首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fly photoreceptor synapses: their development, evolution, and plasticity   总被引:2,自引:0,他引:2  
Recent studies are reviewed on the synapses of photoreceptor terminals in the first optic neuropile of the flies, Musca and Drosophila. Afferent synaptic contacts are of uniform dimensions; they have a postsynaptic tetrad with a membrane organization of P-face particles, resembling other inhibitory synapses. A distributed population of such contact sites forms progressively during synaptogenesis by the selective, sequential accretion of identified postsynaptic elements at the receptor terminal. The comparative anatomy of this synapse indicates that elements have also been added during its phylogeny from an ancestral dyad. All cells are homologs of those in other species of Diptera. The number of synaptic sites is regulated by both pre- and postsynaptic cells, in proportion to their cell surfaces; an independent size increase in the receptor terminals (procured in the Drosophila mutant gigas) produces an increase in their synaptic population. The number of sites declines with age, however, accompanied by an increase in size of those synaptic sites remaining; this occurs for both afferent and feedback photoreceptor synapses. Lastly, the number of sites changes with visual experience; the frequency of feedback synapses is larger following dark rearing during early adult life than following visual experience.  相似文献   

2.
During the breeding season, male green anole lizards extend a throat fan (dewlap) in courtship. This behavior is facilitated by testosterone (T). Females extend a much smaller dewlap less often, even with the same dose of T. During the nonbreeding season when T is low, dewlap extension is reduced. To determine if parallels exist between structure and function, we investigated neuron soma size and density in the preoptic area (POA) and ventromedial nucleus of the amygdala (AMY), which are involved in the display behavior, in breeding and nonbreeding males and females. Cells from breeding animals were larger than cells from nonbreeding animals, but they were not sexually dimorphic. No significant effects existed in neuron density. This experiment indicates that portions of the anole forebrain important for sexual behavior are plastic and might be influenced by seasonal changes in steroid hormones. To investigate whether T can reverse the seasonal difference in soma size in both sexes, gonadectomized nonbreeding anoles were implanted with an empty or T propionate-filled capsule; animals were also tested for male-typical courtship behavior. Males and females treated with T had higher rates of dewlap extension, but across treatment groups these rates were greater in males. Neuron soma size in the POA and AMY was larger in males than females, but no effects of treatment were detected. Taken together, the results indicate that T can stimulate behavior in the nonbreeding season and suggest that a dissociation exists between the regulation of the courtship display and soma size of relevant brain regions.  相似文献   

3.
应用包埋前免疫电镜双标技术对大鼠下丘脑室旁核的神经肽Y(NPY)和胆囊收缩素(CCK)神经元的相互关系进行了研究。用Norgren法进行免疫电镜双标染色。结果在电镜下观察到:在室旁核内侧部,NPY样免疫反应产物呈电子密度高的颗粒状或絮状,弥漫分布于胞浆;CCK样免疫反应产物则呈电子密度高的针状或块状,散在分布于胞浆,偶见于核内。有时,在一个神经末梢内既有浓重的颗粒状DAB反应产物,又有典型的针状TMB反应产物。在室旁核内,NPY和CCK神经元胞体互相混杂、交错存在,两者均为中等大细胞。在超微结构水平,NPY和CCK神经元的树突和轴突可由非NPY、非CCK神经末梢接受传入突触联系;CCK神经元的树突还可接受其他CCK神经末梢的传入性自调节突触;CCK神经元胞体可接受NPY神经末梢的传入性突触,后者的突触前成分内可能有CCK与NPY共存。  相似文献   

