首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative kinetic study on the poly(gallic acid disulfide) (poly(DSGA)) inhibition of the iodide ion oxidation and on the 2-hydroxy-3,5-di-tert-butyl-N-phenylaniline (butaminophene) inhibition of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation involving human thyroid peroxidase (hTPO) and horseradish peroxidase (HRP) was performed. The inhibition processes were characterized with the inhibition constants Ki and stoichiometric inhibition coefficients f, indicating the number of radical particles perishing on one inhibitor molecule. In the case of poly(DSGA), the Ki values for the I- oxidation were 0.60 and 0.04 microM, and the coefficients f were 13.6 and 16.5 for hTPO and HRP, respectively, which evidences the regeneration and high effectiveness of the polymeric inhibitor. In the case of butaminophene, the Ki values for TMB oxidation were 38 and 46 microM for hTPO and HRP, respectively. The coefficients f were 1.33 and 1.47, respectively, to reveal that butaminophene does not regenerate. The inhibition mechanisms for I- and TMB oxidation involving the two peroxidases are discussed.  相似文献   

2.
The effects of different concentrations of 2-amino-4-nitrophenol (ANP) and of its polydisulfide (poly(ADSNP)) on peroxidase-catalyzed oxidation of 3,3"5,5"-tetramethylbenzidine (TMB) were studied at 20°C in reversed micelles of AOT (0.2 M) in heptane and in mixed reversed micelles of AOT (0.1 M)–Triton X-100 (0.1 M) in isooctane supplemented with 15% hexanol. The oxidation of TMB was activated nearly twofold in the presence of ANP and nearly fourfold in the presence of poly(ADSNP) in reversed micelles of AOT, whereas in the mixed micelles oxidation of the TMB–ANP pair was associated with inhibition of TMB conversion and poly(ADSNP) activated oxidation of TMB. The co-oxidation of TMB with 4,4"-dihydroxydiphenylsulfone (DDS) and with its polydisulfide (poly(DSDDS)) at different concentrations of phenol components was accompanied by activation of TMB conversion in 0.01 M phosphate buffer (pH 6.4) supplemented with 5% DMF and in reversed micelles of AOT in heptane. The effect of pH of the aqueous solution on the initial oxidation rate of the TMB–DDS and TMB–poly(DSDDS) pairs and also the effect of hydration degree of reversed micelles of AOT on conversion of the same pairs by peroxidase were studied. A scheme of peroxidase-dependent co-oxidation of aromatic amine–phenol pairs is proposed and discussed. A significant part of this scheme is a nonenzymatic exchange of phenoxyl radicals with amines and of aminyl radicals with phenols.  相似文献   

3.
The kinetic characteristics (kcat, Km, and their ratio) for oxidation of iodide (I-) at 25 degrees C in 0.2 M acetate buffer, pH 5.2, and tetramethylbenzidine (TMB) at 20 degrees C in 0.05 M phosphate buffer, pH 6.0, with 10% DMF catalyzed by human thyroid peroxidase (HTP) and horseradish peroxidase (HRP) were determined. The catalytic activity of HRP in I- oxidation was about 20-fold higher than that of HTP. The kcat/Km ratio reflecting HTP efficiency was 35-fold higher in TMB oxidation than that in I- oxidation. Propyl gallate (PG) effectively inhibited all four peroxidase processes and its effects were characterized in terms of inhibition constants Ki and the inhibitor stoichiometric coefficient f. For both peroxidases, inhibition of I- oxidation by PG was characterized by mixed-type inhibition; Ki for HTP was 0.93 microM at 25 degrees C. However, in the case of TMB oxidation the mixed-type inhibition by PG was observed only with HTP (Ki = 3.9 microM at 20 degrees C), whereas for HRP it acted as a competitive inhibitor (Ki = 42 microM at 20 degrees C). A general scheme of inhibition of iodide peroxidation containing both enzymatic and non-enzymatic stages is proposed and discussed.  相似文献   

