首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
Gene encoding a minor extracellular protease in Bacillus subtilis.   总被引:17,自引:12,他引:5       下载免费PDF全文
A Sloma  A Ally  D Ally    J Pero 《Journal of bacteriology》1988,170(12):5557-5563
The gene for a minor, extracellular protease has been identified in Bacillus subtilis. The gene (epr) encoded a primary product of 645 amino acids that was partially homologous to both subtilisin (Apr) and the major internal serine protease (ISP-1) of B. subtilis. Deletion analysis indicated that the C-terminal 240 amino acids of Epr were not necessary for activity. This C-terminal region exhibited several unusual features, including a high abundance of lysine residues and the presence of a partially homologous sequence of 44 amino acids that was directly repeated five times. The epr gene mapped near sacA and was not required for growth or sporulation.  相似文献   

3.
In our previous study, the sphingosine-like immunosuppressant ISP-1 was shown to induce apoptosis in the mouse cytotoxic T cell line CTLL-2. In this study, we characterized the ISP-1-induced apoptotic pathway. Although caspase-3-like protease activity increases concomitantly with ISP-1-induced apoptosis in CTLL-2 cells, the apoptosis is not inhibited by caspase-3-like protease inhibitors, i.e. DEVD-cho and z-DEVD-fmk. In contrast, sphingosine-induced apoptosis in CTLL-2 cells is caspase-3-like protease-dependent. A caspase inhibitor with broad specificity, z-VAD-fmk, protects cells from apoptosis induced by ISP-1, indicating that ISP-1-induced apoptosis is dependent on caspase(s) other than caspase-3. Overexpression of Bcl-2 or Bcl-xL suppresses the apoptosis induced by ISP-1, although sphingosine-induced apoptosis is not efficiently inhibited by Bcl-2. Finally, ISP-1-induced mitochondrial depolarization, which is thought to be a checkpoint dividing the apoptotic pathway into upstream and downstream stages, is not inhibited by DEVD-cho, but is inhibited by z-VAD-fmk. These data suggest that a pathway dependent on caspase(s) other than caspase-3 is involved upstream of mitochondrial depolarization in ISP-1-induced apoptosis.  相似文献   

4.
Sphingolipids have been reported to regulate the growth and death of mammalian and yeast cells, but their precise mechanisms are unknown. In this paper, it was shown that the deletion of the oxysterol binding protein homologue 3 (OSH3) gene confers hyper resistance against ISP-1, an inhibitor of sphingolipid biosynthesis, in the yeast Saccharomyces cerevisiae. Furthermore, the overexpression of the ROK1 gene, which directly binds to Osh3p, conferred resistance against ISP-1, and the deletion of the KEM1 gene, which regulates microtubule functions, exhibited ISP-1 hypersensitivity. And yet, an ISP-1 treatment caused an abnormal mitotic spindle formation, and the ISP-1-induced cell cycle arrest was rescued by the deletion of the OSH3 gene. Taken together, it is suggested that the expression levels of the OSH3 gene influence the ISP-1 sensitivity of S. cerevisiae, and the sphingolipids are necessary for normal mitotic spindle formation in which the Osh3p may play a pivotal role.  相似文献   

5.
6.
A protease, excreted by a sporogeneous strain of B. megaterium, growing exponentially in a minimum glucose ammonium medium, was isolated. It is a neutral endopeptidase, stabilized by Ca++, inhibited by o-phenanthroline, but not by di-isopropylfluorophosphate. The specificity, studied on insulin B-chain, glucagon, cytochrome c, and dipeptides substrates, indicated the need for a dipeptide backbone with both substituted amino and carboxyl groups. A requirement was observed for a nonpolar lateral chain in the amino acid whose amino group was involved in the peptide bond (Leu, Phe, Ala, He, Val). Rates of hydrolysis varied also with the amino acid whose carboxyl group was involved (e.g., His > Ser > Ala > Gly). In complex medium, supplemented with Yeast Extract, the biosynthesis of the protease was repressed during growth, but the same enzyme was excreted during sporulation. The repression was apparently of the same nature as that controlling sporulation during and after growth (e.g., repression by a mixture of amino acids or high concentration of glucose). An asporogeneous mutant showed a normal product ion of protease under all conditions, and a low intracellular protease turnover after growth. A mutant unable to produce protease showed a normal sporulation and a high protein turnover. This protease, here termed megapeptidase, seems to be a typical growth enzyme, not related to either the sporulation process or to the protein turnover after growth.  相似文献   

