首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ent-Kaurene is the key intermediate in biosynthesis of gibberellins (GAs), plant hormones. In higher plants, ent-kaurene is synthesized successively by copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) from geranylgeranyl diphosphate (GGDP). On the other hand, fungal ent-kaurene synthases are bifunctional cyclases with both CPS and KS activity in a single polypeptide. The moss Physcomitrella patens is a model organism for the study of genetics and development in an early land plant. We identified ent-kaurene synthase (PpCPS/KS) from P. patens and analyzed its function. PpCPS/KS cDNA encodes a 101-kDa polypeptide, and shows high similarity with CPSs and abietadiene synthase from higher plants. PpCPS/KS is a bifunctional cyclase and, like fungal CPS/KS, directly synthesizes the ent-kaurene skeleton from GGDP. PpCPS/KS has two aspartate-rich DVDD and DDYFD motifs observed in CPS and KS, respectively. The mutational analysis of two conserved motifs in PpCPS/KS indicated that the DVDD motif is responsible for CPS activity (GGDP to CDP) and the DDYFD motif for KS activity (CDP to ent-kaurene and ent-16alpha-hydroxykaurene).  相似文献   

2.

Main conclusion

We report a novel physiological response to blue light in the moss Physcomitrella patens . Blue light regulates ent -kaurene biosynthesis and avoidance response to protonemal growth.

Abstract

Gibberellins (GAs) are a group of diterpene-type plant hormones biosynthesized from ent-kaurenoic acid via ent-kaurene. While the moss Physcomitrella patens has part of the GA biosynthetic pathway, from geranylgeranyl diphosphate to ent-kaurenoic acid, no GA is found in this species. Caulonemal differentiation in a P. patens mutant with a disrupted bifunctional ent-copalyl diphosphate synthase/ent-kaurene synthase (PpCPS/KS) gene is suppressed under red light, and is recovered by application of ent-kaurene and ent-kaurenoic acid. This indicates that derivatives of ent-kaurenoic acid, not GAs, might act as endogenous developmental regulators. Here, we found unique responses in the protonemal growth of P. patens under unilateral blue light, and these regulators were involved in the responses. When protonemata of the wild type were incubated under blue light, the chloronemal filaments grew in the opposite direction to the light source. Although this avoidance was not observed in the ent-kaurene deficient mutant, chloronemal growth toward a blue-light source in the mutant was suppressed by application of ent-kaurenoic acid, and the growth was rescued to that in the wild type. Expression analysis of the PpCPS/KS gene showed that the mRNA level under blue light was rapidly increased and was five times higher than under red light. These results suggest that regulators derived from ent-kaurenoic acid are strongly involved not only in the growth regulation of caulonemal differentiation under red light, but also in the light avoidance response of chloronemal growth under blue light. In particular, growth under blue light is regulated via the PpCPS/KS gene.  相似文献   

3.
Thromboxane A2 synthase (TXAS) is a member of the cytochrome P450 superfamily and catalyzes an isomerization reaction that converts prostaglandin H2 to thromboxane A2. As a step toward understanding the structure/function relationships of TXAS, we mutated amino acid residues predicted to bind the propionate groups of A- and D-pyrrole rings of the heme. These mutations at each of these residues (Asn-110, Trp-133, Arg-137, Arg-413, and Arg-478) resulted in altered heme binding, as evidenced by perturbation of the absorption spectra and EPR. The mutations, although causing no significant changes in the secondary structure of the proteins, induced tertiary structural changes that led to increased susceptibility to trypsin digestion and alteration of the intrinsic protein fluorescence. Moreover, these mutant proteins lost their binding affinity to the substrate analog, had a lower heme content and retained less than 5% of the wild-type catalytic activity. However, mutations at the neighboring amino acid of the aforementioned residues yielded mutant proteins retaining the biochemical and biophysical properties of the wild type TXAS. Aligning the TXAS sequence with the structurally known P450s, we proposed that in TXAS the A-ring propionate of the heme is hydrogen bonded to Asn-110, Arg-413, and Arg-478, whereas D-ring propionate is hydrogen bonded to Trp-133 and Arg-137. Furthermore, both A- and D-ring propionates bulge away from the heme plane and both lie on the proximal face of heme plane, a structure similar to P450terp.  相似文献   

