首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在已知基因序列但缺乏DNA模版的情况下,人工设计合成多条引物,采用重叠PCR技术体外人工合成编码青霉素结合蛋白的基因PBP 2b。将合成的PBP 2b基因连接到载体pet-30a上,并将重组表达载体(pet-30a)/PBP2b-tiger转入T7 expression E.coli表达菌株中。重组工程菌经IPTG诱导,用SDS-PAGE鉴定,发现青霉素结合蛋白(PBPs)成功表达。本研究构建了高表达青霉素结合蛋白(PBPs)的原核表达系统,制备出青霉素结合蛋白,从而为进一步从基因水平认识青霉素结合蛋白(PBPs)奠定基础,为了解细菌耐药的机制提供依据。  相似文献   

2.
目的制备兔抗青霉素结合蛋白2a(penicillin binding protein 2a,PBP2a)抗体,建立检测PBP2a的乳胶凝集法。方法以重组PBP2a转肽酶区蛋白免疫家兔制备多克隆抗体,ELISA和Western blot法检测所制备的抗血清效价和特异性,用纯化的多抗建立乳胶凝集法。结果纯化的重组蛋白免疫家兔能有效地刺激特异性抗体的产生,抗血清的效价达1∶25 600,Western blot显示该抗体能有效识别原核表达及MRSA临床分离株中的PBP2a,建立了乳胶凝集法,敏感性及特异性良好。结论成功制备了抗PBP2a抗体血清,初步建立了检测PBP2a的乳胶凝集法,为有效制备高特异的单克隆抗体进而研制MRSA快速鉴定试剂盒奠定了良好的基础。  相似文献   

3.
雪莲PBP基因表达载体的构建   总被引:6,自引:2,他引:4  
目的:利用新疆雪莲特殊功能基因磷脂酰乙醇胺结合蛋白基因(XLPBP)与基础质粒构建植物表达载体pXLPBP,为介导该基因在植物中表达,以期提高植物抗寒力的转基因研究打下基础。方法:利用设计好的两端加有EcoRⅠ酶切位点的引物,对XLPBP全长基因片段进行PCR扩增,获得700bp左右大小的片段,将其纯化回收并与同样经过EcoRⅠ酶切的质粒pCAMBIA3301连接;然后采用冻融法和电击法,将含XLPBP基因的载体pCAMBIA3301转入根癌农杆菌中。结果:通过一系列分子克隆方法获得含雪莲XLPBP基因的植物表达载体,并经PCR实验证实。结论:利用以自身携带的非编码区为调控序列的XLPBP全长基因和双向表达载体pCAMBIA3301为基础构建植物表达载体,可望提高外源基因表达量。  相似文献   

4.
Penicillin-binding proteins (PBPs) are enzymes responsible for the polymerization of the glycan strand and the cross-linking between glycan chains as well as the target proteins for β-lactam antibiotics. Mutational alterations in PBPs can confer resistance either by reducing binding of the antibiotic to the active site or by evolving a β-lactamase activity that degrades the antibiotic. As no systematic studies have been performed to examine the potential of all PBPs present in one bacterial species to evolve increased resistance against β-lactam antibiotics, we explored the ability of fifteen different defined or putative PBPs in Salmonella enterica to acquire increased resistance against penicillin G. We could after mutagenesis and selection in presence of penicillin G isolate mutants with amino-acid substitutions in the PBPs, FtsI, DacB and DacC (corresponding to PBP3, PBP4 and PBP6) with increased resistance against β-lactam antibiotics. Our results suggest that: (i) most evolved PBPs became ‘generalists” with increased resistance against several different classes of β-lactam antibiotics, (ii) synergistic interactions between mutations conferring antibiotic resistance are common and (iii) the mechanism of resistance of these mutants could be to make the active site more accessible for water allowing hydrolysis or less binding to β-lactam antibiotics.  相似文献   

