首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphological autoradiographic and cytospectrophotometric analysis of proliferation and differentation of the cerebellar cortex astroglial cells has been carried out during the rat early postnatal development. The proliferating astroglial cells constitute a major part of the whole cell population of the internal granular layer during the first week. It was proved by means of double labelling (3H- and 14C-thymidine) that these cells synthesize DNA and divide repeatedly, their division proceeding without preliminary morphological dedifferentiation, i. e. with the preservation of plasmatic processes. A suggestion is put forward that the precursors of the cerebellar cortex astroglial cells under study take their origin from the subependymal zone during the prenatal development. The results obtained allow to identify the proliferating glial cells as the Bergman's glia.  相似文献   

2.
Unipolar brush cells (UBCs) are a class of small neurons that are densely concentrated in the granular layers of the vestibulocerebellar cortex and dorsal cochlear nucleus. The UBCs form giant synapses with individual mossy fibre rosettes on the dendrioles which make up their brush formations and are provided with numerous, unusual non-synaptic appendages. In accord with the glutamatergic nature of mossy fibres, our previous post-embedding immunocytochemical studies indicated that various ionotropic glutamate receptor subunits are localized at the post-synaptic densities of the giant synapses, whereas the non-synaptic appendages are immunonegative. On the contrary, the metabotropic glutamate receptors mGluR1α and mGluR2/3 are situated at the non-synaptic appendages and are lacking at the post-synaptic densities. Other authors, however, have shown that antibodies to these metabotropic receptors stain both appendages and post-synaptic densities. In the present study, we have re-evaluated the distribution of metabotropic glutamate receptors in the UBCs of the cerebellum and the cochlear nuclear complex by light and electron microscopic pre-embedding immunocytochemistry with subtype-specific antibodies. We confirm that UBCs dendritic brushes are densely immunostained by antibody to mGluR1α particularly in the cerebellum and that antibody to mGluR2/3 labels at least a percentage of the UBC brushes in both the cerebellum and cochlear nuclei. At the ultrastructural level, it appears that mGluR1α and mGluR2/3 immunoreactivities are not associated with the post-synaptic densities of the giant mossy fibre–UBC synapses, but instead are concentrated on the non-synaptic appendages of the cerebellar UBCs. The non-synaptic appendages, therefore, may be an important avenue for regulating the excitability of UBCs and mediating glutamate effects on their still unknown intracellular signal transduction cascades. We also show that the pre-synaptic densities of UBC dendrodendritic junctions are mGluR2/3 positive. As previously demonstrated, antibodies to mGluR1 α and mGluR2/3 label subsets of Golgi cells. Antibody to mGluR5 does not stain UBCs in the cerebellum and cochlear nucleus and reveals the somatodendritic compartment of Golgi cells situated in the core of the cerebellar granular layer, whilst cochlear nucleus Golgi cells are mGluR5 negative.  相似文献   

3.
宋海燕  刘再群  郑磊 《四川动物》2012,31(2):232-235,239,337
采用普通染色及免疫组化SABC染色法研究皖西白鹅小脑皮质的发育和多巴胺受体1(DRD1)阳性细胞在其发育中的表达.结果表明,小脑皮质在胚龄13 d(E13)由外向内分为外颗粒层(EGL)、浦肯野细胞层(PCL)和内颗粒层(IGL),E19由外向内分为EGL、分子层(ML)、PCL和IGL.随发育天数的增加,EGL的厚度和细胞层次呈先升后降的变化趋势,细胞密度逐渐下降;ML厚度逐渐增大,在E24到E28时增值最大;浦肯野细胞(PC)在E13、E19、E24和E28时随胚龄增大逐渐增大,在E28后趋于稳定,细胞密度随着发育天数的增加逐渐下降,在小脑皮质发育中还发现有一部分PC呈多层排列,且细胞层次逐渐变少;IGL厚度呈先升后降的变化趋势,细胞密度呈上升趋势.外颗粒层和内颗粒层在E13、E19、E24和E28时有DRD1阳性细胞表达,分子层在E24、E28、日龄7 d(P7)和15d(P15)有阳性细胞表达,PC在所检测的6个时段均有阳性表达.研究表明,小脑皮质的发育主要与细胞增殖、迁移和凋亡有关,外颗粒层的逐渐消失是以细胞迁移和凋亡为主,多层PC逐渐退化成单层是与细胞凋亡和正常突触联系的建立有关;DRD1在皖西白鹅小脑皮质发育中对外颗粒层细胞和PC起着重要作用.  相似文献   