4.
A comparative study of the kinetics of peroxidase-catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of 2,4-dinitrosoresorcinol (DNR), its polydisulfide derivative [poly(DNRDS)], and resorcinol polydisulfide [poly(RDS)], substances that competitively inhibit the formation of TMB conversion product, was carried out. The inhibition constants, Ki for DNR, poly(DNRDS), and poly(RSD) were determined at 20 degrees C and pH 6.4 to be 110, 13.5, and 0.78 microM, respectively. The stoichiometric coefficients of inhibition were calculated to be 0.38 and 76 for poly(DNRDS) and poly(RDS), respectively. In the pH range 6.4-7.0, the initial rates of the peroxidative oxidation of TMB, and its mixtures with DNR and poly(DNRDS) and the Ki value for poly(RDS) substantially decreased with increasing pH. The kinetic parameters of poly(RDS) (Ki 0.22-0.78 microM and f76) suggest that it is the most efficient inhibitor of peroxidase oxidation of TMB: in micromolar concentrations, it completely stops this process and can be used in EIA.  相似文献   

5.
A comparative kinetic study on the poly(gallic acid disulfide) (poly(DSGA)) inhibition of the iodide ion oxidation and on the 2-hydroxy-3,5-di-tert-butyl-N-phenylaniline (butaminophene) inhibition of 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation involving human thyroid peroxidase (hTPO) and horseradish peroxidase (HRP) was performed. The inhibition processes were characterized with the inhibition constantsK i and stoichiometric inhibition coefficientsf, indicating the number of radical particles perishing on one inhibitor molecule. In the case of poly(DSGA), theK i values for the I oxidation were 0.60 and 0.04 μM, and the coefficientsf were 13.6 and 16.5 for hTPO and HRP, respectively, which evidences the regeneration and high effectiveness of the polymeric inhibitor. In the case of butaminophene, theK i values for TMB oxidation were 38 and 46 μM for hTPO and HRP, respectively. The coefficientsf were 1.33 and 1.47, respectively, to reveal that butaminophene does not regenerate. The inhibition mechanisms for I and TMB oxidation involving the two peroxidases are discussed.  相似文献   

6.
Peroxidase-catalyzed oxidation of o-phenylene diamine (OPD) was competitively inhibited by trimethylhydroquinone (TMHQ), 4-tert-butylpyrocatechol (In5), and 4,6-di-tert-butyl-3-sulfanyl-1,2-dihydroxybenzene (In6). In6 was the most efficient inhibitor (Ki = 11 microM at 20 degrees C in 0.015 M phosphate-citrate buffer, pH 6.0). The effects of In5 and In6 were not preceded by periods of induction of OPD oxidation products (contrary to TMHQ). Peroxidase-catalyzed oxidation of tetramethylbenzidine (TMB) was non-competitively inhibited by In6 and 3-(2-hydroxyethylthio)-4,6-di-tert-butylpyrocatechol (In4), whereas o-aminophenol (OAP) acted as a mixed-type inhibitor. The effects of all three inhibitors were preceded by an induction period, during which TMB oxidation products were formed. Again, In6 was the most efficient inhibitor (Ki = 16 microM at 20 degrees C in 0.015 M phosphate-citrate buffer supplemented with 5% ethanol, pH 6.0). Judging by the characteristics of the inhibitors, taken in aggregate, it is advisable to use the pairs OPD-In5 and OPD-In6 in systems for testing the total antioxidant activity of biological fluids of humans.  相似文献   

7.
Effect of 2-acylcyclohexane-1,3-dione derivatives (tralkoxydim and its diketone precursors) on peroxidase-catalyzed oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB), o-phenylenediamine (PDA), and the phenol-4-aminoantipyrine (4-AAP) couple has been studied. This effect varies from horseradish peroxidase (HRP) inactivation to activation in the reactions of peroxidation of TMB, PDA, and, to a lesser extent, the phenol-4-AAP couple. The diketone-mediated HRP activation depends strongly on pH, presence of dimethylformamide, the structures of tralkoxydim and other diketones, and the substrate nature. The type of activation in the course of peroxidation with the presence of tralkoxydim can be noncompetitive (PDA and TMB) or mixed (TMB) depending on conditions. The maximal level of the HRP activation mediated by diketones depends on their structure. It can reach 4000% of the initial HRP-catalyzed peroxidation rate for TMB and ca. 1000% for PDA. A test system is proposed for quantitative tralkoxydim assay at millimolar concentration. It includes HRP and TMB as the substrate with spectrometrical monitoring of the TMB peroxidation product at 655 nm.  相似文献   