5.
目的克隆并构建耐甲氧西林金黄色葡萄球菌(MRSA)青霉素结合蛋白2a(PBP2a)全长及转肽酶区的原核表达质粒。方法登录基因文库查找获得mecA基因的编码序列,应用PCR技术扩增获得DNA片段,将此基因片段插入PET-32a载体,同时酶切鉴定阳性克隆,DNA序列测定验证序列正确性。结果 PCR扩增获得了mecA基因全长及转肽酶区DNA片段,成功插入到原核表达载体PET32a,双酶切鉴定及DNA序列测定证实插入片段正确。结论成功构建了PBP2a全长及转肽酶区片段表达质粒,为该蛋白的纯化表达和疫苗研究奠定了基础。  相似文献   

6.
Methicillin-resistant Staphylococcus aureus (MRSA) strains show strain-to-strain variation in resistance level, in genetic background, and also in the structure of the chromosomal cassette (SCCmec) that carries the resistance gene mecA. In contrast, strain-to-strain variation in the sequence of the mecA determinant was found to be much more limited among MRSA isolates examined so far. The first exception to this came with the recent identification of MRSA strain LGA251, which carries a new homolog of this gene together with regulatory elements mecI/mecR that also have novel, highly divergent structures. After cloning and purification in Escherichia coli, PBP2ALGA, the protein product of the new mecA homolog, showed aberrant mobility in SDS-PAGE, structural instability and loss of activity at 37 °C, and a higher relative affinity for oxacillin as compared with cefoxitin. The mecA homolog free of its regulatory elements was cloned into a plasmid and introduced into the background of the β-lactam-susceptible S. aureus strain COL-S. In this background, the mecA homolog expressed a high-level resistance to cefoxitin (MIC = 400 μg/ml) and a somewhat lower resistance to oxacillin (minimal inhibitory concentration = 200 μg/ml). Similar to PBP2A, the protein homolog PBP2ALGA was able to replace the essential function of the S. aureus PBP2 for growth. In contrast to PBP2A, PBP2ALGA did not depend on the transglycosylase activity of the native PBP2 for expression of high level resistance to oxacillin, suggesting that the PBP2A homolog may preferentially cooperate with a monofunctional transglycosylase as the alternative source of transglycosylase activity.  相似文献   

7.
性信息素结合蛋白(pheromone binding proteins, PBPs)在昆虫雌雄间信息交流中起着重要作用。 本研究利用RT-PCR和RACE方法, 从烟夜蛾Helicoverpa assulta (Guenée)雄虫触角中克隆了性信息素结合蛋白2基因的开放阅读框及3′末端序列, 该基因被命名为HassPBP2(GenBank登录号为EU316186)。克隆和测序结果表明, HassPBP2开放阅读框全长450 bp, 编码149个氨基酸残基, 推测编码蛋白的分子量为16.9 kD, 等电点为5.56。HassPBP2基因结构分析表明, 该基因由3个外显子和2个内含子组成, 内含子的长度分别为90和261 bp。氨基酸序列联配分析表明, 此序列具有气味结合蛋白的典型特征, 与其他鳞翅目昆虫PBPs的一致性在34%~91%之间, 其中与棉铃虫Helicoverpa armigera PBP2和烟芽夜蛾Heliothis virescens PBP2的序列一致性高达91%。时间表达和组织表达分析显示, HassPBP2在卵期、幼虫期和蛹早期不表达, 在蛹中期开始表达, 并一直持续到成虫中期, 且只在雌、雄成虫触角中表达。  相似文献   

8.
The combination of antibiotics is one of the strategies to combat drug-resistant bacteria, though only a handful of such combinations are in use, such as the β-lactam combinations. In the present study, the efficacy of a specific sub-inhibitory concentration of cefsulodin with other β-lactams was evaluated against a range of Gram-negative clinical isolates. This approach increased the sensitivity of the isolates, regardless of the β-lactamase production. The preferred target and mechanism of action of cefsulodin were identified in laboratory strains of Escherichia coli, by examining the effects of deleting the penicillin-binding protein (PBP) 1a and 1b encoding genes individually. Deletion of PBP1b was involved in sensitizing the bacteria to β-lactam agents, irrespective of its O-antigen status. Moreover, the use of a sub-inhibitory concentration of cefsulodin in combination with a β-lactam exerted an effect similar to that one obtained for PBP1b gene deletion. We conclude that the identified β-lactam/cefsulodin combination works by inhibiting PBP1b (at least partially) despite the involvement of β-lactamases, and therefore could be extended to a broad range of Gram-negative pathogens.  相似文献   

