首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tan spot of wheat (Triticum aestivum), caused by the fungus Pyrenophora tritici-repentis, has significant agricultural and economic impact. Ptr ToxA (ToxA), the first discovered proteinaceous host-selective toxin, is produced by certain P. tritici-repentis races and is necessary and sufficient to cause cell death in sensitive wheat cultivars. We present here the high-resolution crystal structure of ToxA in two different crystal forms, providing four independent views of the protein. ToxA adopts a single-domain, beta-sandwich fold of novel topology. Mapping of the existing mutation data onto the structure supports the hypothesized importance of an Arg-Gly-Asp (RGD) and surrounding sequence. Its occurrence in a single, solvent-exposed loop in the protein suggests that it is directly involved in recognition events required for ToxA action. Furthermore, the ToxA structure reveals a surprising similarity with the classic mammalian RGD-containing domain, the fibronectin type III (FnIII) domain: the two topologies are related by circular permutation. The similar topologies and the positional conservation of the RGD-containing loop raises the possibility that ToxA is distantly related to mammalian FnIII proteins and that to gain entry it binds to an integrin-like receptor in the plant host.  相似文献   

2.
Pyrenophora tritici-repentis, causal agent of tan spot of wheat, produces host-selective toxins that are determinants of pathogenicity or virulence. Ptr ToxA (ToxA), a proteinaceous toxin produced by P. tritici-repentis, is a necrotizing toxin produced by the most common races isolated from infected wheat. Recent studies have shown that ToxA is internalized into the mesophyll cells and localizes to chloroplasts of sensitive wheat cultivars only. We employed a yeast two-hybrid screen in an effort to determine plant proteins that interact with ToxA and found that ToxA interacts with a chloroplast protein, designated ToxA binding protein 1 (ToxABP1). ToxABP1 contains a lysine-rich region within a coiled-coil domain that is similar to phosphotidyl-inositol binding sites present in animal proteins involved in endocytosis. In both ToxA-sensitive and -insensitive cultivars, ToxABP1 is expressed at similar levels and encodes an identical protein. ToxABP1 protein is present in both chloroplast membranes and chloroplast stroma. ToxA appears to interact primarily with a multimeric complex of ToxABP1 protein associated with the chloroplast membrane.  相似文献   

3.
Ptr ToxA was the first proteinaceous necrosis-inducing toxin identified and cloned from the wheat pathogen, Pyrenophora tritici-repentis. How this protein causes necrosis in sensitive wheat cultivars is not known. In an effort to understand the structural features of Ptr ToxA required for induction of necrosis, we employed a combination of site-directed mutagenesis and peptide inhibition studies. Mutagenesis was carried out on conserved motifs within the active domain of Ptr ToxA. Proteins with mutations of potential casein kinase 2 phosphorylation sites but not protein kinase C phosphorylation sites have significantly reduced activity. Additionally, mutations in a region with high homology to amino acids surrounding and including the RGD cell attachment motif of vitronectin result in proteins with significantly less activity than Ptr ToxA. The importance of the vitronectin-like motif was confirmed by a decrease of Ptr ToxA-induced activity when coinfiltrated with peptides corresponding to amino acids within this motif. Reduction in Ptr ToxA activity by competition with mutant proteins demonstrates the necessity of multiple motifs for Ptr ToxA activity.  相似文献   

4.
Ptr ToxA, a proteinaceous host-selective toxin (HST) produced by the fungus Pyrenophora tritici-repentis, was expressed in Escherichia coli and purified as a polyhistidine-tagged, fusion protein (NC-FP). NC-FP, consisting of both the N and C domains of the ToxA open reading frame (ORF), is produced as an insoluble protein in E. coli at approximately 10 to 16 mg per liter of culture. Following in vitro refolding, NC-FP elicits cultivar-specific necrosis in wheat, with a specific activity similar to that of native Ptr ToxA. A fusion protein consisting of only the C domain has approximately 10 to 20% of the activity of native Ptr ToxA. These data suggest that (i) the N domain is important for maximal activity of Ptr ToxA, (ii) the N domain does not function to eliminate activity of the protoxin, and (iii) post-translational modifications of Ptr ToxA are not essential for activity. A C domain construct with a cysteine residue mutated to glycine is inactive. This, plus the observation that toxin activity is sensitive to reducing agents, provides evidence that the two cysteine residues in Ptr ToxA are involved in a disulfide bond that is essential for activity. The heterologous expression of Ptr ToxA provides a valuable tool for addressing a number of issues such as receptor binding studies, structure/function studies, and screening wheat cultivars for disease resistance.  相似文献   

