro-N-nitrosoguanidine was evaluated as cells synchronously traversed the pre-S and S phases of the cell cycle. Proliferation of cells was arrested by growth to confluence, then cells were treated with MNNG and released into a synchronous cell cycle by replating at lower density. The frequency of the two methylated guanines (methylated guanines/106 guanines) was determined at the time of replating, immediately prior to the onset of S phase and at the conclusion of S phase. During the pre-S interval N7-meGua and O6-meGua were lost at rates consistant with the reported biological half-lives of 26–28 hr and 20–21 hr, respectively. In contrast, when the reduction in frequency of methylated guanines was determined for the S phase it was found that the apparent decrease could be explained by the increased DNA content of the cultures resulting from DNA replication.  相似文献   

11.
A method for methylation analysis of intact glycoproteins is described. Starting with intact glycoprotein, the oligosaccharides are methylated, hydrolyzed, reduced, and acetylated. The partially methylated alditol acetates are then separated from noncarbohydrate contaminants on a silica gel G column. Partially methylated hexitol acetates are eluted from the column with petroleum ether:ethyl acetate (1:1, vv) and partially methylated N-acetylhexosaminitol acetates are subsequently eluted with methanol. Analysis by gas-liquid chromatography/mass spectrometry of the partially methylated alditol acetates shows no interfering contaminants. This method circumvents the need to make pronase glycopeptides and avoids the pitfalls of other methylation procedures.  相似文献   

12.
In vitro cultures of Crithidia sp. were exposed to various concentrations of hydroxyurea (HU) during the logarithmic phase. In the presence of 5 × 10?2M HU, cell division was completely blocked after an initial increase in cell numbers by about 20%. Inhibition of incorporation of 3H-thymidine into acid-insoluble material was effective within 1 hr of exposure to the drug (5 × 10?2M) and it reached a level of 80% after 8 hr. At lower concentrations (5 × 10?4M ? 1 × 10?3M), however, incorporation of 3H-thymidine was remarkably increased while cell division remained unaffected indicating that the increase in incorporation was not due to increased DNA synthesis in preparation for cell division.  相似文献   

13.
tRNA chemical methylation: 1. 1,7-Dimethylguanosine was found in in vivo methylated tRNA from liver and kidney of rat after exposure to a low dose of dimethylnitrosamine (4 mg/kg body weight). 2. At 4 h after dimethylnitrosamine administration, the 1,7-dimethylguanosine:7-methylguanine ratio (product ratio) for liver and kidney tRNA was 0.017 and 0.091, respectively. At 24 h after dimethylnitrosamine administration, the product ratio was lower in both hepatic and renal tRNA. 3. When dimethylnitrosamine was given in four separate daily injections, the product ratio in hepatic tRNA 4 h after the last dose was the same as for the same total dose given by a single injection, but in renal tRNA it was lower. No dialkyl compound was found in liver and kidney tRNA 24 h after the last multiple injection. tRNA enzymatic methylation: 1. Base analyses of Escherichia coli B tRNA methylated in vitro, by using S-adenosylmethionine as physiological methyl donor and enzyme preparations from liver and kidney of normal rat, indicated that 1,7-dimethylguanosine was also a product of enzymatic methylation. 2. The amount of 1,7-dimethylguanosine formed by kidney enzyme preparation was 3-times that produced by the liver extract. 3. A second type of enzymatic methylation assay where chemically methylated tRNA was used as substrate indicated that the 7-methylguanosine residues in the nucleic acid are not the substrate of the methylase activity forming the 1,7-dimethylguanosine moieties. Analogous data were obtained for the origin of 1,7-dimethylguanosine residues in tRNA chemical methylation by dimethyl sulphate.  相似文献   