4.
The ventral giant interneurons (GIs) in the cockroach have two distinct dendritic fields: a small one ipsilateral to the soma, and a larger, contralateral field from which the axon arises. The major input to these GIs is from the cercus on the axon side; when this cercus is ablated in the last instar before the adult stage, input from the other cercus becomes more effective within 30 days (Vardi and Camhi, 1982b). I wished to determine if the input from the intact, soma-ipsilateral cercus contacted the GIs purely ipsilaterally and if EPSPs at this site were larger in deafferented animals. Consistent with earlier anatomical findings, intracellular recordings from the GI somata showed that the majority of cercal inputs synapse on their own side of the ganglion in normal animals. This was evidenced by differences in the size and shape of the synaptic potentials evoked from the two cerci and by the presence of large EPSPs after a ganglion had been split along the midline. Unitary EPSPs produced by stimulation of single, identified cercal afferents, ipsilateral to the soma, were compared between normal and deafferented animals. Column "h" afferents were chosen because they make a large contribution to the receptive fields of GIs 1 and 2 after ablation of the contralateral cercus. In addition, the arbors of these afferents, when stained with cobalt, did not cross the ganglionic midline in normal animals. Unitary EPSPs recorded in GI 2 were significantly larger in the deafferented animals. There was, however, no significant change in the size of EPSPs in GI 1. Nevertheless, the results from GI 2 suggest that partial deafferentation in the central nervous system can increase the efficacy of synapses distant from the locus of denervation.  相似文献   

5.
Homozygous deafwaddler mice (dfw/dfw) have a mutation in the gene encoding plasma membrane Ca2+ATPase isoform 2 (Pmca2). They walk with a hesitant and wobbly gait, display head bobbing and are deaf. Light microscopy and transmission electron microscopy were used to evaluate the nature and relationship of morphological changes in the cochlea, spiral ganglion cells and spherical cells of the cochlear nucleus in homozygous and heterozygous mice of different ages and controls. Ultrastructural findings showed that in 7 week old homozygous (dfw) mice, inner hair cells and their afferent terminals were present although outer hair cells appeared apoptotic. Stereocilia were absent from the second and third rows of outer hair cells. Ganglion cells were also present although abnormal in appearance. In older homozygous mutants there was a loss of hair cells and spiral ganglion cells. Remaining ganglion cells in this group contained very few cytoplasmic organelles apart from a few hypertrophied mitochondria. In the anteroventral cochlear nucleus, spherical cell soma size was smaller in all homozygous (dfw) mutants than in heterozygous mice and controls. The ultrastructural appearance of the end bulbs of Held in homozygous mutants was abnormal compared with controls, and in the younger group were seen to be swollen, with less distinct synaptic densities and containing large numbers of small synaptic vesicles arranged in clumps. In the older group these synapses were distorted and contained hypertrophied mitochondria and no synaptic densities could be seen, suggesting that these synapses may be non-functional. This study has shown that in homozygous (dfw) mice structural abnormalities occurred not only in cochlear hair cells but also in the spiral ganglion neurones and spherical cells in the cochlear nucleus. It seems likely that these changes are the result of the Pmca2 mutation and the subsequent accumulation of toxic levels of calcium that may lead to alterations in their functional integrity.  相似文献   

6.
Inhibitory interneurons (INs) in the lateral geniculate nucleus (LGN) provide both axonal and dendritic GABA output to thalamocortical relay cells (TCs). Distal parts of the IN dendrites often enter into complex arrangements known as triadic synapses, where the IN dendrite plays a dual role as postsynaptic to retinal input and presynaptic to TC dendrites. Dendritic GABA release can be triggered by retinal input, in a highly localized process that is functionally isolated from the soma, but can also be triggered by somatically elicited Ca2+-spikes and possibly by backpropagating action potentials. Ca2+-spikes in INs are predominantly mediated by T-type Ca2+-channels (T-channels). Due to the complex nature of the dendritic signalling, the function of the IN is likely to depend critically on how T-channels are distributed over the somatodendritic membrane (T-distribution). To study the relationship between the T-distribution and several IN response properties, we here run a series of simulations where we vary the T-distribution in a multicompartmental IN model with a realistic morphology. We find that the somatic response to somatic current injection is facilitated by a high T-channel density in the soma-region. Conversely, a high T-channel density in the distal dendritic region is found to facilitate dendritic signalling in both the outward direction (increases the response in distal dendrites to somatic input) and the inward direction (the soma responds stronger to distal synaptic input). The real T-distribution is likely to reflect a compromise between several neural functions, involving somatic response patterns and dendritic signalling.  相似文献   

