首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histidine phosphorylation is important in prokaryotes and occurs to the extent of 6% of total phosphorylation in eukaryotes. Nevertheless phosphohistidine residues are not normally observed in proteins due to rapid hydrolysis of the phosphoryl group under acidic conditions. Many rapid processes employ phosphohistidines, including the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS), the bacterial two-component systems and reactions catalyzed by enzymes such as nucleoside diphosphate kinase and succinyl-CoA synthetase. In the PTS, the NMR structure of the phosphohistidine moiety of the phosphohistidine-containing protein was determined but no X-ray structures of phosphohistidine forms of PTS proteins have been elucidated. There have been crystal structures of a few phosphohistidine-containing proteins determined: nucleoside diphosphate kinase, succinyl-CoA synthetase, a cofactor-dependent phosphoglycerate mutase and the protein PAE2307 from the hyperthermophilic archaeon Pyrobaculum aerophilum. A common theme for these stable phosphohistidines is the occurrence of ion-pair hydrogen bonds (salt bridges) involving the non-phosphorylated nitrogen atom of the histidine imidazole ring with an acidic amino acid side chain.  相似文献   

2.
Escherichia coli succinyl-CoA synthetase (EC 6.2.1.5) was irreversibly inactivated on incubation with the adenine nucleotide analogue 5'-p-fluorosulphonylbenzoyladenosine (5'-FSBA). Optimal inactivation by 5'-FSBA took place in 40% (v/v) dimethylformamide. ATP and ADP protected the enzyme against inactivation by 5'-FSBA, whereas desulpho-CoA, an analogue of CoA, did not. Inactivation of succinyl-CoA synthetase by 5'-FSBA resulted in total loss of almost four thiol groups per alpha beta-dimer, of which two groups appeared to be essential for catalytic activity. 5'-FSBA at the first instance appeared to interact non-specifically with non-essential thiol groups, followed by a more specific reaction with essential thiol groups in the ATP(ADP)-binding region. Plots of the data according to the method of Tsou [(1962) Sci. Sin. 11, 1535-1558] revealed that, of the two slower-reacting thiol groups, only one was essential for catalytic activity. When succinyl-CoA synthetase that had been totally inactivated by 5'-FSBA was unfolded in acidic urea and then refolded in the presence of 100 mM-dithiothreitol, 85% of the activity, in comparison with the appropriate control, was restored. These data are interpreted to indicate that inactivation of succinyl-CoA synthetase by 5'-FSBA involves the formation of a disulphide bond between two cysteine residues. Disulphide bond formation likely proceeds via a thiosulphonate intermediate between 5'-p-sulphonylbenzoyladenosine and one of the reactive thiol groups of the enzyme.  相似文献   

3.
Effect of vanadate and vanadyl ions on the ATP-dependent succinyl-CoA synthetase (A-SCS) solubilized by Lubrol-PX from the rat brain mitochondria was tested. Vanadate added to the assay medium at 10(-5) mol.l-1 and 10(-4) mol.l-1 concentrations inhibited the enzyme activity by about 50% and 94%, respectively. When the enzyme was solubilized from the mitochondria preincubated with 10(-4) mol.l-1 and 10(-3) mol.l-1 vanadate, the residual inhibitions were 55% and 100% respectively. The vanadyl cation also induced inhibition of the A-SCS activity but the effect was less expressed. At 10(-4) mol.l-1 concentration only 20% inhibition was achieved. The A-SCS solubilized from the mitochondrial subfractions (perikaryal, light and heavy synaptosomal) differed neither in the activity of A-SCS nor in the susceptibility toward action of vanadium ions. A strong dependence of the vanadate inhibition on the concentration of succinate was observed. The above effect (50% inhibition) could be demonstrated only at saturating concentration of succinate (50 mmol.l-1). The mechanism of vanadium ions action as well as differences between vanadate and vanadyl ions effects are discussed.  相似文献   

