首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Arabidopsis (Arabidopsis thaliana) genome includes eight PIN-FORMED (PIN) members that are molecularly diverged. To comparatively examine their differences in auxin-transporting activity and subcellular behaviors, we expressed seven PIN proteins specifically in Arabidopsis root hairs and analyzed their activities in terms of the degree of PIN-mediated root hair inhibition or enhancement and determined their subcellular localization. Expression of six PINs (PIN1–PIN4, PIN7, and PIN8) in root hair cells greatly inhibited root hair growth, most likely by lowering auxin levels in the root hair cell by their auxin efflux activities. The auxin efflux activity of PIN8, which had not been previously demonstrated, was further confirmed using a tobacco (Nicotiana tabacum) cell assay system. In accordance with these results, those PINs were localized in the plasma membrane, where they likely export auxin to the apoplast and formed internal compartments in response to brefeldin A. These six PINs conferred different degrees of root hair inhibition and sensitivities to auxin or auxin transport inhibitors. Conversely, PIN5 mostly localized to internal compartments, and its expression in root hair cells rather slightly stimulated hair growth, implying that PIN5 enhanced internal auxin availability. These results suggest that different PINs behave differentially in catalyzing auxin transport depending upon their molecular activity and subcellular localization in the root hair cell.Auxin plays a critical role in plant development and growth by forming local concentration gradients. Local auxin gradients, created by the polar cell-to-cell movement of auxin, are implicated in primary axis formation, root meristem patterning, lateral organ formation, and tropic movements of shoots and roots (for recent review, see Vanneste and Friml, 2009). The cell-to-cell movement of auxin is achieved by auxin influx and efflux transporters such as AUXIN-RESISTANT1 (AUX1)/LIKE-AUX1 for influx and PIN-FORMED (PIN) and the P-glycoprotein (PGP) of ABCB (ATP-binding cassette-type transporter subfamily B) for efflux. Since diffusive efflux of the natural auxin indole-3-acetic acid (IAA; pKa = 4.75) is not favorable and PINs are localized in the plasma membrane in a polar manner, PINs act as rate-limiting factors for cellular auxin efflux and polar auxin transport through the plant body. These PINs'' properties explain why representative physiological effects of auxin transport are associated with PINs.Auxin flows from young aerial parts all the way down to the root tip columella in which an auxin maximum is formed for root stem cell maintenance and moves up toward the root differentiation zone through root epidermal cells, where a part of it travels back to the root tip via cortical cells (Blilou et al., 2005). This directional auxin flow is supported by the polar localization of PINs: PIN1, PIN3, and PIN7 at the basal side of stele cells (Friml et al., 2002a, 2002b; Blilou et al., 2005), PIN4 at the basal side in root stem cells (Friml et al., 2002a), and PIN2 at the upper side of root epidermis and at the basal side of the root cortex (Luschnig et al., 1998; Müller et al., 1998). Another interesting aspect of PIN-mediated auxin transport is the dynamics in directionality of auxin flow due to environmental stimuli-directed changes of subcellular PIN polarity, as exemplified for PIN3, whose subcellular localization changes in response to the gravity vector (Friml et al., 2002b).An intriguing question is how different PIN proteins have different subcellular polarities, which might be attributable to PIN-specific molecular properties, cell-type-specific factors, or both. The different PIN subcellular polarities in different cell types seemingly indicate that cell-type-specific factors are involved in polarity. In the case of PIN1, however, both classes of factors appear to affect its subcellular localization because when expressed under the PIN2 promoter, PIN1 localizes to the upper or basal side of root epidermal cells, depending on the GFP insertion site of the protein (Wiśniewska et al., 2006). A recent study demonstrated that the polar targeting of PIN proteins is modulated by phosphorylation/dephosphorylation of the central hydrophilic loop of PINs, which is mediated by PINOID (PID; a Ser/Thr protein kinase)/PP2A phosphatase (Michniewicz et al., 2007). The central hydrophilic domain of PINs might provide the molecule-specific cue for PIN polarity, together with as yet unknown cell-specific factors. Different recycling behaviors of PINs, which show variable sensitivities to brefeldin A (BFA), also imply different molecular characters among PIN species. Most PIN1 proteins are internalized by BFA treatment, whereas considerable amounts of PIN2 remain in the plasma membrane in addition to internal accumulation after BFA treatment. Recycling and basal polar targeting of PIN1 is dependent on the BFA-sensitive guanine