5.
ToxA is a proteinaceous necrotrophic effector produced by Stagonospora nodorum and Pyrenophora tritici-repentis. In this study, all eight mature isoforms of the ToxA protein were purified and compared. Circular dichroism spectra indicated that all isoforms were structurally intact and had indistinguishable secondary structural features. ToxA isoforms were infiltrated into wheat lines that carry the sensitivity gene Tsn1. It was observed that different wheat lines carrying identical Tsn1 alleles varied in sensitivity to ToxA. All ToxA isoforms induced necrosis when introduced into any Tsn1 wheat line but we observed quantitative variation in effector activity, with the least-active version found in isolates of P. tritici-repentis. Pathogen sporulation increased with higher doses of ToxA. The isoforms that induced the most rapid necrosis also induced the most sporulation, indicating that pathogen fitness is affected by differences in ToxA activity. We show that differences in toxin activity encoded by a single gene can contribute to the quantitative inheritance of necrotrophic virulence. Our findings support the hypothesis that the variation at ToxA results from selection that favors increased toxin activity.  相似文献   

6.
Manning VA  Ciuffetti LM 《The Plant cell》2005,17(11):3203-3212
The plant pathogenic fungus Pyrenophora tritici-repentis secretes host-selective toxins (HSTs) that function as pathogenicity factors. Unlike most HSTs that are products of enzymatic pathways, at least two toxins produced by P. tritici-repentis are proteins and, thus, products of single genes. Sensitivity to these toxins in the host is conferred by a single gene for each toxin. To study the site of action of Ptr ToxA (ToxA), toxin-sensitive and -insensitive wheat (Triticum aestivum) cultivars were treated with ToxA followed by proteinase K. ToxA was resistant to protease, but only in sensitive leaves, suggesting that ToxA is either protected from the protease by association with a receptor or internalized. Immunolocalization and green fluorescent protein tagged ToxA localization demonstrate that ToxA is internalized in sensitive wheat cultivars only. Once internalized, ToxA localizes to cytoplasmic compartments and to chloroplasts. Intracellular expression of ToxA by biolistic bombardment into both toxin-sensitive and -insensitive cells results in cell death, suggesting that the ToxA internal site of action is present in both cell types. However, because ToxA is internalized only in sensitive cultivars, toxin sensitivity, and therefore the ToxA sensitivity gene, are most likely related to protein import. The results of this study show that the ToxA protein is capable of crossing the plant plasma membrane from the apoplastic space to the interior of the plant cell in the absence of a pathogen.  相似文献   

7.
A fundamental problem of plant science is to understand the biochemical basis of plant/pathogen interactions. The foliar disease tan spot of wheat (Triticum aestivum), caused by Pyrenophora tritici-repentis, involves Ptr ToxA, a proteinaceous host-selective toxin that causes host cell death. The fungal gene ToxA encodes a 17.2-kD pre-pro-protein that is processed to produce the mature 13.2-kD toxin. Amino acids 140 to 142 of the pre-pro-protein form an arginyl-glycyl-aspartic (RGD) sequence, a motif involved in the binding of some animal proteins and pathogens to transmembrane receptor proteins called integrins. Integrin-like proteins have been identified in plants recently, but their role in plant biology is unclear. Our model for Ptr ToxA action predicts that toxin interacts with a putative host receptor through the RGD motif. Mutant clones of a ToxA cDNA, created by polymerase chain reaction such that the RGD in the pro-toxin was changed to arginyl-alanyl-aspartic or to arginyl-glycyl-glutamic, were expressed in Escherichia coli. Extracts containing mutated forms of toxin failed to cause host cell death, but extracts from E. coli expressing both a wild-type pro-protein cDNA and a control mutation away from RGD were active in cell death development. In competition experiments, 2 mM RGD tripeptide reduced the level of electrolyte leakage from wheat leaves by 63% when co-infiltrated with purified Ptr ToxA (15 microg mL(-1)) obtained from the fungus, but the control peptide arginyl-glycyl-glutamyl-serine provided no protection. These experiments indicate that the RGD motif of Ptr ToxA is involved with toxin action, possibly by interacting with a putative integrin-like receptor in the host.  相似文献   