8.
Effect of 2-acylcyclohexane-1,3-dione derivatives (tralkoxydim and its diketone precursors) on peroxidase-catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), o-phenylenediamine (PDA), and the phenol-4-aminoantipyrine (4-AAP) couple has been studied. This effect varies from horseradish peroxidase (HRP) inactivation to activation in the reactions of peroxidation ofTMB, PDA, and, to a lesser extent, the phenol-4-AAP couple. The diketone-mediated HRP activation depends strongly on pH, presence of dimethylformamide, the structures of tralkoxydim and other diketones, and the substrate nature. The type of activation in the course of peroxidation with the presence of tralkoxydim can be noncompetitive (PDA and TMB) or mixed (TMB) depending on conditions. The maximal level of the HRP activation mediated by diketones depends on their structure. It can reach 4000% of the initial HRP-catalyzed peroxidation rate for TMB and ca. 1000% for PDA. A test system is proposed for quantitative tralkoxydim assay at millimolar concentration. It includes HRP and TMB as the substrate with spectrometrical monitoring of the TMB peroxidation product at 655 nm.  相似文献   

9.
Peroxidase-catalyzed oxidation of 2,2-azino-di(3-ethyl-benzthiazolydine-6-sulfonic acid) (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB) is activated by tetrazole and its 5-substituted derivatives--5-amino-(AmT), 5-methyl- (MeT), 5-phenyl- (PhT), and 5-CF3- (CF3-T) tetrazoles. In phosphate-citrate or phosphate buffer (pH 6.4 or 7.2; 20 degrees C), the activating effect of tetrazoles on TMB and ABTS oxidation decreased in the series AmT > MeT > T > PhT > CF3-T and T > AmT > MeT > PhT, respectively. The (coefficient) degree of activation (alpha), expressed in M(-1), determined for both substrates and all activators, depended on substrate type, buffer nature, and pH (it increased as pH increased from 6.4 to 7.2). For TMB oxidation, good correlation between lgalpha and the Hammet constants sigma(meta) for m-substituents in the benzene series NH2, CH3, C6H5, and CF3 was found. It is suggested that AmT, MeT, and T can be used as activators of peroxidase-catalyzed oxidation of TMB and ABTS, as well as in designing peroxidase-based biosensors.  相似文献   

10.
5-Aminosalicylic acid (5-ASA) inhibited by a mixed mechanism the peroxidase catalyzed oxidation of tetramethylbenzidine (TMB) in 0.015 M phosphate-citrate buffer (pH 6.4) supplemented with 5% DMSO and 5% DMF. Poly(salicylic acid 5-aminodisulfide) (poly(SAADS)) in 0.01 M phosphate buffer (pH 6.2-7.4) supplemented with 5% DMSO and 5% DMF effectively activated the peroxidase-catalyzed oxidation of TMB. The activation was quantitatively characterized by coefficients (M–1) determined at different pH values: increased linearly with increase in pH up to the maximal value of 2.44·105 M–1 at pH 7.0. The activating effect of poly(SAADS) on the peroxidase-catalyzed oxidation of TMB is explained by the activator properties of polyelectrolyte, with its anionic form interacting with peroxidase sites responsible for the acid-base catalysis.  相似文献   

11.
The intermediate produced from dCyd by HNO2 and NO treatments was isolated and characterized. When 10 mM dCyd was treated with 100 mM NaNO2 in 1.0 M acetate buffer (pH 3.7) at 37 degrees C, a previously unidentified product was formed. By spectrometric measurements, the product was identified as a diazoate derivative of dCyd, 1-(beta-D-2'-deoxyribofuranosyl)-2-oxopyrimidine-4-diazoate. The time course of the concentration change of the diazoate showed a profile characteristic of a reaction intermediate, and the maximum yield was 37 microM at the reaction time of 25 min. Up to the reaction time of 10 min, the diazoate concentration was greater than that of dUrd, a deamination product of dCyd. Addition of thiocyanate increased the yield of the diazoate in HNO2 treatment, whereas addition of ascorbate decreased the yield. When 10 mM dCyd in 100 mM phosphate buffer was treated with NO at 37 degrees C under aerobic conditions holding the pH (7.2-7.6), the diazoate was also generated. The yield of the diazoate was higher than that of dUrd up to 15 mmol of NO absorption. At pH 3.7 and 37 degrees C, the diazoate was converted to dUrd with the first-order rate constant k = 4.8 x 10(-)4 s-1 (t1/2 = 24 min). Under physiological conditions (pH 7.4, 37 degrees C), however, it was fairly stable (k = 5.8 x 10(-)7 s-1, t1/2 = 330 h). In both cases, the diazoate was converted to dUrd exclusively and no other intermediates were detected by HPLC analysis. Uracil-DNA glycosylase did not remove the diazoate residue from an oligodeoxynucleotide containing this damage, [d(T6DT5), D = the diazoate]. The Tm value of a duplex containing the diazoate, d(T6DT5).d(A5GA6), was much lower than that of a duplex containing a correct C:G base pair, d(T6CT5).d(A5GA6). These results show that the diazoate is generated as a stable intermediate in the reactions of dCyd with HNO2 and NO and that the major product is the diazoate but not dUrd in the initial stage of the reactions. Thus, once formed in vivo, the diazoate persists for long time in DNA and may act as a major cytotoxic and/or genotoxic lesion with biologically relevant doses of HNO2 and NO.  相似文献   