9.
目的:对编码耐甲氧西林金黄色葡萄球菌(MRSA)青霉素结合蛋白2a(PBP2a)转肽酶区的mecA基因片段进行克隆、表达、纯化及鉴定。方法:根据基因文库登录的mecA基因的编码序列,设计合成了一对寡核苷酸引物,应用PCR技术从MRSA基因组DNA中扩增获得编码PBP2a转肽酶区的DNA片段,将此目的基因片段克隆至pET-His载体,经酶切鉴定、测序正确后,转化E.coliBL21(DE3)plysS;用IPTG进行诱导表达后,利用Ni2 亲和层析技术从表达蛋白中纯化目的蛋白;对表达的蛋白以MRSA胶乳凝集试剂盒进行鉴定。结果:成功构建了PBP2a转肽酶区原核表达载体,并获得了高效表达,制备了高纯度的目的蛋白。结论:获得了高纯度的PBP2a转肽酶区蛋白,为其进一步研究奠定了基础。  相似文献   

10.
The SOS response, a conserved regulatory network in bacteria that is induced in response to DNA damage, has been shown to be associated with the emergence of resistance to antibiotics. Previously, we demonstrated that heterogeneous (HeR) MRSA strains, when exposed to sub-inhibitory concentrations of oxacillin, were able to express a homogeneous high level of resistance (HoR). Moreover, we showed that oxacillin appeared to be the triggering factor of a β-lactam-mediated SOS response through lexA/recA regulators, responsible for an increased mutation rate and selection of a HoR derivative. In this work, we demonstrated, by selectively exposing to β-lactam and non-β-lactam cell wall inhibitors, that PBP1 plays a critical role in SOS-mediated recA activation and HeR-HoR selection. Functional analysis of PBP1 using an inducible PBP1-specific antisense construct showed that PBP1 depletion abolished both β-lactam-induced recA expression/activation and increased mutation rates during HeR/HoR selection. Furthermore, based on the observation that HeR/HoR selection is accompanied by compensatory increases in the expression of PBP1,-2, -2a, and -4, our study provides evidence that a combination of agents simultaneously targeting PBP1 and either PBP2 or PBP2a showed both in-vitro and in-vivo efficacy, thereby representing a therapeutic option for the treatment of highly resistant HoR-MRSA strains. The information gathered from these studies contributes to our understanding of β-lactam-mediated HeR/HoR selection and provides new insights, based on β-lactam synergistic combinations, that mitigate drug resistance for the treatment of MRSA infections.  相似文献   