8.
9.
This report describes analysis of factors which regulate the binding of EGF to EGF receptor, receptor internalization, and receptor recycling. Three different methods were used to inhibit high-affinity EGF binding as measured at equilibrium: treatment of cells with an active phorbol ester (PMA), binding of a mAb directed against the EGF receptor (mAb108), and truncation of most of the cytoplasmic domain of the receptor. These treatments reduced the rate at which low concentrations of EGF bound to cells, but did not affect the rate of EGF dissociation. We conclude that high-affinity EGF binding on living cells results from a difference in the apparent on rate of EGF binding. We then used these conditions and cell lines to test for the rate of EGF internalization at different concentrations of EGF. We demonstrate that internalization of the EGF receptor is stimulated roughly 50-fold at saturating concentrations of EGF, but is stimulated an additional two- to threefold at low concentrations (less than 1 nM). Four treatments reduce the rate of internalization of low concentrations of EGF to the rate seen at saturating EGF concentrations. Phorbol ester treatment and mAb108 binding to "wild type" receptor reduce this rate (and reduce high-affinity binding). Point mutation at Lys721 (kinase negative EGF receptor) and point mutation at Thr654 (removing a major site of protein kinase C phosphorylation) reduce the internalization rate, without affecting high-affinity binding. We suggest that while EGF stimulates endocytosis for all receptors, high-affinity receptors bind and are internalized more quickly than low-affinity receptors. Tyrosine kinase activity and the Thr654 region appear necessary for this response.  相似文献   

10.
Growth factor receptors activate tyrosine kinases and undergo endocytosis. Recent data suggest that tyrosine kinase inhibition can affect growth factor receptor internalization. The type 1 angiotensin II receptor (AT1R) which is a G-protein-coupled receptor, also activates tyrosine kinases and undergoes endocytosis. Thus, we examined whether tyrosine kinase inhibition affected AT1R internalization. To verify protein tyrosine phosphorylation, both LLCPKCl4 cells expressing rabbit AT1R (LLCPKAT1R) and cultured rat mesangial cells (MSC) were treated with angiotensin II (Ang II) [1-100 nM] then solubilized and immunoprecipitated with antiphosphotyrosine antisera. Immunoblots of these samples demonstrated that Ang II stimulated protein tyrosine phosphorylation in both cell types. Losartan [1 microM], an AT1R antagonist, inhibited Ang II-stimulated protein tyrosine phosphorylation. LLCPKAT1R cells displayed specific 125I-Ang II binding at apical (AP) and basolateral (BL) membranes, and both AP and BL AT1R activated tyrosine phosphorylation. LLCPKAT1R cells, incubated with genistein (Gen) [200 microM] or tyrphostin B-48 (TB-48) [50 microM], were assayed for acid-resistant specific 125I-Ang II binding, a measure of Ang II internalization. Both Gen (n = 7) and TB-48 (n = 3) inhibited AP 125I-Ang II internalization (80+/-7% inhibition; p<0.025 vs. control). Neither compound affected BL internalization. TB-1, a non-tyrosine kinase-inhibiting tyrphostin, did not affect AP 125I-Ang II endocytosis (n = 3), suggesting that the TB-48 effect was specific for tyrosine kinase inhibition. Incubating MSC with Gen (n = 5) or herbimycin A [150 ng/ml] (n = 4) also inhibited MSC 125I-Ang II internalization (82+/-11% inhibition; p<0.005 vs. control). Thus, tyrosine kinase inhibition prevented Ang II internalization in MSC and selectively decreased AP Ang II internalization in LLCPKAT1R cells suggesting that AP AT1R in LLCPKAT1R cells and MSC AT1R have similar endocytic phenotypes, and tyrosine kinase activity may play a role in AT1R internalization.  相似文献   