4.
The moss Physcomitrella patens contains high levels of arachidonic acid and lesser amounts of eicosapentaenoic acid. Here we report the identification and characterization of a delta5-desaturase from P. patens that is associated with the synthesis of these fatty acids. A full-length cDNA for this desaturase was identified by data base searches based on homology to sequences of known delta5-desaturase cDNAs from fungal and algal species. The resulting P. patens cDNA encodes a 480-amino acid polypeptide that contains a predicted N-terminal cytochrome b5-like domain as well as three histidine-rich domains. Expression of the enzyme in Saccharomyces cerevisiae resulted in the production of the delta5-containing fatty acid arachidonic acid in cells that were provided di-homo-gamma-linolenic acid. In addition, the expressed enzyme generated delta5-desaturation products with the C20 substrates omega-6 eicosadienoic and omega-3 eicosatrienoic acids, but no products were detected with the C18 fatty acid linoleic and alpha-linolenic acids or with the C22 fatty acid adrenic and docosapentaenoic acids. When the corresponding P. patens genomic sequence was disrupted by replacement through homologous recombination, a dramatic alteration in the fatty acid composition was observed, i.e. an increase in di-homo-gamma-linolenic and eicosatetraenoic acids accompanied by a concomitant disappearance of the delta5-fatty acid arachidonic and eicosapentaenoic acids. In addition, overexpression of the P. patens cDNA in protoplasts isolated from a disrupted line resulted in the restoration of arachidonic acid synthesis.  相似文献   

5.
The moss Physcomitrella patens produces both ent-kaurene and ent-kaurenoic acid, which are intermediates of gibberellin biosynthesis in flowering plants. The CYP701 superfamily of cytochrome P450s functions as ent-kaurene oxidases in the biosynthesis of ent-kaurenoic acid. A candidate gene encoding ent-kaurene oxidase in P. patens, CYP701B1, was cloned and heterologously expressed in yeast to examine enzyme activities in vitro. The recombinant CYP701B1 protein catalyzed the oxidation reaction from ent-kaurene to ent-kaurenoic acid. CYP701B1 activity was highly resistant to the ent-kaurene oxidase inhibitor uniconazole-P (IC(50) 64 μM), even though the activity of Arabidopsis ent-kaurene oxidase (CYP701A3) was sensitive (IC(50) 0.26 μM).  相似文献   

6.
Jiang C  Schommer CK  Kim SY  Suh DY 《Phytochemistry》2006,67(23):2531-2540
Since the early evolution of land plants from primitive green algae, flavonoids have played an important role as UV protective pigments in plants. Flavonoids occur in liverworts and mosses, and the first committed step in the flavonoid biosynthesis is catalyzed by chalcone synthase (CHS). Although higher plant CHSs have been extensively studied, little information is available on the enzymes from bryophytes. Here we report the cloning and characterization of CHS from the moss, Physcomitrella patens. Taking advantage of the available P. patens EST sequences, a CHS (PpCHS) was cloned from the gametophores of P. patens, and heterologously expressed in Escherichia coli. PpCHS exhibited similar kinetic properties and substrate preference profile to those of higher plant CHS. p-Coumaroyl-CoA was the most preferred substrate, suggesting that PpCHS is a naringenin chalcone producing CHS. Consistent with the evolutionary position of the moss, phylogenetic analysis placed PpCHS at the base of the plant CHS clade, next to the microorganism CHS-like gene products. Therefore, PpCHS likely represents a modern day version of one of the oldest CHSs that appeared on earth. Further, sequence analysis of the P. patens EST and genome databases revealed the presence of a CHS multigene family in the moss as well as the 3'-end heterogeneity of a CHS gene. Of the 19 putative CHS genes, 10 genes are expressed and have corresponding ESTs in the databases. A possibility of the functional divergence of the multiple CHS genes in the moss is discussed.  相似文献   