14.
Basolateral membranes isolated from hog kidney cortex, enriched 12- to 15-fold in (Na+ + K+)-ATPase activity, were 80% oriented inside-out as determined by assay of oubain-sensitive (Na+ + K+)-ATPase activity before and after opening of the membrane vesicle preparation with a mixture of deoxycholate and EDTA. In these membrane preparations 80% of total phosphatidylethanolamine was accessible to trinitrophenylation by trinitrobenzenesulfonic acid at 4°C, while at 37°C all of phosphatidylethanolamine fraction was chemically modified. Phospholipase C treatment resulted in hydrolysis of 80% phosphatidylethanolamine, 40% phosphatidylcholine and 35% of phosphatidylserine. Sphingomyelinase treatment resulted in 20% hydrolysis of sphingomyelin, presumably derived from right-side-out oriented vesicles. Results indicate that phosphatidylethanolamine is oriented exclusively on the outer leaflet of the lipid bilayer of inside-out oriented vesicles. Methylation of phospholipids in basolateral membranes with S-adenosyl[methyl-3H]methionine resulted in the three successive methylation of ethanolamine moiety of phosphatidylethanolamine to phosphatidylcholine. The Km for S-adenosylmethionine was 1·10?4 M with an optimum pH 9.0 for the formation of all three methyl derivatives. Mg2+ was without any effect between pH 5 and 10. Basolateral membranes incubated in the presence of methyl donor, S-adenosylmethionine, exhibited increased (12–15%) (Ca2+ + Mg2+)-ATPase activity and increased ATP-dependent uptake of calcium. ATP-dependent calcium uptake in these vesicles was insensitive to oligomycin and ouabain but was abolished completely by 50 μM vanadate. The increase in ATP-dependent calcium uptake was due to an increase in Vmax and not due to a change in Km for Ca2+. Preincubation of membranes with S-adenosylhomocysteine, a methyltransferase inhibitor, abolished the stimulatory effect of phospholipid methylation on calcium uptake. Phospholipid methylation at both low and high pH did not result in a change in bulk membrane fluidity as determined by the fluorescence polarization of diphenylhexatriene. These results suggest that phospholipid methylation may regulate transepithelial calcium flux in vivo.  相似文献   

15.
A single subcutaneous injection of folate, homofolate or MTX resulted in the inhibition of the activity of dihydrofolate reductase in homogenates prepared from the kidneys of normal mice. Stimulation of 3H-thymidine uptake occurred in the kidneys of treated animals approximately 30 hr after administration of either folate or homofolate, and reached a peak 72 hr after administration. The effects of folate and MTX on dihydrofolate reductase activity invivo were also determined. One hr after administration of 15 mg/kg methotrexate (MTX) or 300 mg/kg folate, enzyme activity invivo was inhibited by 90%.3H-deoxyuridine uptake was neither stimulated nor depressed after treatment with MTX. After administration of folate, uptake of 3H-deoxyuridine was stimulated at approximately 30 hr after drug-treatment and reached a peak at 72 hr after folate administration. Treatment with xanthopterin had no effect on the activity of dihydrofolate reductase invitro. Xanthopterin stimulated uptake of both deoxyuridine and thymidine in an identical manner.The increased DNA synthesis that occurs in animals after treatment with agents that cause renal damage is distinct from the effect these agents have upon dihydrofolate reductase. Nucleoside incorporation after treatment with folate, homofolate, MTX or xanthopterin cannot be predicted on the basis of enzyme inhibition. Treatment with MTX, folate or homofolate results in enzyme inhibition which is not correlated with the uptake of deoxyuridine into DNA.  相似文献   

16.
Extensive shifts in the distribution of labeled methylated constituents of tRNA were observed in KB cells treated with actinomycin D for 30 min prior to a 90-min pulse with 3H-CH3-methionine. Although this treatment completely blocked the synthesis of tRNA, methylation continued to the extent of 12–15% of controls (pulsed without antibiotic). Under this condition the relative proportion of radioactivity incorporated into 3-methylcytosine, N2-methylguanine and 2′-O-methylribose was markedly increased (170–235% of control values), it was moderately reduced in 1-methyladenine, 5-methyl-cytosine and 5-methyluracil (35–70% of controls) and markedly reduced in 1-, 7- and N2N2-methylguanines (15–30% of controls). These data suggest that specific types of methylations occur at particular times during the processing of pre-tRNAs.  相似文献   