11.
Plant polyphenols, RG-tannin, and applephenon had been reported to inhibit cholera toxin (CT) ADP-ribosyltransferase activity and CT-induced fluid accumulation in mouse ileal loops. A high molecular weight fraction of hop bract extract (HBT) also inhibited CT ADP-ribosyltransferase activity. We report here the effect of those polyphenols on the binding and entry of CT into Vero cells. Binding of CT to Vero cells or to ganglioside GM1, a CT receptor, was inhibited in a concentration-dependent manner by HBT and applephenon but not RG-tannin. These observations were confirmed by fluorescence microscopy using Cy3-labeled CT. Following toxin binding to cells, applephenon, HBT, and RG-tannin suppressed its internalization. HBT or applephenon precipitated CT, CTA, and CTB from solution, creating aggregates larger than 250 kDa. In contrast, RG-tannin precipitated CT poorly; it formed complexes with CT, CTA, or CTB, which were demonstrated with sucrose density gradient centrifugation and molecular weight exclusion filters. In agreement, CTA blocked the inhibition of CT internalization by RG-tannin. These data suggest that some plant polyphenols, similar to applephenon and HBT, bind CT, forming large aggregates in solution or, perhaps, on the cell surface and thereby suppress CT binding and internalization. In contrast, RG-tannin binding to CT did not interfere with its binding to Vero cells or GM1, but it did inhibit internalization.  相似文献   

12.
The wheat tan spot fungus (Pyrenophora tritici-repentis) produces a well-characterized host-selective toxin (HST) known as Ptr ToxA, which induces necrosis in genotypes that harbor the Tsn1 gene on chromosome 5B. In previous work, we showed that the Stagonospora nodorum isolate Sn2000 produces at least 2 HSTs (SnTox1 and SnToxA). Sensitivity to SnTox1 is governed by the Snn1 gene on chromosome 1B in wheat. SnToxA is encoded by a gene with a high degree of similarity to the Ptr ToxA gene. Here, we evaluate toxin sensitivity and resistance to S. nodorum blotch (SNB) caused by Sn2000 in a recombinant inbred population that does not segregate for Snn1. Sensitivity to the Sn2000 toxin preparation cosegregated with sensitivity to Ptr ToxA at the Tsn1 locus. Tsn1-disrupted mutants were insensitive to both Ptr ToxA and SnToxA, suggesting that the 2 toxins are functionally similar, because they recognize the same locus in the host to induce necrosis. The locus harboring the tsn1 allele underlies a major quantitative trait locus (QTL) for resistance to SNB caused by Sn2000, and explains 62% of the phenotypic variation, indicating that the toxin is an important virulence factor for this fungus. The Tsn1 locus and several minor QTLs together explained 77% of the phenotypic variation. Therefore, the Tsn1-ToxA interaction in the wheat-S. nodorum pathosystem parallels that of the wheat-tan spot system, and the wheat Tsn1 gene serves as a major determinant for susceptibility to both SNB and tan spot.  相似文献   

13.
We have solved the crystal structures of Clostridium botulinum C3 exoenzyme free and complexed to NAD in the same crystal form, at 2.7 and 1.95 A, respectively. The asymmetric unit contains four molecules, which, in the free form, share the same conformation. Upon NAD binding, C3 underwent various conformational changes, whose amplitudes were differentially limited in the four molecules of the crystal unit. A major rearrangement concerns the loop that contains the functionally important ARTT motif (ADP-ribosyltransferase toxin turn-turn). The ARTT loop undergoes an ample swinging motion to adopt a conformation that covers the nicotinamide moiety of NAD. In particular, Gln-212, which belongs to the ARTT motif, flips over from a solvent-exposed environment to a buried conformation in the NAD binding pocket. Mutational experiments showed that Gln-212 is neither involved in NAD binding nor in the NAD-glycohydrolase activity of C3, whereas it plays a critical role in the ADP-ribosyl transfer to the substrate Rho. We observed additional NAD-induced movements, including a crab-claw motion of a subdomain that closes the NAD binding pocket. The data emphasized a remarkable NAD-induced plasticity of the C3 binding pocket and suggest that the NAD-induced ARTT loop conformation may be favored by the C3-NAD complex to bind to the substrate Rho. Our structural observations, together with a number of mutational experiments suggest that the mechanisms of Rho ADP-ribosylation by C3-NAD may be more complex than initially anticipated.  相似文献   