nucleotide exchange factor for adenosyl ribosylation factors (ARF GEFs), GNOM, which is the major target of BFA. In contrast, apical targeting and recycling of PIN2 is independent of GNOM and controlled by BFA-resistant ARF GEFs (Geldner et al., 2003; Kleine-Vehn and Friml, 2008).In contrast to their distinct subcellular localizations, the differential auxin-transporting activities of PINs remain to be studied. The divergent primary structures of PIN proteins are not only indicative of differential subcellular polarity, but also would represent their differential catalytic activities for auxin transport. The auxin efflux activities of Arabidopsis (Arabidopsis thaliana) PINs have been demonstrated using Arabidopsis and heterologous systems: PIN1 and PIN5 in Arabidopsis cells (Petrásek et al., 2006; Mravec et al., 2009); PIN2, PIN3, PIN4, PIN6, and PIN7 in tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells (Lee and Cho, 2006; Petrásek et al., 2006; Mravec et al., 2008); PIN1, PIN2, PIN5, and PIN7 in yeast (Saccharomyces cerevisiae) cells (Petrásek et al., 2006; Blakeslee et al., 2007; Mravec et al., 2009; Yang and Murphy, 2009); and PIN1, PIN2, and PIN7 in HeLa cells (Petrásek et al., 2006; Blakeslee et al., 2007). Among the eight Arabidopsis PIN members, PIN1, PIN2, PIN3, PIN4, PIN6, and PIN7, which share a similar molecular structure in terms of the presence of a long central loop (hereafter called long-looped PINs; Fig. 1A; Supplemental Fig. S1), have been shown to catalyze auxin efflux at the cellular level. On the other hand, PIN5 and PIN8 possess a very short putative central loop (hereafter called short-looped PINs). Although PIN5 was recently shown to be localized in the endoplasmic reticulum (ER) and proposed to transport auxin metabolites into the ER lumen, its cellular function regarding its intracellular auxin-transporting activity has not been shown, and the auxin-transporting activity of PIN8 has yet to be demonstrated. In spite of the same transport directionality (auxin efflux) and similar molecular structures, the long-looped PINs exhibit sequence divergence not only in their central loop, but also in certain residues of the transmembrane domains. This structural divergence of long-looped PINs might be indicative of their differential auxin-transporting activities, which have not yet been quantitatively compared.Open in a separate windowFigure 1.Differential activities of PINs in the Arabidopsis root hair. A, Two distinctive PIN groups with different central hydrophilic loop sizes. Topology of PIN proteins was predicted by four different programs as described in Supplemental Figure S1. Numbers above indicate the number of transmembrane helices for each N- and C-terminal region, and numbers below indicate the number of amino acid residues of the central hydrophilic domain. B, Representative root images of control (Cont; Columbia-0) and root-hair-specific PIN-overexpressing (PINox; ProE7:PIN-GFP or ProE7:PIN [−]) plants. Bar = 100 μm for all. C, Root hair lengths of control and PINox plants. Six to 12 independent transgenic lines (average = 8.3), and 42 to 243 roots (average = 86.8) and 336 to 2,187 root hairs (average = 727.8) per construct, were observed for the estimation of root hair length. Data represent means ± se. The root hair lengths of PIN5ox lines were significantly longer than those of the control (P = 0.016 for PIN5ox; P < 0.0001 for PIN5-GFP1ox and PIN5-GFP2ox).To comparatively assess the cytological behaviors and molecular activities of different PIN members, it would be favorable to use a single assay system that provides a consistent cellular environment and enables quantitative estimation of PIN activity. In previous studies, we adopted the root hair single cell system to quantitatively assay auxin-transporting or regulatory activities of PINs, PGPs, AUX1, and PID (Lee and Cho, 2006; Cho et al., 2007a). Root hair growth is proportional to internal auxin levels in the root hair cell. Therefore, auxin efflux inhibits and auxin influx enhances root hair growth (Cho et al., 2007b; Lee and Cho, 2008). In addition, the use of a root-hair-specific promoter (Cho and Cosgrove, 2002; Kim et al., 2006) for expression of auxin transporters enables the transporters'' biological effect to be pinpointed to only the root hair cell, thus excluding probable non-cell-autonomous effects that could be caused by the general expression of auxin transporters.In this study, we expressed five long-looped PINs (PIN1, PIN2, PIN3, PIN4, and PIN7) and two short-looped PINs (PIN5 and PIN8) in root hair cells and compared their auxin-transporting activities and cytological dynamics. To directly measure the radiolabeled auxin-transporting activities of PIN5 and PIN8, we used an additional assay system, tobacco suspension cells. Our data revealed that PINs have differential molecular activities and pharmacological responses and that the short-looped and long-looped PINs have different subcellular localizations.  相似文献   