17.
The epididymis of adult rats metabolize 3H-testosterone by experiments in vivo. Thirty minutes after the injection of 100 μCi 3H-testosterone, some 10 per cent of the total radioactivity of the epididymis was found in the water-soluble fraction, whereas 90 per cent was found in the ether soluble fraction (free steroids). The free steroids were examined further and the following androgenic metabolites identified: testosterone (17β-hydroxy-4-androsten-3-one) 8, 9%, androstendipne (4-androstene-3, 17-dione, 2,7%,5α-A-dione (5α-androstane-3, 17-dione) 6,5%, DHT (17β-hydroxy-5α-androstan-3-one) 47, 2%, 3β-diol (5α-androstane-3β, 17β-diol) 4, 4%, 3α-diol (5α-androstane-3α,17β-diol) 20, 8% and androsterone (3α-hydroxy-5α-androstan-3-one) 3,4%. The relative amount of each metabolite is given in per cent of total radioactivity in the ether soluble fraction.  相似文献   

18.
The effects on some pharmacological and enzymatic properties were determined following methylation of histidine at the enzymatic active site of the basic relatively toxic Najanigricollis and the acidic relatively non-toxic Najanajaatra phospholipases A2. Following methylation a very low residual enzymatic activity (0.4 -- 1% of control) was accompanied by a parallel loss in intraventricular lethality, anticoagulant potency, direct hemolytic action and ability to block directly and indirectly evoked contractions of the mouse phrenic nerve-diaphragm preparation. Since methylation does not impair the enzyme's ability to bind monomeric of micellar substrates or Ca2+, the results suggest that the pharmacologicallly active region of the molecule is different from the micellular substrate binding site but strongly influenced by the invariant histidine-48 located at the enzymatic active site.  相似文献   

19.
This report presents an analysis of histone gene expression in the cleaving embryo of the sea urchin, Strongylocentrotus purpuratus, with emphasis on whether the regulatory site(s) in the pathway of gene expression change as development proceeds. The analysis focuses on the equation, dP1dt = M·f·n·At, where dP1dt = the absolute rate of histone synthesis; M = the mole quantity of histone messenger RNA; f = the fraction of histone mRNA in polysomes; n = the polysome size; and At = the rate of elongation of nascent histone polypeptide chains. The embryo solves this rate equation differently at different times. Measurements were made (at 15°C) of absolute rates of histone synthesis (dP1dt). The rate of histone synthesis increases at least 48-fold during the first 6 hr after fertilization from less than 0.5 to 24 pg embryo?1 hr?1; in the period from 6 to 12 hr, this rate rises to 182 pg embryo?1 hr?1, an additional 7.7-fold rise, resulting in an overall increase of 370-fold between the 1-cell and 200-cell stage. The fraction of newly synthesized (zygotic) histone messenger RNA that partitions into polysomes (fzygotic) has also been measured during the first 12 hr of development. This fraction increases from 0.2 in the 2-hr embryo to 0.8 in the 6-hr embryo (16-cell stage), increasing slowly thereafter to near unity by 12 hr. The size of histone-synthesizing polysomes (n) does not change substantially over the 12-hr interval, remaining constant at a weighted mean of 5 ribosomes per polysome (range 3 to 7). Utilizing the data on fzygotic and dP1dt, the rate of elongation of nascent histone polypeptide chains (At) during the first 6 hr of development was estimated; At remains constant at 1.11 codons per second. This calculated value is in fair agreement with a direct measurement of histone peptide elongation rate in the 12-hr embryo. It is proposed that histone gene expression in cleaving sea urchin embryos be divided into two phases, distinguished on the basis of their pivotal translational parameters: Phase I (0–6 hr), during which f is rate determining, and Phase II (6 hr on), during which M is the rate-determining parameter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号