4.
Succinyl-CoA synthetase catalyzes the reversible reaction succinyl-CoA + NDP + P(i) <--> succinate + CoA + NTP (N denoting adenosine or guanosine). The enzyme consists of two different subunits, designated alpha and beta. During the reaction, a histidine residue of the alpha-subunit is transiently phosphorylated. This histidine residue interacts with Glu 208 alpha at site I in the structures of phosphorylated and dephosphorylated Escherichia coli SCS. We postulated that Glu 197 beta, a residue in the nucleotide-binding domain, would provide similar stabilization of the histidine residue during the actual phosphorylation/dephosphorylation by nucleotide at site II. In this work, these two glutamate residues have been mutated individually to aspartate or glutamine. Glu 197 beta has been additionally mutated to alanine. The mutant proteins were tested for their ability to be phosphorylated in the forward or reverse direction. The aspartate mutant proteins can be phosphorylated in either direction, while the E208 alpha Q mutant protein can only be phosphorylated by NTP, and the E197 beta Q mutant protein can only be phosphorylated by succinyl-CoA and P(i). These results demonstrate that the length of the side chain at these positions is not critical, but that the charge is. Most significantly, the E197 beta A mutant protein could not be phosphorylated in either direction. Its crystal structure shows large differences from the wild-type enzyme in the conformation of two residues of the alpha-subunit, Cys 123 alpha-Pro 124 alpha. We postulate that in this conformation, the protein cannot productively bind succinyl-CoA for phosphorylation via succinyl-CoA and P(i).  相似文献   

5.
Ethoxyformic anhydride was used to demonstrate the existence of a second important histidine in succinyl-CoA synthetase from Escherichia coli. Differential labeling of the enzyme by [3H]ethoxyformic anhydride gave a stoichiometry of one important histidine per alpha beta catalytic unit. Data are presented suggesting that this residue and an important thiol group on the beta subunit (Collier, G., and Nishimura, J.S. (1978) J. Biol. Chem. 253, 4938-4943) interact with each other during catalysis. A mechanism of action involving these 2 residues is proposed for one of the partial reactions catalyzed by succinyl-CoA synthetase.  相似文献   

6.
There are 11 histidine residues in Escherichia coli succinyl-CoA synthetase. His-246 alpha is well established as the phosphorylation site of the enzyme. Replacement of this histidine by asparagine (Mann, C. J., Mitchell, T., and Nishimura, J. S. (1991) Biochemistry 30, 1497-1503) or by aspartic acid (Majumdar, R., Guest, J. R., and Bridger, W. A. (1991) Biochim. Biophys. Acta 1076, 86-90) through site-directed mutagenesis resulted in complete loss of enzyme activity. Chemical modification experiments suggested a second histidine at the active site (Collier, G. E., and Nishimura, J. S. (1979) J. Biol. Chem. 254, 10925-10930). In the present study, we have changed His-142 alpha to an asparagine residue using the technique of site-directed mutagenesis and have purified the mutant enzyme to homogeneity. The resulting mutant enzyme is practically devoid of enzyme activity but can be thiophosphorylated with adenosine 5'-O-(thiotriphosphate) and dethiophosphorylated with ADP at rates that are significantly faster than those with wild type enzyme. The observation that phosphorylated mutant enzyme can be dephosphorylated with succinate and with succinate plus desulfo-CoA at rates comparable with those with wild type enzyme suggests that mutant enzyme can bind succinate and CoA. Dethiophosphorylation of the enzyme in the presence of CoA plus succinate proceeds much faster with wild type than with mutant. While there was no significant change in KCoA or Ksuccinate, the turnover number for dethiophosphorylation of the mutant was 10-fold lower. These data are consistent with location of His-142 alpha at the active site and a facilitative role for this residue in catalysis.  相似文献   