7.
Physcomitrella patens, belonging to bryopsida, is a basal lineage of land plants. To gain insight into the diversification of the two-component system (TCS), which is widely conserved from prokaryotes to eukaryotes, we compiled TCS-associated genes by employing P. patens genome databases. The moss has a set of His-kinases (HKs), including homologs of the cytokinin- and ethylene-receptors in seed plants. In addition, it has a number of coding-sequences specifying unique HKs. We found evidence that a putative cytokinin-receptor HK in P. patans serves as a sensor for this hormone, and that the HK activity of a putative ethylene-receptor homolog is regulated by ethylene, as observed for Arabidopsis thaliana.  相似文献   

8.
9.
10.
Although aquaporins (AQPs) have been shown to increase membrane water permeability in many cell types, the physiological role of this increase was not always obvious. In this report, we provide evidence that in the leafy stage of development (gametophore) of the moss Physcomitrella patens, AQPs help to replenish more rapidly the cell water that is lost by transpiration, at least if some water is in the direct vicinity of the moss plant. Three AQP genes were cloned in P. patens: PIP2;1, PIP2;2, and PIP2;3. The water permeability of the membrane was measured in protoplasts from leaves and protonema. A significant decrease was measured in protoplasts from leaves and protonema of PIP2;1 or PIP2;2 knockouts but not the PIP2;3 knockout. No phenotype was observed when knockout plants were grown in closed petri dishes with ample water supply. Gametophores isolated from the wild type and the pip2;3 mutant were not sensitive to moderate water stress, but pip2;1 or pip2;2 gametophores expressed a water stress phenotype. The knockout mutant leaves were more bent and twisted, apparently suffering from an important loss of cellular water. We propose a model to explain how the AQPs PIP2;1 and PIP2;2 delay leaf dessication in a drying atmosphere. We suggest that in ancestral land plants, some 400 million years ago, APQs were already used to facilitate the absorption of water.  相似文献   

11.
The Physcomitrella patens genome has seven genes apparently coding for the isopentenyltransferase type of tRNA-modifying enzyme, while other organisms have one or two. The predicted sequences have parts that differ significantly from other isopentenyltransferases. Only one of the seven (PpIPT1) has earlier been shown to be expressed. We now report expression of two more, PpIPT4 and PpIPT5. The cloned genes were able to functionally complement a yeast mutant lacking tRNA isopentenyltransferase. Sequencing showed they are related to the earlier studied PpIPT1. The sequences of the three differ mainly from each other in a tRNA-binding area and the 5′-end subcellular targeting motif area. This indicates that, after arising through gene duplication, they have evolved to enable partly different functions.  相似文献   

12.
13.
Physcomitrella patens is a model plant for studying gene function using a knockout strategy. To establish a proteome database for P. patens, we resolved over 1,500 soluble proteins from gametophore and protonema tissues by two-dimensional electrophoresis (2-DE) and obtained peptide mass fingerprints (PMFs) by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Using expressed sequence tags (ESTs), we were able to predict the identities of 90 protein spots. Most of these were related to energy or primary metabolism. Comparative proteome analysis was used to identify proteins specific for each of the tissue types. One of these was a metallothionein type-2 (PpMT2) protein that was highly upregulated in gametophore tissue. PpMT2 was induced in both the gametophore and protonema following culture on solid media and in response to various abiotic stresses such as copper, cadmium, cold, indole-3-acetic acid, and ethylene. We suggest that PpMT2 is not only involved in metal binding and detoxification, but also in many biological aspects as a metal messenger or a protein with additional functions.  相似文献   