2.
Members of the B family of membrane-bound ATP-binding cassette (ABC) transporters represent key components of the auxin efflux machinery in plants. Over the last two decades, experimental studies have shown that modifying ATP-binding cassette sub-family B (ABCB) expression affects auxin distribution and plant phenotypes. However, precisely how ABCB proteins transport auxin in conjunction with the more widely studied family of PIN-formed (PIN) auxin efflux transporters is unclear, and studies using heterologous systems have produced conflicting results. Here, we integrate ABCB localization data into a multicellular model of auxin transport in the Arabidopsis thaliana root tip to predict how ABCB-mediated auxin transport impacts organ-scale auxin distribution. We use our model to test five potential ABCB–PIN regulatory interactions, simulating the auxin dynamics for each interaction and quantitatively comparing the predictions with experimental images of the DII-VENUS auxin reporter in wild-type and abcb single and double loss-of-function mutants. Only specific ABCB–PIN regulatory interactions result in predictions that recreate the experimentally observed DII-VENUS distributions and long-distance auxin transport. Our results suggest that ABCBs enable auxin efflux independently of PINs; however, PIN-mediated auxin efflux is predominantly through a co-dependent efflux where co-localized with ABCBs.

Predicting the experimentally observed root-tip auxin distribution requires ABCBs to efflux auxin independently, whereas PINs predominantly mediate auxin efflux where co-localized with ABCBs.  相似文献   

3.
Directional cell-to-cell movement of auxin is mediated by asymmetrically localized PIN-FORMED (PIN) auxin efflux transporters. The polar localization of PINs has been reported to be modulated by phosphorylation. In this study, the function of the phosphorylation sites of the PIN3 central hydrophilic loop (HL) was characterized. The phosphorylation sites were located in two conserved neighboring motifs, RKSNASRRSF(/L) and TPRPSNL, where the former played a more decisive role than the latter. Mutations of these phosphorylatable residues disrupted in planta phosphorylation of PIN3 and its subcellular trafficking, and caused defects in PIN3-mediated biological processes such as auxin efflux activity, auxin maxima formation, root growth, and root gravitropism. Because the defective intracellular trafficking behaviors of phospho-mutated PIN3 varied according to cell type, phosphorylation codes in PIN3-HL are likely to operate in a cell-type-specific manner.  相似文献   

4.
Different PIN-FORMED proteins (PINs) contribute to intercellular and intracellular auxin transport, depending on their distinctive subcellular localizations. Arabidopsis thaliana PINs with a long hydrophilic loop (HL) (PIN1 to PIN4 and PIN7; long PINs) localize predominantly to the plasma membrane (PM), whereas short PINs (PIN5 and PIN8) localize predominantly to internal compartments. However, the subcellular localization of the short PINs has been observed mostly for PINs ectopically expressed in different cell types, and the role of the HL in PIN trafficking remains unclear. Here, we tested whether a long PIN-HL can provide its original molecular cues to a short PIN by transplanting the HL. The transplanted long PIN2-HL was sufficient for phosphorylation and PM trafficking of the chimeric PIN5:PIN2-HL but failed to provide the characteristic polarity of PIN2. Unlike previous observations, PIN5 showed clear PM localization in diverse cell types where PIN5 is natively or ectopically expressed and even polar PM localization in one cell type. Furthermore, in the root epidermis, the subcellular localization of PIN5 switched from PM to internal compartments according to the developmental stage. Our results suggest that the long PIN-HL is partially modular for the trafficking behavior of PINs and that the intracellular trafficking of PIN is plastic depending on cell type and developmental stage.  相似文献   