7.
The hydrolytic stability of phosphorylated pigeon breast muscle succinyl-CoA synthetase within a wide pH range was studied. It was found that within complex I the phosphate-protein bond is hydrolyzed at alkaline values of pH (11.0 and 13.0); at acidic pH values this bond is hydrolyzed by 50%. Within complex II the phosphate-protein bond is hydrolyzed at acidic pH values and is stable at alkaline pH values. The reaction of the phosphorylated enzyme with hydroxylamine and diisopropylfluorophosphate results in protein dephosphorylation by 50%. Ion-exchange chromatography of the radioactive phosphorylated enzyme II alkaline hydrolyzate (3 n NaOH, 3 hours, 100 degrees C) revealed that the radioactivity was distributed between 1-N-, 3-N-phosphohistidine and 1.3-N-diphosphohistidine fractions. The experimental results suggest that in the phosphorylated enzyme I phosphate is bound to the protein to form an acyl phosphate and phosphoester bonds, while in the phosphorylated enzyme II phosphate binding to the protein occurs with the formation of phosphoamide bonds.  相似文献   

8.
9.
Oxidative phosphorylation and substrate level phosphorylation catalyzed by succinyl-CoA synthetase found in the citric acid and the acetate:succinate CoA transferase/succinyl-CoA synthetase cycle contribute to mitochondrial ATP synthesis in procyclic Trypanosoma brucei. The latter pathway is specific for trypanosome but also found in hydrogenosomes. In organello ATP production was studied in wild-type and in RNA interference cell lines ablated for key enzymes of each of the three pathways. The following results were obtained: 1) ATP production in the acetate:succinate CoA transferase/succinyl-CoA synthetase cycle was directly demonstrated. 2) Succinate dehydrogenase appears to be the only entry point for electrons of mitochondrial substrates into the respiratory chain; however, its activity could be ablated without causing a growth phenotype. 3) Growth of procyclic T. brucei was not affected by the absence of either a functional citric acid or the acetate:succinate CoA transferase/succinyl-CoA synthetase cycle. However, interruption of both pathways in the same cell line resulted in a growth arrest. In summary, these results show that oxygen-independent substrate level phosphorylation either linked to the citric acid cycle or tied into acetate production is essential for growth of procyclic T. brucei, a situation that may reflect an adaptation to the partially hypoxic conditions in the insect host.  相似文献   

10.
Chemical modification experiments have shown that sulfhydryl groups play an important role in the mechanism of action of Escherichia coli succinyl-CoA synthetase. One of these sulfhydryl groups has been localized in the beta-subunit of the enzyme using the coenzyme A affinity analog, CoA disulfide-S,S-dioxide (Collier, G. E., and Nishimura, J. S. (1978) J. Biol. Chem. 253, 4938-4943). Recently, it has been shown that the reactive sulfhydryl group resides in Cys325 (Nishimura, J. S., Mitchell, T., Ybarra, J., and Matula, J. M., submitted to Eur. J. Biochem. for publication). In the present study, we have changed Cys325 to a glycine residue using the technique of site-directed mutagenesis and have purified the mutant enzyme to homogeneity. The resulting mutant enzyme is 83% as active as wild type enzyme. In contrast to wild type succinyl-CoA synthetase, the mutant is refractory to chemical modification by CoA disulfide-S,S-dioxide and methyl methanethiolsulfonate. It is also less reactive with N-ethylmaleimide. Thus, beta-Cys325 is a nonessential active site residue.  相似文献   

11.
Adenosine 5'-O-(3-thio)triphosphate (ATP gamma S) has been shown to be a potent inhibitor of Escherichia coli succinyl-CoA synthetase. This inhibition was competitive with respect to ATP and GTP (Ki values of 0.8 and 0.7 microM, respectively) and mixed with respect to CoA and succinate. ATP gamma S previously had been shown to be a weak substrate of the enzyme, probably because of the relatively sluggish reactivity of the thiophosphoryl enzyme intermediate (Wolodko, W. T., Brownie, E. R., O'Connor, M. D., and Bridger, W. A. (1983) J. Biol. Chem. 258, 14116-14119). In our work, reaction of thiophosphoryl enzyme with ADP was greatly stimulated by succinyl-CoA, an observation that is consistent with the concept of alternating-sites cooperativity. Thiophosphoryl group release did not appear to be accompanied by "other-site" phosphorylation, in contrast to ATP stimulation of thiophosphoryl group release in the presence of succinate and CoA (Wolodko et al., see above). In addition, ADP did not appear to be required in the latter reaction.  相似文献   