7.
The fine structure of a joint receptor (R10) in a spider leg (Zygiella x-notata) was examined with light and electron microscopy. The R10 receptor consists of a compact ganglion which is situated near the dorsal joint membrane of the femur/patella joint. Each of the ten sensory cells comprising the ganglion sends one branching dendrite into the hypodermis underlying the joint membrane. All dendritic branches together form a sheet-like meshwork 50 microns wide and 1 microns thick, which is traversed obliquely by hypodermis cells. When the joint is stretched shearing forces are apparently transmitted to the receptive dendritic branches via microtubular bundles inside the hypodermis cells. The soma and dendrites of the sensory cells receive numerous synaptic input from presumably efferent fibres. The fine structure of these synapses is described and compared with other peripheral and central spider synapses. All R10 synapses contain small synaptic vesicles (32 nm diameter), whereas motor endplates possess large vesicles (38 nm). Central synapses have two significantly different vesicle populations which are either of the small or large variety. Since synapses with small vesicles are supposedly inhibitory, receptor cells in spiders might be under efferent control. Such a system is unknown in insects or crustaceans, but may be typical for arachnids.  相似文献   

8.
Moshkov  D. A.  Pavlik  L. L.  Tiras  N. R.  Dzeban  D. A.  Mikheeva  I. B. 《Neurophysiology》2003,35(5):361-370
We examined changes in the ultrastructure of afferent mixed synapses on the membrane of Mauthner neurons (M cells) of the goldfish, which were related to two functional states, long-term potentiation (LTP) of the electrotonic response (a model form of the memory trace) and adaptation (resistivity to fatigue resulting from long-lasting motor training and considered a natural form of the memory trace manifested on the neuronal level). LTP was induced in medullary slices using high-frequency electrical stimulation of the afferent input. Adaptation was produced using natural vestibular stimulation (everyday motor training, which modified motor behavior of the fish and function of the M cell). It was supposed that if the LTP phenomenon is involved in the formation of natural memory, both the adaptation and the LTP states should be accompanied by similar specific structural modifications. Indeed, it was found that in both cases the number of fibrillar bridges in the gaps of desmosome-like contacts (DLC) in the mixed synapses on the M cell surface demonstrated an about twofold increase. These bridges are known to include actin filaments, which function as conductors of cationic signals; thus, the LTP-related increase in the density of bridges corresponds to increased efficacy of electrotonic coupling via mixed synapses. Such a structural correlate of LTP, which probably has the same functional significance in mixed synapses of the adapted M cells, allows us to suppose that LTP is a natural property of the nervous system. The LTP-type intensification of the relay function of mixed synapses, which corresponds to adaptation, is probably a compensatory rearrangement allowing M cells to maintain some balance of the synaptic influences and, at the same time, to remain in a stable and plastic state; this is necessary for stable functioning under changing environmental conditions.  相似文献   

9.
An electron-microscopic study was made of the normal structure of the medial part of the ventral horn (Rexed's laminae VII and VIII) in the cervical portion of the cat's spinal cord, the region where fibers of reticulospinal and vestibulospinal tracts terminate. Neurons of this region can be divided on the basis of the density of their cytoplasmic matrix into "light" and "dark," the dark being much more numerous in this area (26% of the total number counted) than in other parts of the gray matter of the spinal cord. The mean diameter of the soma of the dark cells is smaller than that of the light cells, and it usually is 15–20 µ. Dendrites of the neurons can also be subdivided into "light" and "dark" respectively. The surface of the former is comparatively simple in shape with a small number of appendages and spine-like structures. On the surface of the dark dendrites there are many projections and irregularly shaped lacunae. The glial cells and their processes often completely cover the surface of the soma of the small neurons, and synaptic endings are found on it only where the dendrites leave the soma. Analysis of 1000 randomly chosen synaptic endings showed that 76.1% of them form axo-dendritic synapses, 14.2% axo-somatic, and 9.7% axo-axonal synapses. Of the total number of endings 50.9% contain spherical and 40.9% flattened synaptic vesicles. Some synaptic endings contain special structures under the postsynaptic membrane and have osmiophilic synaptic vesicles. The possible functional role of the pattern of neuronal organization revealed in this region is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 176–183, March–April, 1972.  相似文献   