12.
Human thyroid peroxidase (hTPO) catalyzes a one-electron oxidation of benzidine derivatives by hydrogen peroxide through classical Chance mechanism. The complete reduction of peroxidase oxidation products by ascorbic acid with the regeneration of primary aminobiphenyls was observed only in the case of 3,3',5,5'-tetramethylbenzidine (TMB). The kinetic characteristics (k(cat) and K(m)) of benzidine (BD), 3,3'-dimethylbenzidine (o-tolidine), 3,3'-dimethoxybenzidine (o-dianisidine), and TMB oxidation at 25 degrees C in 0.05 M phosphate-citrate buffer, pH 5.5, catalyzed by hTPO and horseradish peroxidase (HPR) were determined. The effective K(m) values for aminobiphenyls oxidation by both peroxidases raise with the increase of number of methyl and methoxy substituents in the benzidine molecule. Efficiency of aminobiphenyls oxidation catalyzed by either hTPO or HRP increases with the number of substituents in 3, 3', 5, and 5' positions of the benzidine molecule, which is in accordance with redox potential values for the substrates studied. The efficiency of HRP in the oxidation of benzidine derivatives expressed as k(cat)/K(m) was about two orders of magnitude higher as compared with hTPO. Straight correlation between the carcinogenicity of aminobiphenyls and genotoxicity of their peroxidation products was shown by the electrophoresis detecting the formation of covalent DNA cross-linking.  相似文献   

13.
The kinetics of coupled peroxidation of 3,3',5,5'-tetramethylbenzidine and 1-amino-2-naphtol-4-sulfonic acid (ANSA) or its polydisulfide (poly(ADSNSA)) was studied in 0.01 M phosphate buffer (pH 6.4) at 20 degrees C. Both ANSA and poly(ADSNSA) strongly inhibited the TMB oxidation resulting in a marked delay in the product formation. Stoichiometric inhibition coefficients f, i.e., the average numbers of free-radical particles terminated by one inhibitor molecule, were estimated. The free-radical trapping effect of poly(ADSNSA) was 7.5 times greater than that of ANSA. Kinetics of coupled o-phenylenediamine (PhDA) and ANSA or poly(ADSNSA) oxidation was studied in phosphate-citrate buffers at pH 3 to 7. No lag periods in oxidation product accumulation were observed under any of the reaction conditions. A weak activation of PhDA conversion depending on pH and PhDA/ANSA ratios was observed at low ANSA concentrations, whereas increased ANSA or poly(ADSNSA) concentrations were inhibitory. The degree of PhDA inhibition was maximal in acid media, reached minimum at pH 5 to 6, and than again increased at pH above 6. Tentative mechanism of coupled aromatic amine phenol bi-substrate system peroxidation is discussed.  相似文献   