4.
为了解小熊猫(Ailurus fulgens)小脑皮层的结构特征,观察神经丝蛋白抗体RT-97、角质细胞生长因子(KGF)及Bax蛋白在小脑皮层中的表达,利用组织学方法和免疫组织化学方法观察了小熊猫小脑皮层的显微结构,检测了RT-97、KGF和Bax蛋白的表达.结果表明,小脑皮层从外向内依次可分为分子层、Purkinje细胞层、颗粒层3层.RT-97在小熊猫小脑皮层Purkinje细胞层、颗粒层中神经细胞的轴突、分子层中颗粒细胞的轴突及小脑髓质中有阳性表达;KGF在小脑皮层分子层、Purkinje细胞层和颗粒细胞层及髓质中均有阳性表达;Bax蛋白在小脑皮层分子层、Purkinje细胞层和颗粒细胞层中有阳性表达.RT-97、KGF和Bax蛋白在小脑皮层神经结构的构筑中可能发挥着不同的功能.  相似文献   

5.
Ghrelin, the endogenous ligand for the growth hormone secretagogue receptor, has been found in the cerebellum of many vertebrates and in the gastrointestinal tract of African ostrich chicks, but little is known about its distribution in the cerebellum of the African ostrich. In the present study, the distribution and morphological characteristics of ghrelin-producing cells in the cerebellum of the African ostrich were investigated using immunohistochemistry. The results indicate that the cerebellum is divided into two sections: the outer cerebellar cortex and the inner medulla of cerebellum. The cerebellar cortex comprises a molecular layer, a Purkinje cell layer and a granular layer; ghrelin-immunopositive (ghrelin-ip) cells were localized throughout the entire cerebellum, but sparsely in the medulla. The greatest number of ghrelin-ip cells was found in the stratum granulosum, and the density decreased gradually from the molecular layer to the Purkinje cell layer in the cerebellar cortex. The ghrelin-ip cells were fusiform or irregular polygons and their cytoplasm was stained intensely. These results clearly demonstrate the presence of ghrelin-ip cells in the cerebellum of the African ostrich. It is speculated that ghrelin may have a physiological function in the cerebellum.  相似文献   

6.
The present report describes the genesis, development and topographical distribution of ectopic cells of the external granular layer in the subarachnoid space covering the rat cerebellum. Following one intracisternal injection to newborn rats of 100 micrograms 6-hydroxydopamine (6-OHDA), the meningeal cells degenerate and are removed by phagocytosis within 24 h post injection (p.i.), leaving the cerebellar cortex without a pia-arachnoid cover. Defects appear in the basal lamina investing the cerebellar cortex 3 to 5 days p.i., and both external granule cells and 'sprouts' from Bergmann-glia endfeet grow into the subarachnoid space. The latter form large, flat glial lamellae and cover extensive areas of the denuded cerebellar surface, although they do not form a glial scar over the exposed neuropil of the cerebellar cortex. The numbers of ectopic external granule cells increase within the subarachnoid space both by proliferation and a continuous efflux of cells from the cerebellar cortex. They migrate, aggregate, and ultimately develop into granule, stellate and basket cells, the morphology of which is indistinguishable from their counterparts in situ; they make specific afferent and efferent connections, both among themselves and with the underlying cerebellar cortex and brainstem. The distribution of ectopic external granule cells and their derivatives is restricted to the anterior vermal fissures and the vermal-hemispheric junctions. The present results indicate that external granule cells and their derivatives are capable of both differentiating normally and surviving in the subarachnoid space if they become associated with glial cells and establish synaptic connections.  相似文献   

7.
8.
We recorded the activity of two types of granular cells in the rostral folia of the paramedial lobe (the projection region of the front legs) of the cerebellar cortex in cats immobilized by administration of ditiline; these cells differed in their receptive fields, the characteristics of their reaction to single stimulation of somatic nerves, and the character of their background activity. The granular cells of the first type were excited only when the nerves of the front legs were stimulated (reacting with 1–3 impulses with a latent period of 8–20 msec) and were inhibited between 20–50 and 70–180 msec after stimulation of the nerves of any leg. The cells of the second type responded with volleys of 3–6 impulses with a latent period of 20–40 msec to stimulation of the nerves of all four legs. Comparison of the reactions of the granular cells and other neurons of the cerebellar cortex showed that the cells of the first type cause excitation of the Purkinje and Golgi cells and the neurons of the molecular layer. The granular cells of the second type have an excitatory effect on the Golgi cells. The differences in the reactions of the two types of granular cells result from the fact that they are selectively innervated by the mossy fibers of different afferent pathways. Comparison with the data in the literature enables us to surmise that the fibers of the cuneocerebellar tract terminate at granular cells of the first type, while the reticular fibers terminate at cells of the second type.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 2, pp. 167–176, September–October, 1969.  相似文献   