5.
Laxmi A  Pan J  Morsy M  Chen R 《PloS one》2008,3(1):e1510

Background

Light plays a key role in multiple plant developmental processes. It has been shown that root development is modulated by shoot-localized light signaling and requires shoot-derived transport of the plant hormone, auxin. However, the mechanism by which light regulates root development is not largely understood. In plants, the endogenous auxin, indole-3-acetic acid, is directionally transported by plasma-membrane (PM)-localized auxin influx and efflux carriers in transporting cells. Remarkably, the auxin efflux carrier PIN proteins exhibit asymmetric PM localization, determining the polarity of auxin transport. Similar to PM-resident receptors and transporters in animal and yeast cells, PIN proteins undergo constitutive cycling between the PM and endosomal compartments. Auxin plays multiple roles in PIN protein intracellular trafficking, inhibiting PIN2 endocytosis at some concentrations and promoting PIN2 degradation at others. However, how PIN proteins are turned over in plant cells is yet to be addressed.

Methodology and Principle Findings

Using laser confocal scanning microscopy, and physiological and molecular genetic approaches, here, we show that in dark-grown seedlings, the PM localization of auxin efflux carrier PIN2 was largely reduced, and, in addition, PIN2 signal was detected in vacuolar compartments. This is in contrast to light-grown seedlings where PIN2 was predominantly PM-localized. In light-grown plants after shift to dark or to continuous red or far-red light, PIN2 also accumulated in vacuolar compartments. We show that PIN2 vacuolar targeting was derived from the PM via endocytic trafficking and inhibited by HY5-dependent light signaling. In addition, the ubiquitin 26S proteasome is involved in the process, since its inhibition by mutations in COP9 and a proteasome inhibitor MG132 impaired the process.

Conclusions and Significance

Collectively, our data indicate that light plays an essential role in PIN2 intracellular trafficking, promoting PM-localization in the presence of light and, on the other hand, vacuolar targeting for protein degradation in the absence of light. Based on these results, we postulate that light regulation of root development is mediated at least in part by changes in the intracellular distribution of auxin efflux carriers, PIN proteins, in response to the light environment.  相似文献   

6.
The plant hormone auxin controls many aspects of plant development. Membrane trafficking processes, such as secretion, endocytosis and recycling, regulate the polar localization of auxin transporters in order to establish an auxin concentration gradient. Here, we investigate the function of the Arabidopsis thaliana R-SNAREs VESICLE-ASSOCIATED MEMBRANE PROTEIN 721 (VAMP721) and VAMP722 in the post-Golgi trafficking required for proper auxin distribution and seedling growth. We show that multiple growth phenotypes, such as cotyledon development, vein patterning and lateral root growth, were defective in the double homozygous vamp721 vamp722 mutant. Abnormal auxin distribution and root patterning were also observed in the mutant seedlings. Fluorescence imaging revealed that three auxin transporters, PIN-FORMED 1 (PIN1), PIN2 and AUXIN RESISTANT 1 (AUX1), aberrantly accumulate within the cytoplasm of the double mutant, impairing the polar localization at the plasma membrane (PM). Analysis of intracellular trafficking demonstrated the involvement of VAMP721 and VAMP722 in the endocytosis of FM4-64 and the secretion and recycling of the PIN2 transporter protein to the PM, but not its trafficking to the vacuole. Furthermore, vamp721 vamp722 mutant roots display enlarged trans-Golgi network (TGN) structures, as indicated by the subcellular localization of a variety of marker proteins and the ultrastructure observed using transmission electron microscopy. Thus, our results suggest that the R-SNAREs VAMP721 and VAMP722 mediate the post-Golgi trafficking of auxin transporters to the PM from the TGN subdomains, substantially contributing to plant growth.  相似文献   