11.
Bacterial cytokinesis is achieved through the coordinated action of a multiprotein complex known as the divisome. The Escherichia coli divisome is comprised of at least 10 essential proteins whose individual functions are mostly unknown. Most divisomal proteins have multiple binding partners, making it difficult to pinpoint epitopes that mediate pairwise interactions between these proteins. We recently introduced an artificial septal targeting approach that allows the interaction between pairs of proteins to be studied in vivo without the complications introduced by other interacting proteins (C. Robichon, G. F. King, N. W. Goehring, and J. Beckwith, J. Bacteriol. 190:6048-6059, 2008). We have used this approach to perform a molecular dissection of the interaction between Bacillus subtilis DivIB and the divisomal transpeptidase PBP 2B, and we demonstrate that this interaction is mediated exclusively through the extracytoplasmic domains of these proteins. Artificial septal targeting in combination with mutagenesis experiments revealed that the C-terminal region of the β domain of DivIB is critical for its interaction with PBP 2B. These findings are consistent with previously defined loss-of-function point mutations in DivIB as well as the recent demonstration that the β domain of DivIB mediates its interaction with the FtsL-DivIC heterodimer. These new results have allowed us to construct a model of the DivIB/PBP 2B/FtsL/DivIC quaternary complex that strongly implicates DivIB, FtsL, and DivIC in modulating the transpeptidase activity of PBP 2B.Bacterial cytokinesis is a highly coordinated process that is carried out by a multiprotein complex known as the divisome (9, 11, 37, 39). In Escherichia coli, there are at least 10 essential divisomal proteins that carry out the division process. Divisome formation is initiated at the incipient division site by the recruitment of the FtsZ ring (1) which provides a molecular scaffold onto which the other divisional proteins are subsequently loaded (24, 33) (Fig. (Fig.1).1). In E. coli, the first proteins to load after FtsZ are a group of predominantly cytoplasmic proteins (FtsA, ZapA, and ZipA) that stabilize nascent FtsZ protofilaments and tether them to the membrane. The stabilized Z-ring then acts as a platform for recruitment of the remaining essential divisomal proteins, which are all single- or multipass membrane proteins (i.e., FtsE/FtsX, FtsK, FtsQ, FtsB, FtsL, FtsW, FtsI, and FtsN). With the exception of FtsI, a transpeptidase that cross-links septal murein, the biochemical function of these proteins is unknown.Open in a separate windowFIG. 1.Schema showing the hierarchical pathway of divisome assembly in E. coli and B. subtilis (adapted from reference 30). For a protein to be recruited to the divisome, all of the proteins upstream from it in the hierarchical recruitment pathway must already be present at the septum. Groups of proteins that form a subcomplex independent of other divisomal proteins, such as the ternary complex formed between E. coli FtsQ, FtsB, and FtsL, are highlighted by gray boxes. Red lines denote pairwise protein-protein interactions that have been experimentally demonstrated using genetic and/or biochemical approaches. The question mark indicates that the precise location of FtsW in the divisome assembly pathway in B. subtilis is currently unknown. (C) Possible outcomes of a heterologous septal targeting experiment in E. coli in which ZapA-DivIB is employed as the bait and GFP-PBP 2B is the prey. A direct interaction between DivIB and PBP 2B should result in a fluorescent ring at midcell (or a pair of dots when viewed in cross-section) due the recruitment of GFP-PBP 2B to the divisome (left panel). In contrast, a halo of fluorescence should be visible around the cell periphery due to the membrane-bound GFP-PBP 2B if there is no interaction between these two proteins (right panel).Divisomal protein recruitment in both Bacillus subtilis and E. coli occurs in a stepwise manner. For example, for FtsQ to be recruited to the E. coli divisome, all of the proteins upstream from it in the hierarchical recruitment pathway shown in Fig. Fig.1A1A must already be present at the septum. However, this pathway is not completely linear; some proteins appear to form subcomplexes prior to their recruitment to the divisome, such as the ternary complex formed between E. coli FtsQ, FtsB, and FtsL (2, 12, 14, 15). The situation in B. subtilis is more complex and less well understood. For example, B. subtilis DivIB, DivIC, FtsL, and PBP 2B appear to be recruited to the septum as an interdependent group late in the cell cycle (10) (Fig. (Fig.1B).1B). To further complicate matters, once these individual proteins or subcomplexes have been recruited to the divisome, they engage in a complex network of protein-protein interactions with other divisomal proteins (7, 8, 18, 23).The plethora of protein-protein interactions at the bacterial divisome makes it difficult to decipher which molecular epitopes on individual proteins mediate their interaction with other divisomal proteins. Thus, we recently introduced an artificial septal targeting (AST) technique that allowed us to examine interactions between pairs of interacting B. subtilis divisomal proteins in E. coli (30). This technique involves artificially targeting one of the B. subtilis proteins (the “bait”) to the E. coli divisome by fusing it to E. coli ZapA and then using fluorescence microscopy to determine whether it can recruit to the septum a green fluorescent protein (GFP) fusion to a putative interacting partner (the “prey”) (Fig. (Fig.1C).1C). The primary advantage of the AST technique is that it allows direct assessment of the interaction between two B. subtilis divisomal proteins without interference from other members of the divisome.We previously used AST to demonstrate a direct interaction between B. subtilis FtsL and DivIC and between DivIB and PBP 2B (30). The latter finding is consistent with the observation from bacterial two-hybrid studies that B. subtilis DivIB interacts directly with both PBP 2B and FtsL (5) and that the E. coli orthologs of these proteins (FtsI and FtsQ, respectively) also interact strongly (18). The extracellular domain of DivIB is divided into three subdomains, termed α, β, and γ (31). It was recently shown using a combination of nuclear magnetic resonance (NMR) spectroscopy and small-angle X-ray scattering (SAXS) that the concave face of the DivIB β domain makes direct contact with the C-terminal head of the FtsL-DivIC heterodimeric coiled coil (25), forming a stabilizing “cap” for these two intrinsically unstable proteins (32). In contrast, the α and γ regions of DivIB are not critical for formation of the DivIB/FtsL/DivIC ternary complex (25).The FtsQ/DivIB-FtsI/PBP 2B interaction appears to be widely conserved in both Gram-negative and Gram-positive bacteria, and therefore we decided to investigate the molecular details of this evolutionarily conserved interaction. By using a combination of AST and site-directed mutagenesis, we show that DivIB and PBP 2B interact exclusively through their extracytoplasmic regions and that this interaction is mediated by residues near the C terminus of DivIB. In combination with the results of previous studies, these new data have allowed us to construct a working model of the DivIB/PBP 2B/FtsL/DivIC complex.  相似文献   