12.
Incubation of oxidized coenzyme A disulfide (produced by oxidation of reduced CoA with 1 eq of sodium periodiate or of CoA disulfide with 1 eq of peracetic acid) with succinyl-CoA disulfide with 1 eq of peracetic acid) with succinyl-CoA synthetase from either porcine heart or Escherichia coli led to the formation of inactive enzyme containing 1 mol of CoA per alphabeta dimer. The bound CoA was attached through a disulfide bond to a sulfhydryl group of the beta subunit. Release of CoA and restoration of activity was achieved by incubation of the modified enzyme with thiols, such as dithiothreitol. Interaction of oxidized CoA disulfide with enzyme was inhibited competitively by desulfo-CoA, which is a competitive inhibitor of the enzyme with respect to CoA. These data are evidence that oxidized CoA disulfide is an affinity label for the CoA binding site of succinyl-CoA synthetase and are the first positive results implicating the beta subunit in the catalytic mechanism of the enzyme.  相似文献   

13.
G Fong  W A Bridger 《Biochemistry》1992,31(24):5661-5664
Succinyl-CoA synthetase of Escherichia coli (alpha 2B2 subunit structure) has been shown to fold and assemble without participation by molecular chaperones. Renaturation experiments showed that purified bacterial chaperone GroEL has no effect on the folding and assembly of the active tetrameric enzyme. When isolated 35S-labeled alpha or beta subunits were incubated with GroEL in the absence of ATP, there was no complex formation between the subunits and GroEL. These in vitro results were confirmed by in vivo analysis of the folding and assembly of newly synthesized succinyl-CoA synthetase subunits. When expression of the subunits was induced in E. coli strains that bear GroEL or GroES temperature-sensitive mutations, the assembly of active succinyl-CoA synthetase was not affected as the temperature was raised to 43 degrees C. These and other observations are discussed that indicate that folding and assembly of succinyl-CoA synthetase may be independent of assistance by any chaperone.  相似文献   

14.
We have previously shown that micromolar concentrations of GDP stimulate the GTP-mediated phosphorylation of p36, the subunit of succinyl-CoA synthetase (SCS), in lysates prepared fromDictyostelium discoideum. In this study, we report that this phenomenon represents an enhanced catalytic capacity of SCS to form the phosphoenzyme intermediate. Low concentrations of GDP stimulate phosphoenzyme formation by either GTP, or succinyl-CoA and Pi. Under these conditions GDP enhances the apparent rate of phosphoenzyme formation but does not significantly alter the fraction of phosphorylated enzyme. This effect is retained during purification of the protein and is also observed with purified pig heart SCS, indicating that GDP directly alters the enzyme to enhance its rate of phosphorylation. Under these conditions, GDP does not function at the catalytic site, implying an allosteric regulation of SCS.Abbreviations used SCS succinyl-CoA synthetase - P i inorganic phosphate - NDP nucleotide diphosphate - NTP nucleotide triphosphate - PFK phosphofructokinase A-form; ADP-forming SCS; G-form; GDP-forming SCS  相似文献   