9.
The developing rat cerebellar cortex was studied by the rapid Golgi procedure in 200 mu thick slices and in 1--2 mu thick semithin sections poststained with toluidine-blue. Glial cells having radial fibres directed towards the pial surface were found to be present continuously in the internal granular layer during cerebellar maturation. This cell type was identified as the developing Bergmann-glia.  相似文献   

10.
The granular layer is the input layer of the cerebellar cortex. It receives information through mossy fibers, which contact local granular layer interneurons (GLIs) and granular layer output neurons (granule cells). GLIs provide one of the first signal processing stages in the cerebellar cortex by exciting or inhibiting granule cells. Despite the importance of this early processing stage for later cerebellar computations, the responses of GLIs and the functional connections of mossy fibers with GLIs in awake animals are poorly understood. Here, we recorded GLIs and mossy fibers in the macaque ventral-paraflocculus (VPFL) during oculomotor tasks, providing the first full inventory of GLI responses in the VPFL of awake primates. We found that while mossy fiber responses are characterized by a linear monotonic relationship between firing rate and eye position, GLIs show complex response profiles characterized by “eye position fields” and single or double directional tunings. For the majority of GLIs, prominent features of their responses can be explained by assuming that a single GLI receives inputs from mossy fibers with similar or opposite directional preferences, and that these mossy fiber inputs influence GLI discharge through net excitatory or inhibitory pathways. Importantly, GLIs receiving mossy fiber inputs through these putative excitatory and inhibitory pathways show different firing properties, suggesting that they indeed correspond to two distinct classes of interneurons. We propose a new interpretation of the information flow through the cerebellar cortex granular layer, in which mossy fiber input patterns drive the responses of GLIs not only through excitatory but also through net inhibitory pathways, and that excited and inhibited GLIs can be identified based on their responses and their intrinsic properties.  相似文献   

11.
目的:研究人体小脑神经元的发育过程。方法:应用体视学方法,对18例不同时期人体小脑组织Golgi染色后进行观察,观测小脑皮质分层出现的时间,观测并计算神经元的数密度、体密度和表面积密度。结果:6月龄时,小脑皮质出现较明显的分子层、蒲肯野细胞层和颗粒层;星形细胞、篮状细胞、蒲肯野细胞、颗粒细胞和高尔基细胞的的数密度随月龄/年龄的增长而减少,体密度和表面积密度随月龄/年龄的增长而增加,但这些减小和增大是不等速的,6-8月龄变化最明显。结论:人体小脑神经元的发育呈现快慢交替、不均速发展,6~8月是小脑神经元发育的重要时期。  相似文献   

12.
Almost diploid nuclei (as judged from the microdensitometric evaluation of the Feulgen positive material) of granular and Purkinje cells of the rat cerebellar cortex, were submitted to in situ DNA denaturation and renaturation experiments. We assessed the double-strandedness of DNA, by Methyl Green staining according to Scott (1967). Under these conditions a stoichiometric ratio between bound dye and DNA exists, suitable for quantitative microdensitometric measurements. Our data show that DNA in the interphasic chromatin is never completely denatured after the treatments we used. Furthermore, the renaturation takes place in a different way in the two cell types. Owing to the unlike chromatin packing of granular and Purkinje nuclei, we suggest that nuclear proteins must interfere differently on the in situ denaturation and renaturation processes.  相似文献   