14.
We investigated two phenotypically distinct types of diphtheria toxin-resistant mutants of Chinese hamster cells and compared their resistance with that of naturally resistant mouse cells. All are resistant due to a defect in the process of internalization and delivery of toxin to its target in the cytosol, elongation factor 2. By cell hybridization studies, analysis of cross-resistance, and determination of specific binding sites for 125I-labeled diphtheria toxin, we showed that these cell strains fall into two distinct complementation groups. The Dipr group encompasses Chinese hamster strains that are resistant only to diphtheria toxin, as well as mouse LM cells. These strains possess a normal complement of high-affinity binding sites for diphtheria toxin, but these receptors are unable to deliver active toxin fragment A to the cytosol. Cells of the DPVr group have a broader spectrum of resistance, including Pseudomonas exotoxin A and several enveloped viruses as well as diphtheria toxin. In these studies, which investigate the resistance of these cells to diphtheria toxin, we demonstrate that they possess a reduced number of specific binding sites for this toxin and behave, phenotypically, like cells treated with the proton ionophore monensin. Their resistance is related to a defect in a mechanism required for release of active toxin from the endocytic vesicle.  相似文献   

15.
G protein-coupled receptor kinase (GRK)-mediated receptor phosphorylation and beta-arrestin binding uncouple G protein-coupled receptors (GPCRs) from their respective G proteins and initiates the process of receptor internalization. In the case of the beta(2)-adrenergic receptor and lysophosphatidic acid receptor, these processes can lead to ERK activation. Here we identify a novel mechanism whereby the activity of GRK2 is regulated by feedback inhibition. GRK2 is demonstrated to be a phosphoprotein in cells. Mass spectrometry and mutational analysis localize the site of phosphorylation on GRK2 to a carboxyl-terminal serine residue (Ser(670)). Phosphorylation at Ser(670) impairs the ability of GRK2 to phosphorylate both soluble and membrane-incorporated receptor substrates and dramatically attenuates Gbetagamma-mediated activation of this enzyme. Ser(670) is located in a peptide sequence that conforms to an ERK consensus phosphorylation sequence, and in vitro, in the presence of heparin, ERK1 phosphorylates GRK2. Inhibition of ERK activity in HEK293 cells potentiates GRK2 activity, whereas, conversely, ERK activation inhibits GRK2 activity. The discovery that ERK phosphorylates and inactivates GRK2 suggests that ERK participates in a feedback regulatory loop. By negatively regulating GRK-mediated receptor phosphorylation, beta-arrestin-mediated processes such as Src recruitment and clathrin-mediated internalization, which are required for GPCR-mediated ERK activation, are inhibited, thus dampening further ERK activation.  相似文献   

16.
Serotonin transporter phosphorylation modulated by tetanus toxin   总被引:1,自引:0,他引:1  
Tetanus toxin (TeTx) modifies Na(+)-dependent, high-affinity 5-hydroxytryptamine (5-HT, serotonin) uptake in a synaptosomal-enriched P(2) fraction from rat brain. The effect corresponds to a rapid and non-competitive uptake inhibition, and it is preceded by induction of phospholipase C (PLC) activity and translocation and down-regulation of the classical protein kinase C (PKC-alpha, -beta and -gamma) isoforms. The effects on serotonin transport and on cPKC activation were similar to the effects exhibited by phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Moreover, after treatment with TeTx, an increase in Ser- and Tyr-specific phosphorylation was found. Activation of PKC by both TeTx and TPA results in a loss of transport capacity and serotonin transporter (SERT) phosphorylation, which are abolished by coapplication of the specific PKC inhibitor bisindolylmaleimide-1. Since a specific PLCgamma1 phosphorylation prior to TeTx's inducing SERT phosphorylation was found, the studies suggest that part of the action of TeTx consists of modifying the signal cascade initiated in tyrosine kinase receptors on nerve tissue previous to its cellular internalization, resulting in transporter phosphorylation.  相似文献   

17.
The cell-binding abilities of a recombinant, RGD-containing peptide from foot-and-mouth disease virus (FMDV) have been characterized in HeLa and BHK cells. This peptide represents the aa sequence of the solvent-exposed G-H loop of protein VP1 which is involved in cell recognition and infection. The efficiency of the viral motif in promoting cell attachment and spreading is comparable to that shown by fibronectin or vitronectin. Cell binding is inhibited by a monoclonal antibody directed against a viral, RGD-involving B-cell epitope and also by sera against vitronectin (Vβ35) and fibronectin (5β1) receptors. In addition, a synthetic RGD peptide, which is a ligand for both integrins, prevents the cell binding mediated by the FMDV domain. These data demonstrate that the FMDV RGD motif is a potent ligand for cell-receptor integrins and sufficient to promote cell attachment to susceptible cells mainly through the vitronectin receptor.  相似文献   