10.
Josephson  E.M.  Morest  D.K. 《Brain Cell Biology》1998,27(11):841-864
Summary. One of the most numerous neurons in the cochlear nucleus is the type I stellate cell. Previous attempts to understand the structural basis for its signal coding assumed that integration of synaptic potentials arising from axodendritic synapses should account for the generation of its response properties. However, the present study documents the importance of excitatory and inhibitory types of synapses on the soma and axon. Retrograde transport of cholera toxin B subunit, injected in the inferior colliculus of chinchillas, was used to label exclusively type I stellate cells in the anteroventral cochlear nucleus. The relative distribution of terminal types by vesicle morphology was pleomorphic < large spherical < flattened < smaller spherical. The somatic perimeter covered by endings ranged from almost none to nearly half. More flattened-vesicle terminals contacted somata in the high-frequency than in the low-frequency region. Eight of twenty axons received endings that contained large spherical vesicles and made asymmetric junctions; half of these extensively apposed the initial segment, forming a collar of presumed excitatory input. Thus, type I stellate cells are a heterogeneous group. Inhibitory synapses probably compose the majority of terminals. Some cells receive mostly inhibitory synapses near the presumed site of the spike generator, but others also have a prominent excitatory input. These findings call for a new look at the mechanisms for signal coding in stellate cells in the auditory system in particular and raise issues concerning the stochastic nature of information processing in sensory systems in general.  相似文献   

11.
Efferent and reciprocal synapses have been demonstrated in the carotid body of the domestic fowl (Gallus gallus domesticus). Synapses were also found with purely afferent morphology, but were probably components of reciprocal synapses. The general morphology of the endings suggested the presence of two types of axon, afferent axons making reciprocal and perhaps afferent synapses with Type I cells, and efferent axons making efferent synapses with Type I cells. A few axo-dendritic synapses were also found. The dense-cored vesicles associated with the afferent components of reciprocal synapses and with the possible true afferent synapses varied in diameter and core but could belong to one population of pre-synaptic vesicles. These observations are consistent wtih a new theory for the carotid body receptor mechanism. This proposes a spontaneously discharging afferent axon inhibited by an inhibitory transmitter substance released by the Type I cell via the "afferent" component of its reciprocal synapse, the "efferent" component inhibiting this release. Besides this chemoreceptor modulation of its afferent axon, the Type I cell may also have a general secretory function.  相似文献   

12.
In the amphibian Xenopus laevis, suprachiasmatic melanotrope-inhibiting neurons (SMINs) play an important role in the regulation of the background adaptation process. In this study, we investigated the innervation of the SMINs at the light- and electron- microscopical level. Immunocytochemistry in combination with confocal laser scanning microscopy revealed co-existence of neuropeptide Y (NPY) and synaptobrevin in spots in the direct vicinity of the SMINs, suggesting the existence of NPY-containing synapses on these cells. At the ultrastructural level, the SMINs showed a high degree of plasticity, containing more electron-dense vesicles and a larger extent of RER in white- than in black-adapted animals. In black-adapted animals, symmetric synapses (Gray type II) were observed on the soma of the SMINs, suggesting an inhibitory input to these cells. The synaptic profiles contained electron-lucent and electron-dense vesicles, indicating the involvement of both a classical neurotransmitter and a neuropeptide (possibly NPY) in this input. In white-adapted animals, synapses were only found at some distance from the SMIN somata. Our findings indicate a striking plasticity of the innervation of the SMINs in relation to background adaptation and support the hypothesis that the SMINs are innervated by NPY-containing interneurons that inhibit SMIN activity in black-adapted animals.  相似文献   

13.
Serial and interval EM series were used to examine the dorsal nerve tracts in the anterior nerve cord of a 12.5 day larva of Branchiostoma floridae. Fibres within the tracts derive from peripheral sensory cells and a class of intramedullary sensory neurones known as dorsal (Retzius) bipolar cells. Both form repeated synapses of similar type, apparently with the same targets. The synapses occur at points where, at intervals, the tracts expand to form large synaptic zones. The target dendrites, which form complex tangles, belong chiefly to dorsal translumenal cells, a class of neurone distinguished by their apical processes. The latter range from short extensions of the cell apex that contact the opposite side of the cord via junctions, but go no further, to elongate processes with slender branches that project to the contralateral dorsal tract. The morphology indicates that translumenal cells play the same role in amphioxus as internuncial neurones in vertebrate spinal cord. Their axons can be ipsilateral or contralateral; some synapse with motoneurones directly while others innervate other interneurones, including other translumenal cells. From the circuitry, the cells appear to be chiefly involved in integrating sensory input from peripheral mechanoreceptors. This could include acting as a filter that amplifies some input patterns over others, or that normalizes input, so that CNS circuits are not overloaded as new sensory cells differentiate during development. The functional importance of the translumenal system to the organism is reflected in a massive increase in size and cell numbers during the larval phase. The anterior, brain-like integrative centres of the cerebral vesicle, in contrast, are initially small and change very little.  相似文献   

