首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
MicroRNAs play critical roles in various biological and metabolic processes. The function of miRNAs has been widely studied in model plants such as Arabidopsis and rice. However, the number of identified miRNAs and related miRNA targets in peach (Prunus persica) is limited. To understand further the relationship between miRNAs and their target genes during tissue development in peach, a small RNA library and three degradome libraries were constructed from three tissues for deep sequencing. We identified 117 conserved miRNAs and 186 novel miRNA candidates in peach by deep sequencing and 19 conserved miRNAs and 13 novel miRNAs were further evaluated for their expression by RT-qPCR. The number of gene targets that were identified for 26 conserved miRNA families and 38 novel miRNA candidates, were 172 and 87, respectively. Some of the identified miRNA targets were abundantly represented as conserved miRNA targets in plant. However, some of them were first identified and showed important roles in peach development. Our study provides information concerning the regulatory network of miRNAs in peach and advances our understanding of miRNA functions during tissue development.  相似文献   

9.
10.
Development of the arbuscular mycorrhizal symbiosis   总被引:2,自引:0,他引:2  
The arbuscular mycorrhizal (AM) symbiosis formed between plant roots and fungi is one of the most widespread symbiotic associations found in plants, yet our understanding of events underlying its development are limited. The recent integration of biochemical, molecular and genetic approaches into analyses of the symbiosis is providing new insights into various aspects of its development. In the past year there have been advances in our understanding of the signals required for the formation of appressoria, the molecular changes in the root in response to colonisation, and components of the signal transduction pathways common to both the AM and Rhizobium symbioses.  相似文献   

11.
12.
Abstract

Sucrose synthase (SuSy) is the main sucrose breakdown enzyme in plant sink tissues, including nodules, and is a possible candidate for the diversion of plant carbon to arbuscular mycorrhizal (AM) fungi in roots. We tested the involvement of SuSy in AM symbiosis of Glomus intraradices and Pisum sativum (pea). We observed that peas deficient in the predominant root isoform of SuSy were colonized successfully by AM fungi similar to wild-type roots. SuSy protein levels did not increase in roots as AM symbiosis developed, although SuSy protein levels did increase in nodules as the rhizobium symbiosis developed. Our results lead us to conclude that, unlike nodule symbiosis, SuSy protein does not limit or regulate carbon transfer in the AM symbiosis.  相似文献   

13.
14.
MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression in eukaryotes. However, the information about miRNAs population and their regulatory functions involving in soybean seed development remains incomplete. Base on the Dicer-like1-mediated cleavage signals during miRNA processing could be employed for novel miRNA discovery, a genome-wide search for miRNA candidates involved in seed development was carried out. As a result, 17 novel miRNAs, 14 isoforms of miRNA (isomiRs) and 31 previously validated miRNAs were discovered. These novel miRNAs and isomiRs represented tissue-specific expression and the isomiRs showed significantly higher abundance than that of their miRNA counterparts in different tissues. After target prediction and degradome sequencing data-based validation, 13 novel miRNA–target pairs were further identified. Besides, five targets of 22-nt iso-gma-miR393h were found to be triggered to produce secondary trans-acting siRNA (ta-siRNAs). Summarily, our results could expand the repertoire of miRNAs with potentially important functions in soybean.  相似文献   

15.
16.
Arbuscular mycorrhizae formed between more than 80% of land plants and arbuscular mycorrhizal (AM) fungi represent the most widespread symbiosis on the earth. AM fungi facilitate the uptake of soil nutrients, especially phosphate, by plants, and in return obtain carbohydrates from hosts. Apocarotenoids, oxidative cleavage products of carotenoids, have been found to play a critical role in the establishment of AM symbiosis. Strigolactones previously isolated as seed-germination stimulants for root parasitic weeds act as a chemical signal for AM fungi during presymbiotic stages. Stimulation of carotenoid metabolism, leading to massive accumulation of mycorradicin and cyclohexenone derivatives, occurs during root colonization by AM fungi. This review highlights research into the chemical identification of arbuscular mycorrhiza-related apocarotenoids and their role in the regulation and establishment of AM symbiosis conducted in the past 10 years.  相似文献   

17.
18.
Development of arbuscular mycorrhizal (AM) symbiosis with plant root system in term of molecular and cellular events have been analysed. A role of AM symbiosis in plant life has been discussed. Molecular methods for analysis of arbuscular mycorrhizal fungi have been described.  相似文献   

19.
This study investigated the effects of increasing CaCO(3) concentrations (0, 5, 10, 20?mM) on arbuscular mycorrhizal (AM) symbiosis establishment as well as on chicory root growth and mineral nutrient uptake in a monoxenic system. Although CaCO(3) treatments significantly decreased root growth and altered the symbiosis-related development steps of the AM fungus Rhizophagus irregularis (germination, germination hypha elongation, root colonization rate, extraradical hyphal development, sporulation), the fungus was able to completely fulfill its life cycle. Even when root growth decreased more drastically in mycorrhizal roots than in non-mycorrhizal ones in the presence of high CaCO(3) levels, the AM symbiosis was found to be beneficial for root mineral uptake. Significant increases in P, N, Fe, Zn and Cu concentrations were recorded in the mycorrhizal roots. Whereas acid and alkaline phosphatase enzymatic activities remained constant in mycorrhizal roots, they were affected in non-mycorrhizal roots grown in the presence of CaCO(3) when compared with the control.  相似文献   

20.
MicroRNAs (miRNAs) are approximately 21-nt RNAs that reduce target accumulation through mRNA cleavage or translational repression. Arabidopsis miR398 regulates mRNAs encoding two copper superoxide dismutase (CSD) enzymes and a cytochrome c oxidase subunit. miR398 itself is down-regulated in response to copper and stress. Here we show that miR398 is positively regulated by sucrose, resulting in decreased CSD1 and CSD2 mRNA and protein accumulation. This sucrose regulation is maintained both in the presence and absence of physiologically relevant levels of supplemental copper. Additionally, we show that plants expressing CSD1 and CSD2 mRNAs with altered miR398 complementarity sites display increased mRNA accumulation, whereas CSD1 and CSD2 protein accumulation remain sensitive to miR398 levels, suggesting that miR398 can act as a translational repressor when target site complementarity is reduced. These results reveal a novel miR398 regulatory mechanism and demonstrate that plant miRNA targets can resist miRNA regulation at the mRNA level while maintaining sensitivity at the level of protein accumulation. Our results suggest that even in plants, where miRNAs are thought to act primarily through target mRNA cleavage, monitoring target protein levels along with target mRNA levels is necessary to fully assess the consequences of disrupted miRNA-mRNA pairing. Moreover, the limited complementarity required to maintain robust miR398-directed repression of target protein accumulation suggests that similarly regulated endogenous plant miRNA targets may have eluded detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号