14.
《Journal of bryology》2013,35(3):185-196
Abstract

Leaves at the apex of a mature Aphanoregma patens (Hedw.) Lindb. (Physcomitrella patens (Hedw.) Bruch Schimp. in B.S.G.) gametophore differ markedly in size and form from those at its base. To determine how these differences are produced during development, we first examined qualitative and quantitative differences between successive leaves along the stem and among leaves at different developmental stages. Differences between successive leaves were slight and cumulative. Local changes in cell number and size combined to produce a regularly shaped and approximately bilaterally symmetrical leaf suggesting that cell division and cell expansion are regionally regulated and coordinated at the organ level. The midrib and marginal teeth are discrete characters, which were prefigured by changes in cell shape in leaves that lacked these characters. In leaf primordia, cell proliferation was responsible for most of the changes in leaf form and size early in development and may have continued as cell expansion took over as the primary contributor to leaf growth and morphogenesis. Thus, leaf heteroblasty in Physcomitrella probably results from modulation of a single developmental programme by external and/or internal forces, which alter progressively in intensity as a gametophore grows. We applied exogenous cytokinin and auxin separately to growing cultures to explore their effects on leaf growth. Cytokinin and auxin stimulated leaf cell division and leaf cell elongation, respectively. Also, young upper leaves of gametophores exposed to exogenous auxin closely resembled basal leaves of untreated plants. Therefore, endogenous cytokinins and auxins may be among the modulating internal forces involved in leaf morphogenesis and the establishment of leaf heteroblasty.  相似文献   

15.
The phosphoinositide signalling pathway is important in plant responses to extracellular and intracellular signals. To elucidate the physiological functions of phosphoinositide-specific phopspholipase C, PI-PLC, targeted knockout mutants of PpPLC1, a gene encoding a PI-PLC from the moss Physcomitrella patens, were generated via homologous recombination. Protonemal filaments of the plc1 lines show a dramatic reduction in gametophore formation relative to wild type: this was accompanied by a loss of sensitivity to cytokinin. Moreover, plc1 appeared paler than the wild type, the result of an altered differentiation of chloroplasts and reduced chlorophyll levels compared with wild type filaments. In addition, the protonemal filaments of plc1 have a strongly reduced ability to grow negatively gravitropically in the dark. These effects imply a significant role for PpPLC1 in cytokinin signalling and gravitropism.  相似文献   

16.
Silber MV  Meimberg H  Ebel J 《Phytochemistry》2008,69(13):2449-2456
Since the early evolution of land plants from primitive green algae, phenylpropanoid compounds have played an important role. In the biosynthesis of phenylpropanoids, 4-coumarate:CoA ligase (4CL; EC 6.2.1.12) has a pivotal role at the divergence point from general phenylpropanoid metabolism to several major branch pathways. Although higher plant 4CLs have been extensively studied, little information is available on the enzymes from bryophytes. In Physcomitrella patens, we have identified a 4CL gene family consisting of four members, taking advantage of the available EST sequences and a draft sequence of the P. patens genome. The encoded proteins of three of the genes display similar substrate utilization profiles with highest catalytic efficiency towards 4-coumarate. Interestingly, the efficiency with cinnamate as substrate is in the same range as with caffeate and ferulate. The deduced proteins of the four genes share sequence identities between 78% and 86%. The intron/exon structures are pair wise similar. Pp4CL2 and Pp4CL3 each consists of four exons and three introns, whereas Pp4CL1 and Pp4CL4 are characterized each by five exons and four introns. Pp4CL1, Pp4CL2 and Pp4CL3 are expressed in both gametophore and protonema tissue of P. patens, unlike Pp4CL4 whose expression could not be demonstrated under the conditions employed. Phylogenetic analysis suggests an early evolutionary divergence of Pp4CL gene family members. Using Streptomyces coelicolor cinnamate:CoA ligase (ScCCL) as an outgroup, the P. patens 4CLs are clearly separated from the spermatophyte proteins, but are intercalated between the angiosperm 4CL class I and class II. A comparison of three P. patens subspecies from diverse geographical locations shows high sequence identities for the four 4CL isoforms.  相似文献   