14.
Chronic treatment of chick embryos with neuromuscular blocking agents, such as curare, rescues motoneurons from naturally occurring cell death. In the present study, embryos treated with curare from E6 to E9 had 35% more motoneurons than controls on E10 and 42% more than controls on E16. Previous studies have shown that several aspects of motoneuron differentiation occur normally in curare-treated embryos. We report here that dendrite growth and arborization is also unaltered on E10 and E16 following curare treatment. A quantitative analysis of afferent synapses on motoneurons shows that the packing density of both axosomatic and axodendritic synapses is also normal on E10 in curare-treated embryos, despite the greater number of motoneurons present. This indicates that the interneurons that provide presynaptic input to motoneurons are able to compensate for the increased number of synaptic sites made available by curare treatment. However, by E16 the packing density of synapses is reduced by about half. Because motoneurons and their dendrites continue to grow between E10 and E16, the further increase in synaptic sites made available in curare-treated embryos apparently exceeds the compensatory capacity of presynaptic interneurons on E16. One can conclude from these results that the increased survival of motoneurons in curare-treated embryos is not owing to an increase in afferent synapses. Motoneurons in these embryos continue to survive in the face of either no change (E10) or a reduction (E16) in the number of axodendritic and axosomatic synapses. Therefore, increased motoneuron survival in this situation is very likely regulated primarily by motoneuron-target interactions.  相似文献   

15.
The guinea pig organ of Corti was studied using transmission electron microscopy, the second turn of the cochlea being examined at various ages between 20 days before birth and 30 days postnatal. Outer hair cells were examined at each of these ages. At all ages studied, the efferent (presynaptic) terminals are large and are packed with synaptic vesicles, whereas the afferent (postsynaptic) terminals are generally smaller, with a relatively small number of vesicles. During development, the subsynaptic cistern changes from a fragmented, diffuse profile extending over 50-70% of the length of the efferent contact zones, to a continuous, compact structure spanning neighbouring synapses. Synaptic vesicles in the efferent terminals are predominantly rounded in early development, flattened vesicles appearing postnatally. The synaptic bodies at afferent synapses do not change noticeably during development. Quantitative analysis revealed that the area of efferent terminals and the length of their active zone increase with increasing age, the same parameters decreasing in afferent terminals. Synaptic vesicles in the efferent terminals decrease in diameter, but remain constant in afferent terminals, with increasing age. The number of hair cell membrane invaginations decreases as development proceeds.  相似文献   

16.
We built a passive compartmental model of a cortical spiny stellate cell from the barrel cortex of the mouse that had been reconstructed in its entirety from electron microscopic analysis of serial thin sections (White and Rock, 1980). Morphological data included dimensions of soma and all five dendrites, neck lengths and head diameters of all 380 spines (a uniform neck diameter of 0.1 m was assumed), locations of all symmetrical and asymmetrical (axo-spinous) synapses, and locations of all 43 thalamocortical (TC) synapses (as identified from the consequences of a prior thalamic lesion). In the model, unitary excitatory synaptic inputs had a peak conductance change of 0.5 nS at 0.2 msec; conclusions were robust over a wide range of assumed passive-membrane parameters. When recorded at the soma, all unitary EPSPs, which were initiated at the spine heads, were relatively iso-efficient; each produced about 1 mV somatic depolarization regardless of spine location or geometry. However, in the spine heads there was a twentyfold variation in EPSP amplitudes, largely reflecting the variation in spine neck lengths. Synchronous activation of the TC synapses produced a somatic depolarization probably sufficient to fire the neuron; doubling or halving the TC spine neck diameters had only minimal effect on the amplitude of the composite TC-EPSP. As have others, we also conclude that from a somato-centric viewpoint, changes in spine geometry would have relatively little direct influence on amplitudes of EPSPs recorded at the soma, especially for a distributed, synchronously activated input such as the TC pathway. However, consideration of the detailed morphology of an entire neuron indicates that, from a dendro-centric point of view, changes in spine dimension can have a very significant electrical impact on local processing near the sites of input.  相似文献   

