首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diagnosis of cholangiocarcinoma (CCA) is often challenging, leading to poor prognosis. CCA arises via chronic inflammation which may be associated with autoantibodies production. This study aims to identify IgG antibodies directed at self-proteins and tumor-associated antigens. Proteins derived from immortalized cholangiocyte cell line (MMNK1) and CCA cell lines (M055, M214 and M139) were separated using 2-dimensional electrophoresis and incubated with pooled plasma of patients with CCA and non-neoplastic controls by immunoblotting. Twenty five immunoreactive spots against all cell lines-derived proteins were observed on stained gels and studied by LC-MS/MS. Among these, heat shock protein 70 (HSP70), enolase 1 (ENO1) and ribonuclease/angiogenin inhibitor 1 (RNH1) obtained the highest matching scores and were thus selected for further validation. Western blot revealed immunoreactivity against HSP70 and RNH1 in the majority of CCA cases and weakly in healthy individuals. Further, ELISA showed that plasma HSP70 autoantibody level in CCA was significantly capable to discriminate CCA from healthy individuals with an area under the receiver operating characteristic curve of 0.9158 (cut-off 0.2630, 93.55% sensitivity and 73.91% specificity). Plasma levels of IgG autoantibodies against HSP70 were correlated with progression from healthy individuals to cholangitis to CCA (r = 0.679, P<0.001). In addition, circulating ENO1 and RNH1 autoantibodies levels were also significantly higher in cholangitis and CCA compared to healthy controls (P<0.05). Moreover, the combinations of HSP70, ENO1 or RNH1 autoantibodies positivity rates improved specificity to over 78%. In conclusion, plasma IgG autoantibodies against HSP70, ENO1 and RNH1 may represent new diagnostic markers for CCA.  相似文献   

2.
3.
Cell survival, induction of apoptosis, and micronucleus formation have been examined in non-transformed human amnion fluid fibroblast-like (AFFL) cells and in a human squameous cell carcinoma (SCL-II) cell line after exposure to the Auger electron emitter 65Zn and after external low-LET radiation. Cellular uptake and subcellular distribution of 65Zn2+ were studied in vitro and the absorbed radiation dose was calculated applying analytical dosimetry models. Auger electrons generated during decay of 65Zn induced a prominent decrease in cell survival and increased the levels of apoptotic as well as micronucleated cells when compared to external low-LET irradiation. Relative biological effectiveness has been determined for cell survival (RBE ~4), micronucleus formation (RBE ~2) and apoptosis induction (RBE ~5–8) in SCL-II cells and for micronucleus formation (RBE ~4–5) and apoptosis induction (RBE ~6–10) in AFFL cells, respectively. This demonstrates a general enhanced biological effectiveness of 65Zn in both investigated cell lines when compared to external low-LET radiation. The distribution pattern of intracellular Zn2+ was found to be non-uniform, showing enhanced amounts of Zn2+ in the perinuclear region and low amounts inside the cell nucleus, suggesting a major energy deposition close to the nuclear envelope.  相似文献   

4.
胆管癌是一种起病隐匿、侵袭性强、致死率高的原发性恶性肿瘤。多聚嘧啶区结合蛋白1(polypyrimidine tract-binding protein 1, PTBP1)已被报道,在多种类型肿瘤组织中异常高表达并参与癌症进展,但其在胆管癌中的作用仍未见报道。该研究旨在探讨PTBP1在胆管癌中的生物学功能,并初步解析其分子机制。本文利用公开的癌症基因组图谱(the cancer genome atlas, TCGA)数据,分析了胆管癌及癌旁组织中的PTBP1 mRNA表达水平。结果显示,PTBP1在胆管癌组织中的表达水平显著高于癌旁组织(P < 0.05)。随后,在胆管癌细胞系RBE和HuH28中,通过CCK-8和细胞平板克隆实验,评价了PTBP1对胆管癌细胞生长能力的影响。结果显示,过表达PTBP1可显著促进胆管癌细胞的生长(P < 0.01),而敲低PTBP1显著抑制胆管癌细胞的生长(P < 0.001)。Transwell和Invasion实验结果显示,过表达PTBP1可显著促进胆管癌细胞的迁移和侵袭(P < 0.001),而敲低PTBP1显著抑制胆管癌细胞的迁移和侵袭(P < 0.001)。转录物组测序和通路富集分析结果显示,在胆管癌细胞中,敲低PTBP1后上调表达的基因显著富集于p53信号通路;而下调表达的基因显著富集于胆固醇代谢、Rho GTPase和TGF-β等信号通路。基于上述转录物组测序数据,本文还分析发现,敲低PTBP1可导致一系列基因发生异常的mRNA可变剪接事件,例如参与TGF-β调控的TGIF1及与p53活性相关的GNAS基因等。综上所述,PTBP1可能通过调控一系列基因的可变剪接而影响多个癌症相关的信号通路,从而促进胆管癌的进展。  相似文献   