14.
Gallic acid polydisulfide and poly(2-aminodisulfide-4-nitrophenol) in aqueous solutions were shown to form polycomplexes with human serum albumin. This process was accompanied by considerable changes in the spectrum of protein circular dichroism recorded in distilled water in the far UV range at 20 degrees C. Complex formation between human serum albumin and polydisulfides was followed by a marked decrease in the content of alpha-helices and increase in the count of antiparallel beta-structures in the protein. Stable complexes containing 1.5, 2.8, and 7.7 poly(2-aminodisulfide-4-nitrophenol) molecules per human serum albumin molecule were formed in bicarbonate buffer (pH 9.0). In these complexes, the secondary protein structure underwent changes similar to those in polycomplexes of human serum albumin and polydisulfides. Gallic acid polydisulfide and poly(2-aminodisulfide-4-nitrophenol) inhibited the catalase-induced degradation of 50 mM H2O2. Complexes of human serum albumin and poly(2-aminodisulfide-4-nitrophenol) increased the catalytic activity and operational stability of catalase 1.5 and 4-7-fold, respectively. This was characterized by the effective reaction rate constant (kin, s-1). Our results indicate that complexes of human serum albumin and substituted phenol polydisulfides act as potent protectors and activators of catalase during enzymatic degradation of H2O2 at high concentrations.  相似文献   

15.
Participation of the complexes of hemin and albumins (or delipidated albumins) in peroxidation of aromatic free radical scavengers and antioxidants was studied at varying hemin/albumin ratios. The radical-scavenging amines included o-phenylenediamine (OPD) and tetramethylbenzidine (TMB); the antioxidants, gallic acid (GA) and GA polydisulfide (GAPD). Peroxidation reactions were carried out in buffered physiological saline (BPS) supplemented with 2% dimethylsulfoxide(DMSO), pH 7.4 (medium A), or in 40% aqueous dimethylformamide (DMF), pH 7.4 (medium B). In all systems involving methemalbumins, kinetic constants (kcat), Michaelis constants (kM), and the ratios thereof (kcat/kM) were determined for OPD oxidation in medium A and TMB oxidation in medium B. Oxidation of OPD, GA, and GAPD in medium A was characterized by a decrease in the catalytic activity of hemin after the formation of hemin-albumin complexes. Conversely, oxidation of TMB and OPD in medium B was distinguished by pronounced activation of hemin present within methemalbumins.  相似文献   

16.
1,4-benzoquinone (BQ) and 2,5-dimethyl-1,4-benzoquinone (DMBQ) were studied as inhibitors of jack bean urease in 50 mM phosphate buffer, pH 7.0. The mechanisms of inhibition were evaluated by progress curves studies and steady-state approach to data achieved by preincubation of the enzyme with the inhibitor. The obtained reaction progress curves were time-dependent and characteristic of slow-binding inhibition. The effects of different concentrations of BQ and DMBQ on the initial and steady-state velocities as well as the apparent first-order velocity constants obeyed the relationships of two-step enzyme-inhibitor interaction, qualified as mechanism B. The rapid formation of an initial BQ-urease complex with an inhibition constant of Ki = 0.031 mM was followed by a slow isomerization into the final BQ-urease complex with the overall inhibition constant of Ki* = 4.5 x 10(-5) mM. The respective inhibition constants for DMBQ were Ki = 0.42 mM, Ki* = 1.2 x 10(-3) mM. The rate constants of the inhibitor-urease isomerization indicated that forward processes were rapid in contrast to slow reverse reactions. The overall inhibition constants obtained by the steady-state analysis were found to be 5.1 x 10(-5) mM for BQ and 0.98 x 10(-3) mM for DMBQ. BQ was found to be a much stronger inhibitor of urease than DMBQ. A test, based on reaction with L-cysteine, confirmed the essential role of the sulfhydryl group in the inhibition of urease by BQ and DMBQ.  相似文献   

17.
The role of complexes containing oxygen or peroxide in monooxygenase systems and models thereof, as well as in peroxidase- and quasi-peroxidase-catalyzed processes, has been reviewed. Pathways of conversion of these intermediate complexes involving single-electron (radical) and two-electron (heterolytic) mechanisms are dealt with. Coupled peroxidase-catalyzed oxidation of aromatic amines and phenols is analyzed; inhibition and activation of peroxidase-catalyzed reactions are characterized quantitatively. Oxidation of chromogenic substrates (ABTS, OPD, and TMB) in the presence of phenolic inhibitors or polydisulfides of substituted phenols is characterized by inhibition constants (Ki, micromol). Activation of peroxidase-catalyzed oxidation of the same substrates is characterized by the degree (coefficient) of activation (alpha, M(-1)), which was determined for 2-aminothiazole, melamine, tetrazole, and its 5-substituted derivatives. Examples of applied use of peroxidase-catalyzed enzyme and model systems are given (oxidation of organic compounds, chemical analysis, enzyme immunoassay, tests for antioxidant activity of biological fluids).  相似文献   