12.
The effect of esterification at the 2'-position of desosamine on the antibacterial activity of erythromycin was investigated by determining the bacteriostatic and bactericidal activities of erythromycin and a number of its 2'-esters on S. aureus and relating these activities to the hydrolysis rates of the esters. These studies, together with comparison of the inhibition of protein synthesis in a cell-free system isolated from S. aureus, lead to the conclusion that 2'-esters of erythromycin are inactive until hydrolyzed. Loss of activity appears to result from inability of erythromycin esters to bind to bacterial ribosomes and thus inhibit synthesis of protein.  相似文献   

13.
Staphylococcus aureus is a widespread Gram‐positive opportunistic pathogen, and a methicillin‐resistant form (MRSA) is particularly difficult to treat clinically. We have solved two crystal structures of penicillin‐binding protein (PBP) 3 (PBP3) from MRSA, the apo form and a complex with the β-lactam antibiotic cefotaxime, and used electrospray mass spectrometry to measure its sensitivity to a variety of penicillin derivatives. PBP3 is a class B PBP, possessing an N-terminal non-penicillin‐binding domain, sometimes called a dimerization domain, and a C-terminal transpeptidase domain. The model shows a different orientation of its two domains compared to earlier models of other class B PBPs and a novel, larger N-domain. Consistent with the nomenclature of “dimerization domain”, the N-terminal region forms an apparently tight interaction with a neighboring molecule related by a 2-fold symmetry axis in the crystal structure. This dimer form is predicted to be highly stable in solution by the PISA server, but mass spectrometry and analytical ultracentrifugation provide unequivocal evidence that the protein is a monomer in solution.  相似文献   

14.
Penicillin-binding proteins (PBPs), the main targets of β-lactam antibiotics, are membrane-associated enzymes that catalyze the two last steps in the biosynthesis of peptidoglycan. In Streptococcus pneumoniae, a major human pathogen, the surge in resistance to such antibiotics is a direct consequence of the proliferation of mosaic PBP-encoding genes, which give rise to proteins containing tens of mutations. PBP2b is a major drug resistance target, and its modification is essential for the development of high levels of resistance to piperacillin. In this work, we have solved the crystal structures of PBP2b from a wild-type pneumococcal strain, as well as from a highly drug-resistant clinical isolate displaying 58 mutations. Although mutations are present throughout the entire PBP structure, those surrounding the active site influence the total charge and the polar character of the region, while those in close proximity to the catalytic nucleophile impart flexibility onto the β3/β4 loop area, which encapsulates the cleft. The wealth of structural data on pneumococcal PBPs now underlines the importance of high malleability in active site regions of drug-resistant strains, suggesting that active site “breathing” could be a common mechanism employed by this pathogen to prevent targeting by β-lactams.  相似文献   