13.
The primate cochlear nuclear complex exhibits several characteristic morphological differences in the various primate families from Lorisidae through Hominidae. The most striking differences occur in the organization of the dorsal cochlear nucleus in which the laminar pattern becomes progressively obscured. Granule cells form an external granular layer as well as being intermixed within the molecular and pyramidal layers in slow lorises and squirrel and rhesus monkeys. Whereas a prominent external granular layer remains in chimpanzees, granule cells are scant in other portions of the nucleus. Human adults lack an external granular layer. A small number of granule cells occur but with inconstant distribution. Primates lack the linear array of pyramidal cells oriented perpendicularly to the epithelial surface as seen in cats. The granule cell layer exhibits similar regression in development of the human cochlear complex. The external granular layer is prominent in the fetus but rapidly decreases in size after birth. It achieves its adult form prior to 18 months. The data suggest that neuronal attrition, or programmed cell death, may be the major mechanism accounting for the alterations that occur in the human granule cell layer. Other differences in cytoarchitecture, within the great apes and humans, include decreases in the small and giant cell populations of the cochlear complex. These changes, in consort with the organizational changes and reduction of granule cells as noted above, suggest a trend towards reduced intranuclear integration at the level of the cochlear nucleus coupled with encephalization of the auditory system.  相似文献   

14.
Fetal cerebellar anlage from rat fetuses of 15-16 operational days were grafted into the anterior chamber of the eye of adult female albino rat recipients. Survival time of the transplants--containing both cerebellar cortex and cerebellar nuclei--was 2 to 2 1/2 months. Electron microscopical (EM) studies of the thin, under-developed granular layer of the laminated cerebellar cortex revealed the presence of well differentiated cerebellar glomeruli, surrounded by granule cell perikarya. As in the normal cerebellar cortex, the central profile of the glomerular complex was the large mossy terminal, containing spheroid synaptic vesicles, and forming synaptic contacts with dendrites and dendritic digits of the granule cells. Golgi cell axonal varicosities, containing ovoid or pleomorphic synaptic vesicles were found also on the periphery of the glomeruli. In addition, in several synaptic glomeruli, a third neuronal element was also observed, containing flat, discoidal vesicles and receiving synaptic contacts from mossy and Golgi axons, but being also presynaptic to granule cell dendrites. It is suggested that all mossy terminals in the cerebellar transplant originate from the cerebellar nucleus. Morphological evidence is also provided that the presynaptic dendrite-like processes--never found in normal cerebellar cortex--are also processes of nuclear neurons.  相似文献   

15.
The external granular layer is a secondary proliferative zone that arises from the caudolateral margin of the cerebellar ventricular zone and then spreads beneath the pial surface, eventually covering the entire cerebellar anlage. Here, both a part of the Bergmann glia and granule cells are generated. Selective destruction of the leptomeningeal cell layer during development in vivo disrupts the subpial extension of the external granular layer and the laminar deposition of its descendant cells. The mechanisms by which meningeal fibroblasts exert their controlling influence on cortical development have remained unclear but could involve diffusible factors and/or interactions mediated by direct cellular contacts. In order to test these assumptions, we have co-cultivated cerebellar slice explants with meningeal cells with and without interposition of a microfilter barrier. In this setup, meningeal cells by a diffusible factor stimulated the emigration of immature neurons exclusively from the external granular layer. This effect could also be elicited by fibroblasts from other tissues but not by nonfibroblastic cells such as, e.g., astroglia. In the Boyden chamber assay, the migration of undifferentiated neurons isolated from the external granular layer was chemotactically oriented towards the source of meningeal cell-conditioned media. In comparison, neurons from the internal granular layer did not respond to this stimulus. The attraction of immature neurons towards the pial surface could (1) represent a mechanism for the establishment of (subpial) secondary proliferative zones and (2) hypothetically also play a role in the outward-directed migration of postmitotic cells, e.g., in the isocortical anlage.  相似文献   

16.
Evident differences in the ammoniacal silver staining pattern of histones were demonstrated for neurones of different layers of adult rat cerebellar cortex. These differences were formed during postnatal differentiation. It has been also shown for Purkinje and granular cells that time-course of age-dependent changes in histone staining are not coincident with that for template activity of these cells.  相似文献   