17.
BACKGROUND AND AIMS: Shoot apical meristems (SAMs) in most seed plants are quite uniform in size and zonation, and molecular genetic studies of Arabidopsis and other model plants are revealing details of SAM morphogenesis. Some cacti have SAMs much larger than those of A. thaliana and other seed plants. This study examined how SAM size affects leaf primordium (LP) size, phyllotaxy and shoot diameter. METHODS: Apices from 183 species of cacti were fixed, microtomed and studied by light microscopy. KEY RESULTS: Cactus SAM diameter varies from 93 to 2565 microm, the latter being 36 times wider than SAMs of A. thaliana and having a volume 45 thousand times larger. Phyllotaxy ranges from distichous to having 56 rows of leaves and is not restricted to Fibonacci numbers. Leaf primordium diameter ranges from 44 to 402 microm, each encompassing many more cells than do LP of other plants. Species with high phyllotaxy have smaller LP, although the correlation is weak. There is almost no correlation between SAM diameter and LP size, but SAM diameter is strongly correlated with shoot diameter, with shoots being about 189.5 times wider than SAMs. CONCLUSIONS: Presumably, genes such as SHOOT-MERISTEMLESS, WUSCHEL and CLAVATA must control much larger volumes of SAM tissue in cacti than they do in A. thaliana, and genes such as PERIANTHIA might establish much more extensive fields of inhibition around LP. These giant SAMs should make it possible to more accurately map gene expression patterns relative to SAM zonation and LP sites.  相似文献   

18.
A computer model of neuronal processes in the motor cortex column is presented. The model is consisted of two pyramidal cell layers with two groups of inhibitory interneurons, selectively controlling pyramidal cell soma and dendrite, in each. Active Na, Ca and K conductances are included in the model of a single neuron. Horizontal excitatory connections between pyramidal cells in the upper layer are largely of NMDA-receptor type, that in the lower layer--of non-NMDA-type. All inhibitory synapses are of GABA(A)-type. The model reproduces the main phenomenon observed in the motor cortex during the execution of conditioned movements. Consequent to an early excitation the upper layer pyramidal cells generate a late NMDA-dependent reflexive response to afferent conditional stimulation, which as in a real case is diminished by GABA(A)-type synaptic inhibition and afferent stimulus strength increase. The characteristic inverse relation between the late response manifestation and the stimulus strength observed in the real cortex can be reproduced in the model only if NMDA-glutamate receptors were preferentially localized in the terminals of pyramidal cell backward collaterals, not in the terminals of the afferent fibers on pyramidal neurons. The intended component of motor cortex neuronal activity is generated in NMDA-independent manner by the pyramidal cells of lower layer. The slow time coarse of intended component as compared with short duration of AMPA epsp's is due to a consecutive relay-race--like activation of pyramidal neurons with different dendrit-to-soma ratio.  相似文献   

19.
The effect of irradiance and irradiation time were examined on rates of pseudo-auxospore formation and the size of initial cells in vegetative cell enlargement of the giant diatom Coscinodiscus wailesii Gran in culture. The mean rate of pseudo-auxospore formation ranged from 25.9% to 47.8% between experimental incubation conditions. No significant difference was detected in rates among different irradiances and irradiation times, and parent cell sizes. However, the mean valve diameter of the initial cells of the diatom was affected by an interaction between the light conditions and the diameter of the parent cells. Initial cells size tended to be larger with combined conditions of higher irradiance levels and longer irradiation time. There appears to be a relationship (a steady increase, although not a straight line) between the total daily irradiance and the valve diameter of the initial cells. The mean valve diameter of initial cells from larger parent cells was significantly larger than those from smaller parent cells under the same light conditions.  相似文献   

20.
J P Bader  D A Ray  N R Brown 《Cell》1974,3(3):307-313
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号