15.
16.
Abstract

A convenient synthesis of 2′-deoxy-2-fluoroadenosine from commercially available 2-fluoroadenine is described. The coupling reaction of silylated 2-fluoroadenine with phenyl 3,5-bis[O-(t-butyldimethylsilyl)]-2-deoxy-1-thio-D-erythro-pentofuranoside gave the corresponding 2-fluoro-2′-deoxyadenosine derivative (α/β =1:1) in good yield. The α- and β-anomers were separated by chromatography, and then desilylated to give compounds 1a and 1b.  相似文献   

17.
Abstract

5, 7-Dichloro-3H-imidazo[4, 5-b]pyridine (4) is a versatile base which can be coupled with a variety of sugar moieties and transformed in a series of 7-alkyl(aryl)amino-derivatives by reacting with the corresponding amines. In this paper synthesis, structure elucidation and ADA inhibitory activity of 2′-deoxyribonucleoside derivatives of N6-substituted 1-deazaapurines are described.  相似文献   

18.
2-Chloro-2 ′-deoxyadenosine (CdA, cladribine) is a nucleoside analogue (NA) used for the treatment of lymphoproliferative disorders. Phosphorylation of the drug to CdAMP by deoxycytidine kinase (dCK) and its subsequent conversion to CdATP is essential for its efficacy. DCK deficiency is a common mechanism of resistance to NA, which could be overcome by the pronucleotide approach. The latter consists of using the nucleoside monophosphate conjugated to a lipophilic group enabling CdAMP to enter the cells by passive diffusion. In this study, we show that cycloSaligenyl-2-chloro-2 ′-deoxyadenosine monophosphate (cycloSal-CdAMP) is 10-fold more potent that CdA in a dCK-deficient lymphoma cell line. These results suggest that the use of cycloSal-nucleotides could be a strategy to counteract resistance caused by dCK deficiency.  相似文献   

19.
The auxiliary β subunit plays an important role in the regulation of voltage-gated calcium (CaV) channels. Recently, it was revealed that β2e associates with the plasma membrane through an electrostatic interaction between N-terminal basic residues and anionic phospholipids. However, a molecular-level understanding of β-subunit membrane recruitment in structural detail has remained elusive. In this study, using a combination of site-directed mutagenesis, liposome-binding assays, and multiscale molecular-dynamics (MD) simulation, we developed a physical model of how the β2e subunit is recruited electrostatically to the plasma membrane. In a fluorescence resonance energy transfer assay with liposomes, binding of the N-terminal peptide (23 residues) to liposome was significantly increased in the presence of phosphatidylserine (PS) and phosphatidylinositol 4,5-bisphosphate (PIP2). A mutagenesis analysis suggested that two basic residues proximal to Met-1, Lys-2 (K2) and Trp-5 (W5), are more important for membrane binding of the β2e subunit than distal residues from the N-terminus. Our MD simulations revealed that a stretched binding mode of the N-terminus to PS is required for stable membrane attachment through polar and nonpolar interactions. This mode obtained from MD simulations is consistent with experimental results showing that K2A, W5A, and K2A/W5A mutants failed to be targeted to the plasma membrane. We also investigated the effects of a mutated β2e subunit on inactivation kinetics and regulation of CaV channels by PIP2. In experiments with voltage-sensing phosphatase (VSP), a double mutation in the N-terminus of β2e (K2A/W5A) increased the PIP2 sensitivity of CaV2.2 and CaV1.3 channels by ∼3-fold compared with wild-type β2e subunit. Together, our results suggest that membrane targeting of the β2e subunit is initiated from the nonspecific electrostatic insertion of N-terminal K2 and W5 residues into the membrane. The PS-β2e interaction observed here provides a molecular insight into general principles for protein binding to the plasma membrane, as well as the regulatory roles of phospholipids in transporters and ion channels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号