15.
Two isoforms of succinyl-CoA synthetase exist in mammals, one specific for ATP and the other for GTP. The GTP-specific form of pig succinyl-CoA synthetase has been crystallized in the presence of GTP and the structure determined to 2.1 A resolution. GTP is bound in the ATP-grasp domain, where interactions of the guanine base with a glutamine residue (Gln-20beta) and with backbone atoms provide the specificity. The gamma-phosphate interacts with the side chain of an arginine residue (Arg-54beta) and with backbone amide nitrogen atoms, leading to tight interactions between the gamma-phosphate and the protein. This contrasts with the structures of ATP bound to other members of the family of ATP-grasp proteins where the gamma-phosphate is exposed, free to react with the other substrate. To test if GDP would interact with GTP-specific succinyl-CoA synthetase in the same way that ADP interacts with other members of the family of ATP-grasp proteins, the structure of GDP bound to GTP-specific succinyl-CoA synthetase was also determined. A comparison of the conformations of GTP and GDP shows that the bases adopt the same position but that changes in conformation of the ribose moieties and the alpha- and beta-phosphates allow the gamma-phosphate to interact with the arginine residue and amide nitrogen atoms in GTP, while the beta-phosphate interacts with these residues in GDP. The complex of GTP with succinyl-CoA synthetase shows that the enzyme is able to protect GTP from hydrolysis when the active-site histidine residue is not in position to be phosphorylated.  相似文献   

16.
M Birney  H D Um    C Klein 《Journal of bacteriology》1996,178(10):2883-2889
Low concentrations of ADP are shown to increase the rate of phosphoenzyme formation of E. coli succinyl-coenzyme A (CoA) synthetase (SCS) without altering the fraction of phosphorylated enzyme. This is true when either ATP or succinyl-CoA and Pi are used to phosphorylate the enzyme. The stimulatory effect of ADP is not altered by sample dilution, is retained upon partial purification of the enzyme, and reflects the binding of ADP to a site other than the catalytic site. GDP also alters the phosphorylation of the E. coli SCS but does so primarily by enhancing the level of the phosphoenzyme and only when ATP is used as the phosphate donor. GDP appears to function by neutralizing the action of a specific inhibitory protein. This inhibitor of SCS allows for interconversion of succinate and succinyl-CoA in a manner dissociated from changes in ATP-ADP metabolism. These previously unidentified and varied mechanisms by which SCS is regulated focus attention on this enzyme as an important control point in determining the cell's potential to meet its metabolic demands.  相似文献   

17.
Recently, we described the properties of a mutant (H142N) of Escherichia coli succinyl coenzyme A (CoA) synthetase in which His-142 of the alpha-subunit was changed to Asn (Luo, G.-X., and Nishimura, J.S. (1991) J. Biol. Chem. 266, 20781-20785). The mutant enzyme was practically devoid of ability to catalyze the overall reaction but was able to catalyze half-reactions at significant rates. Thus, phosphorylation by ATP and dephosphorylation by ADP of the mutant enzyme occurred at rates that were at least 10 times greater than those with wild type enzyme, and dephosphorylation by succinate plus CoA (succinyl-CoA formation) proceeded with a Vmax of 10% that of wild type, with no change in Km for succinate and very little change in Km for CoA. In the present work, it has been shown that incubation of 32P-labeled H142N with ATP caused a rapid depletion of label from the enzyme and incorporation of radioactivity into a nucleotide species that was neither ATP nor ADP. This reaction was catalyzed at comparatively negligible rates by wild type enzyme. Analysis of the labeled product by high pressure liquid chromatography and 31P NMR revealed that it was adenosine 5'-tetraphosphate (AP4). Incubation of labeled H142N with the ATP analog beta,gamma-methylene adenosine triphosphate also gave a product that appeared to be the corresponding tetraphosphate. The reaction in which AP4 was formed was greatly stimulated by the addition of phosphoenolpyruvate plus pyruvate kinase and strongly inhibited by ADP and by CoA plus succinate. The results are consistent with binding of ATP to, and reaction with, phosphorylated succinyl-CoA synthetase to form AP4. In this reaction, it was determined that the Km for ATP and the turnover number of phosphorylated enzyme were 14.5 microM and 0.024 s-1, respectively.  相似文献   