7.
Intracellular proteases from sporulating Bacillus cereus have been purified by ammonium sulfate fractionation, heat treatment and DEAE cellulose column chromatography. After the last purification step, two protease activities, with an activity ratio of about thirty to one are resolved. Both proteases are resistant to o-phenanthroline but sensitive to phenyl methyl sulfonyl fluoride. Their separation by polyacrylamide gel electrophoresis and DEAE cellulose column chromatography, their difference in heat sensitivity and a mutation affecting only the major intracellular protease (IP1) suggest that the two are products of distinct genes. An IP1 mutant previously shown to produce coat defective spores (4) also turnsover protein with a reduced rate during late sporulation stages. Correlated with the slower turnover rate in this mutant is the more rapid disappearance of IP1. A partial revertant of this mutant has a protein turnover rate intermediate between that of the original mutant and wild type. These correlations imply that IP1 has an important role in protein turnover during sporulation.  相似文献   

8.
To obtain a new serine protease from alkalophilic Bacillus sp. NKS-21, shotgun cloning was carried out. As a result, a new protease gene was obtained. It encoded an intracellular serine protease (ISP-1) in which there was no signal sequence. The molecular weight was 34,624. The protease showed about 50% homology with those of intracellular serine proteases (ISP-1) from Bacillus subtilis, B. polymyxa, and alkalophilic Bacillus sp. No. 221. The amino acid residues that form the catalytic triad, Ser, His and Asp, were completely conserved in comparison with subtilisins (the extracellular proteases from Bacillus). The cloned intracellular protease was expressed in Escherichia coli, and its purification and characterization were carried out. The enzyme showed stability under alkaline condition at pH 10 and tolerance to surfactants. The cloned ISP-1 digested well nucleoproteins, clupein and salmin, for the substrates.The nucleotide sequence data reported in this paper will appear in the GSDB, DDBJ, EMBL, and NCBI nucleotide sequence databases with the accession number D37921.  相似文献   

9.
The isolation and properties of a single site temperature sensitive protease mutant of Bacillus subtilis are described. Numerous criteria suggest that the mutation resides in the structural gene coding for a basic serine protease. The mutation has been mapped between aroD and lys-1 on the Bacillus subtilis chromosome. This protease exists as an intracellular and extracellular enzyme. The mutant cells are temperature sensitive for sporulation, antibiotic production, and the sporulation-specific alteration in DNA-dependent RNA polymerase β subunit. Several types of evidence indicate a direct involvement of this enzyme in a limited proteolytic cleavage of vegetative RNA polymerase β subunit, which produces the lower molecular weight β subunit found in sporulating cells. The derangement in this process is sufficient to account for the stoppage of sporulation at stage 0 when the mutant cells are grown at the non-permissive temperature.  相似文献   

10.
Two protease-deficient mutants of Bacillus subtilis 168 (Trp(-)) were isolated and compared with the parental strain with respect to production of intracellular proteases and sporulation. A mutant lacking the metal-requiring "neutral" protease intracellularly sporulated as well as the parental strain. A second mutant, deficient in an as yet uncharacterized intracellular protease, failed to sporulate normally. It is proposed that this new protease is also involved in intracellular protein turnover.  相似文献   