7.
Aminopeptidase M1 (APM1) was the first M1 metallopeptidase family member identified in Arabidopsis, isolated by its affinity for the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). A loss-of-function mutation showed various developmental defects in cell division and auxin transport. APM1 was shown to be localized in endomembrane structures, the cytoplasm, and the plasma membrane. These previous results suggested that APM1 has diverse functional roles in different cell and tissue types. Here we report that APM1 localized to the cytoplasm, and its over-expression in the root hair cell caused longer root hair phenotypes. Treatment of aminopeptidase inhibitors caused internalization of auxin efflux PIN-FORMED proteins in root hair cells and suppressed short root hair phenotype of PIN3 overexpression line (PIN3ox). APM1 also localized to the cytoplasm in tobacco BY-2 cells, its over-expression had little effect on auxin transport in these cells.  相似文献   

8.
In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response.  相似文献   

9.
10.
Polar auxin transport, mediated by two distinct plasma membrane-localized auxin influx and efflux carrier proteins/complexes, plays an important role in many plant growth and developmental processes including tropic responses to gravity and light, development of lateral roots and patterning in embryogenesis. We have previously shown that the Arabidopsis AGRAVITROPIC 1/PIN2 gene encodes an auxin efflux component regulating root gravitropism and basipetal auxin transport. However, the regulatory mechanism underlying the function of AGR1/PIN2 is largely unknown. Recently, protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases, respectively, have been implicated in regulating polar auxin transport and root gravitropism. Here, we examined the effects of chemical inhibitors of protein phosphatases on root gravitropism and basipetal auxin transport, as well as the expression pattern of AGR1/PIN2 gene and the localization of AGR1/PIN2 protein. We also examined the effects of inhibitors of vesicle trafficking and protein kinases. Our data suggest that protein phosphatases, sensitive to cantharidin and okadaic acid, are likely involved in regulating AGR1/PIN2-mediated root basipetal auxin transport and gravitropism, as well as auxin response in the root central elongation zone (CEZ). BFA-sensitive vesicle trafficking may be required for the cycling of AGR1/PIN2 between plasma membrane and the BFA compartment, but not for the AGR1/PIN2-mediated root basipetal auxin transport and auxin response in CEZ cells.  相似文献   

11.
Polar cell-to-cell transport of auxin by plasma membrane–localized PIN-FORMED (PIN) auxin efflux carriers generates auxin gradients that provide positional information for various plant developmental processes. The apical-basal polar localization of the PIN proteins that determines the direction of auxin flow is controlled by reversible phosphorylation of the PIN hydrophilic loop (PINHL). Here, we identified three evolutionarily conserved TPRXS(N/S) motifs within the PIN1HL and proved that the central Ser residues were phosphorylated by the PINOID (PID) kinase. Loss-of-phosphorylation PIN1:green fluorescent protein (GFP) (Ser to Ala) induced inflorescence defects, correlating with their basal localization in the shoot apex, and induced internalization of PIN1:GFP during embryogenesis, leading to strong embryo defects. Conversely, phosphomimic PIN1:GFP (Ser to Glu) showed apical localization in the shoot apex but did not rescue pin1 inflorescence defects. Both loss-of-phosphorylation and phosphomimic PIN1:GFP proteins were insensitive to PID overexpression. The basal localization of loss-of-phosphorylation PIN1:GFP increased auxin accumulation in the root tips, partially rescuing PID overexpression-induced root collapse. Collectively, our data indicate that reversible phosphorylation of the conserved Ser residues in the PIN1HL by PID (and possibly by other AGC kinases) is required and sufficient for proper PIN1 localization and is thus essential for generating the differential auxin distribution that directs plant development.  相似文献   