18.
In Archaea, acetate formation and ATP synthesis from acetyl-CoA is catalyzed by an unusual ADP-forming acetyl-CoA synthetase (ACD) (acetyl-CoA + ADP + P(i) acetate + ATP + HS-CoA) catalyzing the formation of acetate from acetyl-CoA and concomitant ATP synthesis by the mechanism of substrate level phosphorylation. ACD belongs to the protein superfamily of nucleoside diphosphate-forming acyl-CoA synthetases, which also include succinyl-CoA synthetases (SCSs). ACD differs from SCS in domain organization of subunits and in the presence of a second highly conserved histidine residue in the beta-subunit, which is absent in SCS. The influence of these differences on structure and reaction mechanism of ACD was studied with heterotetrameric ACD (alpha(2)beta(2)) from the hyperthermophilic archaeon Pyrococcus furiosus in comparison with heterotetrameric SCS. A structural model of P. furiosus ACD was constructed suggesting a novel spatial arrangement of the subunits different from SCS, however, maintaining a similar catalytic site. Furthermore, kinetic and molecular properties and enzyme phosphorylation as well as the ability to catalyze arsenolysis of acetyl-CoA were studied in wild type ACD and several mutant enzymes. The data indicate that the formation of enzyme-bound acetyl phosphate and enzyme phosphorylation at His-257alpha, respectively, proceed in analogy to SCS. In contrast to SCS, in ACD the phosphoryl group is transferred from the His-257alpha to ADP via transient phosphorylation of a second conserved histidine residue in the beta-subunit, His-71beta. It is proposed that ACD reaction follows a novel four-step mechanism including transient phosphorylation of two active site histidine residues:  相似文献   

19.
We have shown that myosin light chain phosphorylation inhibits fiber shortening velocity at high temperatures, 30 degrees C, in the presence of the phosphate analog vanadate. Vanadate inhibits tension by reversing the transition to force-generating states, thus mimicking a prepower stroke state. We have previously shown that at low temperatures vanadate also inhibits velocity, but at high temperatures it does not, with an abrupt transition in inhibition occurring near 25 degrees C (E. Pate, G. Wilson, M. Bhimani, and R. Cooke. Biophys J 66: 1554-1562, 1994). Here we show that for fibers activated in the presence of 0.5 mM vanadate, at 30 degrees C, shortening velocity is not inhibited in dephosphorylated fibers but is inhibited by 37 +/- 10% in fibers with phosphorylated myosin light chains. There is no effect of phosphorylation on fiber velocity in the presence of vanadate at 10 degrees C. The K(m) for ATP, defined by the maximum velocity of fibers partially inhibited by vanadate at 30 degrees C, is 20 +/- 4 microM for phosphorylated fibers and 192 +/- 40 microM for dephosphorylated fibers, showing that phosphorylation also affects the binding of ATP. Fiber stiffness is not affected by phosphorylation. Inhibition of velocity by phosphorylation at 30 degrees C depends on the phosphate analog, with approximately 12% inhibition in fibers activated in the presence of 5 mM BeF(3) and no inhibition in the presence of 0.25 mM AlF(4). Our results show that myosin phosphorylation can inhibit shortening velocity in fibers with large populations of myosin heads trapped in prepower stroke states, such as occurs during muscle fatigue.  相似文献   

20.
摘要:蛋白质磷酸化是一种可逆的翻译后修饰,这种翻译后修饰可以改变蛋白质的构象,进而使蛋白质活化或者失活。组氨酸磷酸化在细胞信号传导过程中发挥着重要作用,且组氨酸磷酸化与人类某些疾病密切相关,然而,由于组氨酸磷酸化含有P-N键,具备不稳定性,有关于组氨酸磷酸化的报道远远少于其它磷酸化的报道。本综述系统的总结了组氨酸磷酸化在生物学过程中的作用,以及近些年取得的重要研究进展,以期对深入研究组氨酸磷酸化提供理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号