11.
ISP-1 is a new type of immunosuppressant, the structure of which is homologous to that of sphingosine. In a previous study, ISP-1 was found to inhibit mammalian serine palmitoyltransferase, the primary enzyme involved in sphingolipid biosynthesis, and to reduce the intracellular pool of sphingolipids. ISP-1 induces the apoptosis of cytotoxic T cells, which is triggered by decreases in the intracellular levels of sphingolipids. In this study, the inhibition of yeast (Saccharomyces cerevisiae) proliferation by ISP-1 was observed. This ISP-1-induced growth inhibition was also triggered by decreases in the intracellular levels of sphingolipids. In addition, DNA duplication without cytokinesis was detected in ISP-1-treated yeast cells on flow cytometry analysis. We have cloned multicopy suppressor genes of yeast which overcome the lethal sphingolipid depletion induced by ISP-1. One of these genes, SLI2, is synonymous with YPK1, which encodes a serine/threonine kinase. Kinase-dead mutants of YPK1 did not show any resistance to ISP-1, leading us to predict that the kinase activity of the Ypk1 protein should be essential for this resistance to ISP-1. Ypk1 protein overexpression had no effect on sphingolipid biosynthesis by the yeast. Furthermore, both the phosphorylation and intracellular localization of the Ypk1 protein were regulated by the intracellular sphingolipid levels. These data suggest that the Ypk1 protein is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. The Ypk1 protein was reported to be a functional homologue of the mammalian protein kinase SGK, which is a downstream kinase of 3-phosphoinositide-dependent kinase 1 (PDK1). PDK1 phosphotidylinositol (PI) is regulated by PI-3,4,5-triphosphate and PI-3,4-bisphosphate through the pleckstrin homology (PH) domain. Overexpression of mammalian SGK also overcomes the sphingolipid depletion in yeast. Taking both the inability to produce PI-3,4, 5-triphosphate and PI-3,4-bisphosphate and the lack of a PH domain in the yeast homologue of PDK1, the Pkh1 protein, into account, these findings further suggest that yeast may use sphingolipids instead of inositol phospholipids as lipid mediators.  相似文献   

12.
13.
The spoVM gene encodes a 26-amino-acid polypeptide that is essential for spore formation in Bacillus subtilis. A transposon insertion within the spoVM open reading frame has been shown to encode a chimeric protein which is biologically inactive and produces a phenotype identical to that of a deletion and insertion mutation. A genetic approach was used to identify possible interacting proteins, and the membrane-bound FtsH protease was identified. Mutations in ftsH suppressed the sporulation defect of certain spoVM mutants but not others. However, production of the mother cell sigma factors, sigmaE and sigmaK, was abnormal in the suppressed strains, and mutations in either spoVM or ftsH alone impaired sigma factor production and sporulation gene expression. Using FtsH purified from Escherichia coli, we demonstrated that in vitro (i) SpoVM inhibits FtsH protease activity and (ii) SpoVM is a substrate for the FtsH protease. We propose that during sporulation, SpoVM serves as a competitive inhibitor of FtsH activity. This interaction appears to be important for completion of the prespore engulfment step of sporulation, based on the phenotype of certain spoVM ftsH double mutants.  相似文献   

14.
The gene encoding the 180-kDa DNA strand transfer protein beta from the yeast Saccharomyces cerevisiae was identified and sequenced. This gene, DST2 (DNA strand transferase 2), was located on chromosome VII. dst2 gene disruption mutants exhibited temperature-sensitive sporulation and a 50% longer generation time during vegetative growth than did the wild type. Spontaneous mitotic recombination in the mutants was reduced severalfold for both intrachromosomal recombination and intragenic gene conversion. The mutants also had reduced levels of the intragenic recombination that is induced during meiosis. Meiotic recombinants were, however, somewhat unstable in the mutants, with a decrease in recombinants and survival upon prolonged incubation in sporulation media. spo13 or spo13 rad50 mutations did not relieve the sporulation defect of dst2 mutations. A dst1 dst2 double mutant has the same phenotype as a dst2 single mutant. All phenotypes associated with the dst2 mutations could be complemented by a plasmid containing DST2.  相似文献   

15.
The spoIIIE gene of Sporosarcina ureae encodes a 780-residue protein, showing 58% identity to the SpoIIIE protein of Bacillus subtilis, which is thought to be a DNA translocase. Expression of the S. ureae spoIIIE gene is able to restore sporulation in a B. subtilis spoIIIE mutant. Inactivation of the S. ureae spoIIIE gene blocks sporulation of S. ureae at stage III. Within the limits of detection, the sporulation division in S. ureae shows the same symmetry, or near symmetry, as the vegetative division (in contrast to the highly asymmetric location of the sporulation division for B. subtilis), and so it is inferred that SpoIIIE facilitates chromosome partitioning during sporulation, even when the division is not grossly asymmetric. It is suggested that chromosome partitioning lags behind division during sporulation but not during vegetative growth.  相似文献   