17.
In caulonemal filaments of Physcomitrella patens which had been preincubated in the dark for 24 h, irradiation with red light (640 nm, fluence rate 85 mol · m–2 · s–1) evoked (i) the development of side branch initials and (ii) a rapid, but transient, depolarisation of the plasma membrane by 90 ± 13 mV from a resting potential of -178 ± 13 mV. This was followed by a transient hyperpolarisation to a value 21± 8 mV more negative than the original membrane potential. The refractory period for the transient depolarisation was between 12 and 15 min. The fluence rate of red light required to evoke maximal depolarisation was about 80 mol · m–2 · s–1 for a 1-min pulse. At this fluence rate, a depolarising response could be recorded for pulse lengths as small as 7 s. The transient depolarisation was insensitive to 3-(3,4dichlorophenyl)-1,1-dimethyl urea (DCMU) and was unchanged in plants bleached by growth on norflurazon (SAN 9789). Furthermore, the electrical response could be blocked by simultaneous application of far-red light. These results suggest the involvement of the photoreceptor phytochrome in the response. Removing Ca2+ from the external medium or replacing Ca2+ with Mg2+ blocked the depolarisation. The depolarisation could also be blocked by the K+ channel-blocker tetraethylammonium (10 mM) and the Cl channel-blocker niflumic acid (1 M). Conversely, although calcium channel-antagonists such as nifedipine and lanthanides, applied at a concentration of 100 M, also altered the response, they did not block it. A possible ionic mechanism for the membrane potential transient is advanced, and the physiological significance discussed in the context of early events in the phytochrome signalling pathway.Abbreviations [Ca2+]c cytosolic Ca2+ concentration - DCMU 3-(3,4-dichlorophenyt)-1,1-dimethylurea - TEA tetraethylammonium We thank Prof. David Cove (Department of Genetics, University of Leeds) for fruitful discussions, providing plants and advice on culturing methods, Dr. Richard Firn (York) for stimulating discussions, Ian Jennings (York) for technical advice on the electrophysiological apparatus, and Anna Bate (York) for looking after the plant cultures. Financial support was received from the Biotechnology and Biological Sciences Research Council (Grant P87/4043 to D.S. and Grant PDF/14 to E.J.) and The New Phytologist Trust (studentship support to E.E.).  相似文献   

18.
Journal of Plant Research - The timing of the transition between developmental phases is a critical determinant of plant form. In the moss Physcomitrella patens, the transition from protonema to...  相似文献   

19.
Three cytokinin-over-producing mutants of the moss, Physcomitrella patens, have been shown to convert [8-14C]adenine to N6-[14C](Δ2-isopentenyl)adenine, the presence of which was confirmed by thin layer chromatography, high performance liquid chromatography, and recrystallization to constant specific radioactivity. The labeled cytokinin was detected in the culture medium within 6 hours and the tissue itself appears to contain both labeled N6-(Δ2-isopentenyl)adenine and N6-(Δ2-isopentenyl)adenosine monophosphate.  相似文献   

20.
The cell surface expression of HLA-E molecules by transfection is faint in xenogeneic cells. Therefore, this study was done for the aim of better expression of HLA-E molecules on the surface of pig cells in order to overcome xenograft rejection mediated by human natural killer (NK) cells. The importance of the loading peptide sequence for HLA-E expression has been studied extensively, but much less information is available concerning the HLA-E heavy chain sequence. In our previous study, we developed the S147C substitution of HLA-E as a useful gene tool for xenotransplantation. In this study, a more extensive substitution analysis throughout the entire region led to the identification of nine amino acid positions, positions-9, 11, 25, 40, 66, 67, 74, 99 and 174, that are significantly involved in the cell surface expression of HLA-E molecules. In view of xenotransplantation usage, double and triple point substitutions, HLA-Ev(11,147) and HLA-Ev(11,66,147), were constructed. These constructs led to a high expression on the xenogeneic cell surface and possessed inhibitory functions against human NK cell-mediated cytolysis in an in vitro pig to human xenotransplantation model system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号