12.
13.
Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism.  相似文献   

14.
In Arabidopsis, phosphate starvation (-Pi)-induced responses of primary root and lateral root growth are documented to be correlated with ambient iron (Fe) status. However, whether and how Fe participates in -Pi-induced root hair growth (RHG) remains unclear. Here, responses of RHG to different Fe concentrations under Pi sufficiency/deficiency were verified. Generally, distinct dosage effects of Fe on RHG appeared at both Pi levels, due to the generation of reactive oxygen species. Following analyses using auxin mutants and the phr1 mutant revealed that auxin and the central regulator PHR1 are required for Fe-triggered RHG under −Pi. A further proteomic study indicated that processes of vesicle trafficking and auxin synthesis and transport were affected by Fe under −Pi, which were subsequently validated by using a vesicle trafficking inhibitor, brefeldin A, and an auxin reporter, R2D2. Moreover, vesicle trafficking-mediated recycling of PIN2, an auxin efflux transporter, was notably affected by Fe under -Pi. Correspondingly, root hairs of pin2 mutant displayed attenuated responses to Fe under -Pi. Together, we propose that Fe affects auxin signalling probably by modulating vesicle trafficking, chiefly the PIN2 recycling, which might work jointly with PHR1 on modulating -Pi-induced RHG.  相似文献   

15.
ROP GTPases are crucial for the establishment of cell polarity and for controlling responses to hormones and environmental signals in plants. In this work, we show that ROP3 plays important roles in embryo development and auxin-dependent plant growth. Loss-of-function and dominant-negative (DN) mutations in ROP3 induced a spectrum of similar defects starting with altered cell division patterning during early embryogenesis to postembryonic auxin-regulated growth and developmental responses. These resulted in distorted embryo development, defective organ formation, retarded root gravitropism, and reduced auxin-dependent hypocotyl elongation. Our results showed that the expression of AUXIN RESPONSE FACTOR5/MONOPTEROS and root master regulators PLETHORA1 (PLT1) and PLT2 was reduced in DN-rop3 mutant embryos, accounting for some of the observed patterning defects. ROP3 mutations also altered polar localization of auxin efflux proteins (PINs) at the plasma membrane (PM), thus disrupting auxin maxima in the root. Notably, ROP3 is induced by auxin and prominently detected in root stele cells, an expression pattern similar to those of several stele-enriched PINs. Our results demonstrate that ROP3 is important for maintaining the polarity of PIN proteins at the PM, which in turn ensures polar auxin transport and distribution, thereby controlling plant patterning and auxin-regulated responses.  相似文献   

16.
To understand the mechanistic basis of cold temperature stress and the role of the auxin response, we characterized root growth and gravity response of Arabidopsis thaliana after cold stress, finding that 8 to 12 h at 4°C inhibited root growth and gravity response by ∼50%. The auxin-signaling mutants axr1 and tir1, which show a reduced gravity response, responded to cold treatment like the wild type, suggesting that cold stress affects auxin transport rather than auxin signaling. Consistently, expression analyses of an auxin-responsive marker, IAA2-GUS, and a direct transport assay confirmed that cold inhibits root basipetal (shootward) auxin transport. Microscopy of living cells revealed that trafficking of the auxin efflux carrier PIN2, which acts in basipetal auxin transport, was dramatically reduced by cold. The lateral relocalization of PIN3, which has been suggested to mediate the early phase of root gravity response, was also inhibited by cold stress. Additionally, cold differentially affected various protein trafficking pathways. Furthermore, the inhibition of protein trafficking by cold is independent of cellular actin organization and membrane fluidity. Taken together, these results suggest that the effect of cold stress on auxin is linked to the inhibition of intracellular trafficking of auxin efflux carriers.  相似文献   

17.
Development of plants and their adaptive capacity towards ever‐changing environmental conditions largely depend on the spatial distribution of the plant hormone auxin. At the cellular level, various internal and external signals are translated into specific changes in the polar, subcellular localization of auxin transporters from the PIN family thereby directing and redirecting the intercellular fluxes of auxin. The current model of polar targeting of PIN proteins towards different plasma membrane domains encompasses apolar secretion of newly synthesized PINs followed by endocytosis and recycling back to the plasma membrane in a polarized manner. In this review, we follow the subcellular march of the PINs and highlight the cellular and molecular mechanisms behind polar foraging and subcellular trafficking pathways. Also, the entry points for different signals and regulations including by auxin itself will be discussed within the context of morphological and developmental consequences of polar targeting and subcellular trafficking.  相似文献   