5.
Cholangiocarcinoma (CCA) is a rare, but highly malignant primary hepatobiliary cancer with a very poor prognosis and limited treatment options. Our recent studies reported that conjugated bile acids (CBAs) promote the invasive growth of CCA via activation of sphingosine 1-phosphate receptor 2 (S1PR2). Cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) is the most abundant prostaglandin in various human malignancies including CCA. Previous studies have indicated that COX-2 was highly expressed in CCA tissues, and the survival rate of CCA patients was negatively associated with high COX-2 expression levels. It has also been reported that CBAs induce COX-2 expression, whereas free bile acids inhibit COX-2 expression in CCA mouse models. However, the underlying cellular mechanisms and connection between S1PR2 and COX-2 expression in CCA cells have still not been fully elucidated. In the current study, we examined the role of S1PR2 in conjugated bile acid (taurocholate, (TCA))-induced COX-2 expression in a human HuCCT1 CCA cell line and further identified the potential underlying cellular mechanisms. The results indicated that TCA-induced invasive growth of human CCA cells was correlated with S1PR2-medated up-regulation of COX-2 expression and PGE2 production. Inhibition of S1PR2 activation with chemical antagonist (JTE-013) or down-regulation of S1PR2 expression with gene-specific shRNA not only reduced COX-2 expression, but also inhibited TCA-induced activation of EGFR and the ERK1/2/Akt-NF-κB signaling cascade. In conclusion, S1PR2 plays a critical role in TCA-induced COX-2 expression and CCA growth and may represent a novel therapeutic target for CCA.  相似文献   

6.
COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.  相似文献   

7.
Lesion mimic mutants that exhibit spontaneous hypersensitive response (HR)‐like necrotic lesions are ideal experimental systems for elucidating molecular mechanisms involved in plant cell death and defence responses. Here we report identification of a rice lesion mimic mutant, spotted leaf 35 (spl35), and cloning of the causal gene by TAIL‐PCR strategy. spl35 exhibited decreased chlorophyll content, higher accumulation of H2O2, up‐regulated expression of defence‐related marker genes, and enhanced resistance to both fungal and bacterial pathogens of rice. The SPL35 gene encodes a novel CUE (coupling of ubiquitin conjugation to ER degradation) domain‐containing protein that is predominantly localized in cytosol, ER and unknown punctate compartment(s). SPL35 is constitutively expressed in all organs, and both overexpression and knockdown of SPL35 cause the lesion mimic phenotype. SPL35 directly interacts with the E2 protein OsUBC5a and the coatomer subunit delta proteins Delta‐COP1 and Delta‐COP2 through the CUE domain, and down‐regulation of these interacting proteins also cause development of HR‐like lesions resembling those in spl35 and activation of defence responses, indicating that SPL35 may be involved in the ubiquitination and vesicular trafficking pathways. Our findings provide insight into a role of SPL35 in regulating cell death and defence response in plants.  相似文献   

8.
9.
The poor prognosis of pancreatic cancer patients using currently available therapies mandates novel therapeutics that combine anti-neoplastic potency with toxicity-minimizing cancer specificity. Employing an overlapping pathway screen to identify genes exhibiting coordinated expression as a consequence of terminal cell differentiation and replicative senescence, we identified human polynucleotide phosphorylase (hPNPase(old-35)), a 3',5'-exoribonuclease that exhibits robust growth-suppressing effects in a wide spectrum of human cancers. A limitation to the anti-neoplastic efficacy of hPNPase(old-35) relates to its lack of cancer specificity. The promoter of Progression Elevated Gene-3 (PEG-Prom), discovered in our laboratory via subtraction hybridization in a transformation progression rodent tumor model functions selectively in a diverse array of human cancer cells, with limited activity in normal cells. An adenovirus constructed with the PEG-Prom driving expression of hPNPase(old-35) containing a C-terminal Hemaglutinin (HA)-tag (Ad.PEG.hPNPase(old-35)) was shown to induce robust transgene expression, growth suppression, apoptosis, and cell-cycle arrest in a broad panel of pancreatic cancer cells, with minimal effects in normal immortalized pancreatic cells. hPNPase(old-35) expression correlated with arrest in the G(2)/M phase of the cell cycle and up-regulation of the cyclin-dependent kinase inhibitors (CDKI) p21(CIP1/WAF-1/MDA-6) and p27(KIP1). In a nude mouse xenograft model, Ad.PEG.hPNPase(old-35) injections effectively inhibited growth of human pancreatic cancer cells in vivo. These findings support the potential efficacy of combining a cancer-specific promoter, such as the PEG-Prom, with a novel anti-neoplastic agent, such as hPNPase(old-35), to create a potent, targeted cancer therapeutic, especially for a devastating disease like pancreatic cancer.  相似文献   

10.
In this study we describe the use of Xenopus laevis oocytes for the detection of mRNA coding for a murine interleukin-5 (mI15) receptor. When injected with sucrose gradient fractionated polyA+ RNA derived from the murine 115-dependent pre B cell line B13, these oocytes could specifically bind 35S-methionine labeled mI15. A size of approximately 4000 nucleotides (25S) was estimated for the mRNA corresponding to the mIL5-binding activity. This binding was not blocked by a monoclonal antibody R52 specific for the MI15-receptor, suggesting that the oocytes express a different form of this receptor.  相似文献   

11.
12.
Background

Cholangiocarcinoma is a malignant tumor originating from bile duct epithelial cells. Since tumor metastasis is associated with poor prognosis and short-term survival of patients, there is an urgent need for alternative therapeutic approaches for CCA. Because of that reason, we aimed to investigate effect of SAHA which is known as HDAC inhibitor on extrahepatic cholangiocarcinoma cell line (TFK-1).