16.
P Sung  E Berleth  C Pickart  S Prakash    L Prakash 《The EMBO journal》1991,10(8):2187-2193
The RAD6 gene of Saccharomyces cerevisiae encodes a 20 kd ubiquitin conjugating (E2) enzyme that is required for DNA repair, DNA damage-induced mutagenesis, and sporulation. Here, we demonstrate a novel activity of RAD6 protein--its ability to mediate protein degradation dependent on the N-end-recognizing ubiquitin protein ligase (E3). In reaction mixtures containing E1, E3 and the ubiquitin specific protease from rabbit reticulocytes, RAD6 is as effective as mammalian E214k in E3 dependent ubiquitin--protein conjugate formation and subsequent protein degradation. The ubiquitin conjugating activity of RAD6 is required for these reactions as indicated by the ineffectiveness of the rad6 Ala88 and rad6 Val88 mutant proteins, which lack the ability to form a thioester adduct with ubiquitin and therefore do not conjugate ubiquitin to substrates. We also show that the highly acidic carboxyl-terminus of RAD6 is dispensable for the interaction with E3, and that purified S. cerevisiae E2(30k), product of the UBC1 gene, does not function with E3. These findings demonstrate a specific interaction between RAD6 and E3, and highlight the strong conservation of the ubiquitin conjugating system in eukaryotes. We suggest a function for RAD6 mediated E3 dependent protein degradation in sporulation, and discuss the possible role of this activity during vegetative growth.  相似文献   

17.
Conditional Mutants of Meiosis in Yeast   总被引:20,自引:9,他引:11       下载免费PDF全文
Three temperature-sensitive mutants, spo1-1, spo2-1, and spo3-1, were characterized with respect to their behavior in sporulation medium at a restrictive temperature. The time of expression of the functions defective in the mutants was determined by temperature-shift experiments during the sporulation process. In addition, each mutant was examined for the following: (i) its ability to undergo the nuclear divisions of meiosis; (ii) deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein synthesis; (iii) protein turnover; and (iv) colony-forming ability after exposure to sporulation medium. Mutant spo1-1 is defective in a function which confers a temperature-sensitive period which extends over 32% of the sporulation cycle. The temperature-sensitive period of mutant spo2-1 occupies 34% of the cycle, whereas the temperature-sensitive period of mutant spo3-1 extends over 2% of the sporulation cycle. Cytological evidence indicates that all three mutants initiate but do not complete the meiotic nuclear divisions. The DNA content of sporulation cultures of mutants spo1-1 and spo3-1 did not increase to the wild-type level; DNA synthesis in spo2-1 was normal. All three strains exhibit a loss of colony-forming ability during incubation in sporulation medium at the restrictive temperature. RNA and protein synthesis and protein turnover occur in the mutants.  相似文献   

18.
19.
Kinetics of degradation of labelled proteins was followed in two asporogenic mutants ofBacillus megaterium during incubation in a sporulation medium. Both the mutant producing exocellular protease (KM 1prn +) and the mutant not producing the enzyme (KM 12prn) were found to contain a labile protein fraction, whose proportion decreases with prolonged time of labelling and whose half-life is about 1 h. Most proteins were relatively stable and were degraded at a rate of 1 %/h and 2 %/h in strains KM 1 and KM 12, respectively (half life 70–80 h and 35–40 h in strains KM 1 and KM 12, respectively). The intracellular proteolytic activity of the KM 12 mutant remains practically the same during incubation in the sporulation medium or slowly increases. The labile protein fraction practically disappears from the cells after a 3.5-h incubation. When such a culture is then subjected to a shift-up and transferred again to the sporulation medium, the rate of protein turnover temporarily increases. The temporary increase of the turnover rate is caused by a partial replenishment of the labile protein fraction rather than by an accelerated degradation of the relatively stable fraction. The intracellular proteolytic activity does not increase under these conditions. The wild sporogenic strain ofB. megaterium also contains the labile protein fraction. Its half protein life is 1 h or less. However, the second protein fraction is degraded much more rapidly than in the asporogenic mutants and its half life is 6–7 h.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号