17.
Song HY  Liu ZQ  Zheng L 《动物学研究》2012,33(2):211-217
用免疫组织化学strept actividin-biotin complex(SABC)法,以干扰素-γ(IFN-γ)、白介素-1α(IL-1α)、神经生长因子-β(NGF-β)和肿瘤坏死因子-α(TNF-α)对胚龄13d、19d、24d、28d(E13、E19、E24、E28)和日龄7d、15d(P7、15)的皖西白鹅(WesternAnhuiwhitegoose)小脑皮质中的阳性细胞进行定位和半定量检测,探讨IFN-γ、IL-1α、NGF-β和TNF-α在小脑皮质发育中的作用。研究表明,外颗粒层细胞在E13、E19、E24、E28、P7有IFN-γ和TNF-α阳性表达;在E13、E19、E24、E28有IL-1α阳性表达;在E13、E19、E24有NGF-β阳性表达;且在所检测的6个时期中,4种细胞因子均在E19表达最强。Purkinje细胞层在E13、E19、E24、E28、P7、P15均有IFN-γ、IL-1α、TNF-α阳性表达;在E13、E19、E24、E28、P7有NGF-β阳性表达;内颗粒层细胞在E13、E19、E24、E28、P7、P15有IFN-γ阳性表达;在E13、E19、E24、E28、P7有IL-1α、TNF-α阳性表达;在E13、E19、E24、E28有NGF-β阳性表达。结果表明,E19可能为小脑皮质发育的"关键期";IFN-γ、IL-1α和TNF-α可能由小脑皮质自身合成;NGF-β可能由投射到Purkinje细胞的区域转运而来,且可能在Purkinje细胞生长发育过程中起营养作用;IFN-γ可能在颗粒细胞迁移过程中起干扰作用。  相似文献   

18.
A comparative study of the distribution of a simple esterase and acetylcholinesterase in the cerebellar cortex of mouse and bat has been made. The Purkinje layer is intensely positive for simple esterase in both species. The granular and molecular layers showed mild to moderate activity in mouse and intense activity in bat. Acetylcholinesterase in cerebellar layers of bat is more intense than in mouse. In bat cerebellum, acetylcholinesterase is observed in the dendrites of Purkinje cells, but not in their cell bodies. Acetylcholinesterase was not found in Purkinje cells of mouse.  相似文献   

19.
Aldolase C (Aldoc, also known as “zebrin II”), a brain type isozyme of a glycolysis enzyme, is expressed heterogeneously in subpopulations of cerebellar Purkinje cells (PCs) that are arranged longitudinally in a complex striped pattern in the cerebellar cortex, a pattern which is closely related to the topography of input and output axonal projections. Here, we generated knock-in Aldoc-Venus mice in which Aldoc expression is visualized by expression of a fluorescent protein, Venus. Since there was no obvious phenotypes in general brain morphology and in the striped pattern of the cerebellum in mutants, we made detailed observation of Aldoc expression pattern in the nervous system by using Venus expression in Aldoc-Venus heterozygotes. High levels of Venus expression were observed in cerebellar PCs, cartwheel cells in the dorsal cochlear nucleus, sensory epithelium of the inner ear and in all major types of retinal cells, while moderate levels of Venus expression were observed in astrocytes and satellite cells in the dorsal root ganglion. The striped arrangement of PCs that express Venus to different degrees was carefully traced with serial section alignment analysis and mapped on the unfolded scheme of the entire cerebellar cortex to re-identify all individual Aldoc stripes. A longitudinally striped boundary of Aldoc expression was first identified in the mouse flocculus, and was correlated with the climbing fiber projection pattern and expression of another compartmental marker molecule, heat shock protein 25 (HSP25). As in the rat, the cerebellar nuclei were divided into the rostrodorsal negative and the caudoventral positive portions by distinct projections of Aldoc-positive and negative PC axons in the mouse. Identification of the cerebellar Aldoc stripes in this study, as indicated in sample coronal and horizontal sections as well as in sample surface photos of whole-mount preparations, can be referred to in future experiments.  相似文献   

20.
The expression of follicle-stimulating hormone (FSH) and its receptor in extrapituitary and non-HPG axis tissues has been demonstrated and their non-reproductive functions in these tissues have been found. However, there have been no reports concerning the expression and function of FSH and its receptor in the cerebellum. In our study, immunofluorescence staining and in situ hybridization were used to detect the expression of FSH, double-labeled immunofluorescence staining was used to detect co-localization of FSH and its receptor and co-localization of FSH and gonadotropin-releasing hormone (GnRH) receptor in the rat cerebellar cortex. Results showed that some cells of the Purkinje cell layer, granular layer, and molecular layer of the cerebellar cortex showed both FSH immunoreactivity and FSH mRNA positive signals; not only for FSH and FSH receptor, but also for FSH and GnRH receptor co-localized in some cells throughout the Purkinje cell layer, granular layer, and molecular layer of the cerebellar cortex. These suggested that rat cerebellum could express FSH; cerebellum is a target tissue of FSH; FSH may exert certain functions through FSH receptor in a paracrine or autocrine manner; GnRH may regulate FSH positive cells through GnRH receptor in the cerebellum. Our study provides morphological evidence for further functional research on FSH and related hormones in the cerebellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号