18.
Local efflux-dependent auxin gradients and maxima mediate organ and tissue development in plants. Auxin efflux is regulated by dynamic expression and subcellular localization of the PIN auxin-efflux proteins, which appears to be established not only through a self-organizing auxin-mediated polarization mechanism, but also through other means, such as cell fate determination and auxin-independent mechanisms. Here, we show that the Arabidopsis thaliana NO VEIN (NOV) gene, encoding a novel, plant-specific nuclear factor, is required for leaf vascular development, cellular patterning and stem cell maintenance in the root meristem, as well as for cotyledon outgrowth and separation. nov mutations affect many aspects of auxin-dependent development without directly affecting auxin perception. NOV is required for provascular PIN1 expression and region-specific expression of PIN7 in leaf primordia, cell type–specific expression of PIN3, PIN4, and PIN7 in the root, and PIN2 polarity in the root cortex. NOV is specifically expressed in developing embryos, leaf primordia, and shoot and root apical meristems. Our data suggest that NOV function underlies cell fate decisions associated with auxin gradients and maxima, thus establishing cell type–specific PIN expression and polarity. We propose that NOV mediates the acquisition of competence to undergo auxin-dependent coordinated cell specification and patterning, thereby eliciting context-dependent auxin-mediated developmental responses.  相似文献   

19.
Plant-specific PIN-formed (PIN) efflux transporters for the plant hormone auxin are required for tissue-specific directional auxin transport and cellular auxin homeostasis. The Arabidopsis PIN protein family has been shown to play important roles in developmental processes such as embryogenesis, organogenesis, vascular tissue differentiation, root meristem patterning and tropic growth. Here we analyzed roles of the less characterised Arabidopsis PIN6 auxin transporter. PIN6 is auxin-inducible and is expressed during multiple auxin–regulated developmental processes. Loss of pin6 function interfered with primary root growth and lateral root development. Misexpression of PIN6 affected auxin transport and interfered with auxin homeostasis in other growth processes such as shoot apical dominance, lateral root primordia development, adventitious root formation, root hair outgrowth and root waving. These changes in auxin-regulated growth correlated with a reduction in total auxin transport as well as with an altered activity of DR5-GUS auxin response reporter. Overall, the data indicate that PIN6 regulates auxin homeostasis during plant development.  相似文献   

20.
Cho M  Lee SH  Cho HT 《The Plant cell》2007,19(12):3930-3943
ATP binding cassette (ABC) transporters transport diverse substrates across membranes in various organisms. However, plant ABC transporters have only been scantily characterized. By taking advantage of the auxin-sensitive Arabidopsis thaliana root hair cell and tobacco (Nicotiana tabacum) suspension cell systems, we show here that Arabidopsis P-glycoprotein4 (PGP4) displays auxin efflux activity in plant cells. Root hair cell-specific overexpression of PGP4 (PGP4ox) and known auxin efflux transporters, such as PGP1, PGP19, and PIN-FORMEDs, decreased root hair elongation, whereas overexpression of the influx transporter AUXIN-RESISTANT1 enhanced root hair length. PGP4ox-mediated root hair shortening was rescued by the application of auxin or an auxin efflux inhibitor. These results indicate that the increased auxin efflux activity conferred by PGP4 reduces auxin levels in the root hair cell and consequently inhibits root hair elongation. PGP4ox in tobacco suspension cells also increased auxin efflux. PGP4 proteins were targeted to the plasma membrane of Arabidopsis root hair cells and tobacco cells without any clear subcellular polarity. Brefeldin A partially interfered with the trafficking of PGP4 reversibly, and this was rescued by pretreatment with auxin. These results suggest that PGP4 is an auxin efflux transporter in plants and that its trafficking to the plasma membrane involves both BFA-sensitive and -insensitive pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号