18.
Yu H  Yan F  Dai Z  Ju H 《Analytical biochemistry》2004,331(1):98-105
A screen-printed three-electrode system is fabricated to prepare a novel disposable screen-printed immunosensor for rapid determination of alpha-1-fetoprotein (AFP) in human serum. The immunosensor is prepared by entrapping horseradish peroxidase (HRP)-labeled AFP antibody in chitosan membrane to modify the screen-printed carbon electrode. The membrane is characterized with scanning electron microscope and electrochemical methods. After the immunosensor is incubated with AFP at 30 degrees C for 35 min, the access of the active center of HRP catalyzing the oxidation reaction of thionine by H(2)O(2) is partly inhibited. In presence of 1.2 mM thionine and 6 mM H(2)O(2), the electrocatalytic current decreases linearly in two concentration ranges of AFP from 0 to 20 and from 20 to 150 ng/mL with a detection limit of 0.74 ng/mL. The immunosensor shows an acceptable accuracy compared with those obtained from immunoradiometric assays. The interassay coefficients of variation are 6.6 and 4.2% at 10 and 100 ng/mL, respectively. The storage stability is acceptable in pH 7.0 phosphate buffer solution at 4 degrees C for more than 10 days. The proposed method can detect the AFP through one-step immunoassay and would be valuable for clinical immunoassay.  相似文献   

19.
The kinetics of coupled peroxidation of 3,3",5,5"-tetramethylbenzidine (TMB) and 1-amino-2-naphtol-4-sulfonic acid (ANSA) or its polydisulfide (poly(ADSNSA)) was studied in a 0.01 M phosphate buffer (pH 6.4) at 20°C. Both ANSA and poly(ADSNSA) strongly inhibited the TMB oxidation resulting in a marked delay in the product formation. Stoichiometric inhibition coefficients f, i. e., the average numbers of free-radical particles terminated by one inhibitor molecule, were estimated. The free-radical trapping effect of poly(ADSNSA) was 7.5 times greater than that of ANSA. Kinetics of coupled o-phenylenediamine (PhDA) and ANSA or poly(ADSNSA) oxidation was studied in phosphate–citrate buffers at pH 3 to 7. No lag periods in oxidation product accumulation were observed under any of the reaction conditions. A weak activation of PhDA conversion depending on pH and PhDA/ANSA ratios was observed at low ANSA concentrations, whereas increased ANSA or poly(ADSNSA) concentrations were inhibitory. The degree of PhDA-inhibition was maximal in acid media, reached minimum at pH 5 to 6, and than again increased at pH above 6. A tentative mechanism of coupled aromatic amine–phenol bi-substrate system peroxidation is discussed.  相似文献   

20.
A steady-state kinetic analysis was made of thiocyanate (SCN-) oxidation catalyzed by human peroxidase (SPO) isolated from parotid saliva. For comparative purposes, bovine lactoperoxidase (LPO) was also studied. Both enzymes followed the classical Theorell-Chance mechanism under the initial conditions [H2O2] less than 0.2mM, [SCN-] less than 10mM, and pH greater than 6.0. The pH-independent rate constants (k1) for the formation of compound I were estimated to be 8 X 10(6) M-1 s-1 (SD = 1, n = 18) for LPO and 5 X 10(6) M-1 s-1 (SD = 1, n = 11) for SPO. The pH-independent second-order rate constants (k4) for the oxidation of thiocyanate by compound I were estimated to be 5 X 10(6) M-1 s-1 (SD = 1, n = 18) for LPO and 9 X 10(6) M-1 s-1 (SD = 2, n = 11) for SPO. Both enzymes were inhibited by SCN- at pH less than 6. The pH-independent equilibrium constant (Ki) for the formation of the inhibited enzyme-SCN- complex was estimated to be 24 M-1 (SD = 12, n = 8) for LPO and 44 M-1 (SD = 4, n = 10) for SPO. An apparent pH dependence of the estimated values for k4 and Ki for both LPO and SPO was consistent with a mechanism based on assumptions that protonation of compound I was necessary for the SCN- peroxidation step, that a second protonation of compound I gave an inactive form, and that the inhibited enzyme-SCN- complex could be further protonated to give another inactive form.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号