Methods

Cell cycle was measured by Muse Cell Analyzer. YAP, TAZ, TGF-β protein levels were determined by western-blotting method. TEAD (1–3), TIMP2 and TIMP3 genes level were determined by real-time PCR analysis.

Results

We have seen the positive effects of SAHA on the TFK-1 cell line as it reduces cell viability and arresting cells in the G0/G1 phase. We also observed the negative effects of SAHA, as it increases the expression levels of YAP, TAZ, TGF-β protein and TEAD (1–3) gene. We also found that SAHA reduced the expression levels of TIMP2 and TIMP3 in TFK-1 cells, but was not statistically significant.

Conclusions

Although observing its antiproliferative effects, these negative effects may be related to the cells being resistant to the drug or the remaining cells having a more aggressive phenotype. Therefore, we think that caution should be exercised in the use of this drug for CCA treatment.

  相似文献   

13.
14.
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) functions as an E3 ubiquitin ligase and mediates a variety of developmental processes in Arabidopsis by targeting a number of key regulators for ubiquitination and degradation. Here, we identify a novel COP1 interacting protein, COP1 SUPPRESSOR 2 (CSU2). Loss of function mutations in CSU2 suppress the constitutive photomorphogenic phenotype of cop1-6 in darkness. CSU2 directly interacts with COP1 via their coiled-coil domains and is recruited by COP1 into nuclear speckles in living plant cells. Furthermore, CSU2 inhibits COP1 E3 ubiquitin ligase activity in vitro, and represses COP1 mediated turnover of HY5 in cell-free extracts. We propose that in csu2 cop1-6 mutants, the lack of CSU2’s repression of COP1 allows the low level of COP1 to exhibit higher activity that is sufficient to prevent accumulation of HY5 in the dark, thus restoring the etiolated phenotype. In addition, CSU2 is required for primary root development under normal light growth condition.  相似文献   

15.
16.
17.
18.
The neuronal Cdk5 kinase is composed of the catalytic subunit Cdk5 and the activator protein p35(nck5a) or its isoform, p39(nck5ai). To identify novel p35(nck5a)- and p39(nck5ai)-binding proteins, fragments of p35(nck5a) and p39(nck5ai) were utilized in affinity isolation of binding proteins from rat brain homogenates, and the isolated proteins were identified using mass spectrometry. With this approach, the nuclear protein SET was shown to interact with the N-terminal regions of p35(nck5a) and p39(nck5ai). Our detailed characterization showed that the SET protein formed a complex with Cdk5/p35(nck5a) through its binding to p35(nck5a). The p35(nck5a)-interacting region was mapped to a predicted alpha-helix in SET. When cotransfected into COS-7 cells, SET and p35(nck5a) displayed overlapping intracellular distribution in the nucleus. The nuclear co-localization was corroborated by immunostaining data of endogenous SET and Cdk5/p35(nck5a) from cultured cortical neurons. Finally, we demonstrated that the activity of Cdk5/p35(nck5a), but not that of Cdk5/p25(nck5a), was enhanced upon binding to the SET protein. The tail region of SET, which is rich in acidic residues, is required for the stimulatory effect on Cdk5/p35(nck5a).  相似文献   

19.
20.
Adeno-associated virus (AAV) is a non-pathogenic virus and the only known eukaryotic virus capable of targeting human chromosome 19 for integration at a well-characterized AAVS1 site. Its site-specific integration is mediated by Rep68 and Rep78, viral proteins that bind to both the viral genome and AAVS1 site on ch19 through a specific Rep-binding element (RBE) located in both the viral genome and AAVS1. There are three RBEs in the AAV genome: two identical ones in both inverted terminal repeats (ITR) and another one in a recently discovered region termed the P5 integration efficiency element (P5IEE) that encompasses the viral P5 promoter. In order to identify the viral cis-acting sequence essential for Rep-mediated integration, we tested a series of constructs containing various lengths of P5IEE and compared the two RBEs from ITR (RBE(itr)) and P5IEE (RBE(p5)) in terms of their efficiency in Rep-dependent integration. Methods employed included a colony-forming assay, a PCR-based assay and Southern blotting analysis. We found that 16bp of the RBE cis-element was sufficient for mediating Rep-dependent site-specific integration. Furthermore, RBE(itr) was both more effective and specific than the RBE(p5) in Rep-dependent integration at the AAVS1 site. These findings added new information on the mechanism of Rep-dependent AAV genome insertion at the AAVS1 site and may be helpful in developing new high efficiency vectors for site-specific transgene integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号