18.
The integrin alpha(v)beta3 has been shown to act as the receptor for internalization of foot-and-mouth disease virus (FMDV) (A12), with attachment being through a highly conserved RGD motif located on the G-H loop of viral capsid protein VP1. In addition, however, we have recently shown that efficient infection of culture-grown cells by FMDV (O1BFS) requires binding to cell surface heparan sulfate. In this study, we have used a solid-phase receptor binding assay to characterize the binding by FMDV to purified alpha(v)beta3 in the absence of heparan sulfate and other cell surface components. In this assay, FMDV (O1BFS) successfully replicated authentic ligand binding by cellular alpha(v)beta3 in terms of its high affinity, dependence on divalent cations, and activation by manganese ions. Virus binding to this preparation of alpha(v)beta3 was exquisitely sensitive to competition by short RGD-containing peptides (50% inhibition at < 10(-8) M peptide), and this inhibition was highly sequence specific, with the equivalent RGE peptide being at least 10(4) fold less effective as a competitor. Representative viruses of the other six serotypes of FMDV bound to alpha(v)beta3 in a similar RGD-specific manner, although significant differences in sensitivity to RGD peptides suggest that the affinity of the different FMDV serotypes for alpha(v)beta3 is influenced, in part, by the variable amino acid residues in the VP1 G-H loop on either side of the RGD.  相似文献   

19.
The sst2A receptor is expressed in the endocrine, gastrointestinal, and neuronal systems as well as in many hormone-sensitive tumors. This receptor is rapidly internalized and phosphorylated in growth hormone-R2 pituitary cells following somatostatin binding (Hipkin, R. W., Friedman, J., Clark, R. B., Eppler, C. M., and Schonbrunn, A. (1997) J. Biol. Chem. 272, 13869-13876). The protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), also stimulates sst2A phosphorylation. Here we examine the mechanisms and consequences of PMA and agonist-induced sst2A phosphorylation. Like somatostatin, both PMA and bombesin increased sst2A receptor phosphorylation within 2 min. The PKC inhibitor GF109203X blocked PMA- and bombesin- stimulated sst2A phosphorylation, whereas stimulation by the somatostatin analog SMS 201-995 was unaffected. Agonist and PMA each stimulated phosphorylation in two receptor domains, the third intracellular loop and the C-terminal tail. Functionally, PMA dramatically increased the internalization of the sst2A receptor-ligand complex. This PMA stimulation was blocked by GF109203X, whereas basal internalization was unaffected. However, neither basal nor PMA-stimulated internalization was altered by pertussis toxin, whereas both were blocked by hypertonic sucrose. Therefore PKC activation and agonist binding stimulate sst2A phosphorylation by distinct mechanisms, and PKC potentiates internalization of the sst2A receptor via clathrin-coated pits. Thus, hormonal stimulation of PKC-coupled receptors may provide a mechanism for regulating the inhibitory actions of somatostatin in target tissue.  相似文献   

20.
Pertussis toxin is an ADP-ribosyltransferase which alters the function of some of the GTP-binding proteins and inhibits some actions of insulin. In vivo, pertussis toxin (2 micrograms/ml/2h) inhibited insulin-stimulated tyrosyl autophosphorylation of the insulin receptor by 50% in FaO cells, and nearly completely inhibited phosphorylation of the cellular insulin receptor substrate pp185. Similarly, insulin-stimulated autophosphorylation and kinase activity of the insulin receptor purified on wheat germ agglutinin-agarose from pertussis toxin-treated FaO cells was diminished 50%; however, treatment of cells with the catalytically inactive B-oligomer of the toxin had no effect on receptor tyrosine kinase activity in vitro. Pertussis toxin did not alter insulin binding or the cellular levels of ATP, cAMP, and cGMP. Furthermore, immunoprecipitation of the insulin receptor from intact cells with anti-insulin receptor antibodies showed that pertussis toxin did not increase the phosphorylation of serine or threonine residues in the insulin receptor. These results suggest that pertussis toxin can modulate signal transduction of insulin at the level of the insulin receptor kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号