首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature and moisture content are particularly important factors influencing the longevity of seeds, and therefore the ageing of seeds is closely tied to storage conditions. The ageing process is characterised by many physiological and biochemical changes: membranes tend to leak, enzymes lose catalytic activity, and chromosomes accumulate mutations. Since viability loss is also associated with the breakdown of nucleic acids, the aim of the study was to determine whether the damage induced by ageing could be associated with changes in the activity of RNases and nucleases in embryos and endosperms of differently stored wheat seeds. In order to better characterise seed conditions, the damage to membranes during seed ageing was evaluated by measuring the conductivity of the soaking solution during imbibition, and by using the Evans Blue colorant; lipid peroxidation was also recorded. RNases and nucleases were studied by SDS-PAGE and activity staining. Ageing of seeds stored in a dry state involved a progressive loss of membrane integrity, which increased with the degree of ageing, while lipid peroxidation remained unchanged. Changes in nucleolytic enzyme activity were recorded in embryos: a decrease in RNases and an increase in nucleases. In the endosperm compartment there were no significant differences in ribonuclease and nuclease patterns during seed ageing. Moreover, neutral RNases were absent in endosperms of dry seeds and were activated following imbibition. Present studies reveal that embryos and endosperms have different enzymatic patterns, thus highlighting that the two seed compartments age independently. A different nucleolytic pattern was present in seeds of comparable viability and membrane damage, which were stored differently, and nuclease metabolism was subject to regulation according to both ageing and the length of the storage period.  相似文献   

2.
Seeds stored under various conditions showed deteriorative changesin extremely dry (1% r.h. at 10 °C) or humid (93% r.h. at25 °C) conditions after 6 weeks storage, when little orno loss of viability had taken place; no changes were detectedin intermediate conditions (45% r.h. at 10 °C). The lossof electrolytes from seeds into water increased after 3 weeksof humid storage, and subsequently dead areas developed on thecotyledons of seeds held in either humid or dry conditions.With time in storage some of the seeds in dry conditions showeda reduction in the rate of imbibition, and consequently a lowlevel of electrolyte leakage. Other seeds showed an increasein leakage following dry storage. No change in solute content(sugars, potassium, and electrolytes) was detected in seedsstored in humid conditions, suggesting that the increased electrolyteleakage was caused by an impaired ability to retain solutes.Thus increased leakage was recorded in seeds whose cotyledonscontained no dead areas as revealed by vital staining, and wastherefore attributable to changes in living cells, possiblydeterioration in cell membranes. Viability began to declineafter 6 weeks in humid storage at 25 °C and after 2 d in94% r.h. at 45 °C, but was maintained in both dry and intermediateconditions. The rate at which viability fell in humid storagewas greatly influenced by the initial condition of the seed.  相似文献   

3.
Aging of dry pollen has been shown to coincide with increases of free fatty acids and lysophospholipids. These compounds reduce the integrity of hydrated liposomes made from isolated pollen phospholipids but do not lead to their total destruction. However, a massive, instantaneous leakage occurs upon imbibition of dry cattail pollen (Typha latifolia) that has aged to the point of complete loss of viability. To resolve the apparent discrepancy in stability between hydrated and dry membranes, the lyotropic phase behavior of two liposome systems containing lysophospholipid (12 mol%) was studied with differential scanning calorimetry and Fourier transform infrared spectroscopy. In both systems dehydration caused phase separation of the lipids. Fourier transform infrared data concerning phase behavior of isolated membranes from aging pollen and of membranes in situ did not show phase separations, probably because the assay technique was not sufficiently sensitive to detect them. However, aging of the pollen resulted in a permanent increase in the gel-to-liquid crystalline phase transition temperature (Tm) of isolated membranes and in a broadening of the transition in situ. We conclude that the increase in Tm of hydrated membranes may be more closely related to the leakage.  相似文献   

4.
The behaviour of the Ginkgo biloba L. seeds was studied during storage at 4 and 25 degrees C. When stored at 25 degrees C, all the seeds died in 6 months. Cold temperatures preserved seed tissue viability for 1 year but did not preserve their capability to germinate, since such capability decreased after 6 months. A significant increase in lipid peroxidation occurred in the seed both in the embryo and in the endosperm. During storage a progressive deterioration of the endosperm tissues was evident. The two major water soluble antioxidants, ascorbate (ASC) and glutathione (GSH), showed different behaviour in the two conditions of storage and in the two main structures of the seed, the embryo and the endosperm. The ASC content of embryos and endosperms remained quite unchanged in the first 9 months at 4 degrees C, then increased. At 25 degrees C a significant decrease in the ASC content in the embryos was evident, whereas it remained more stable in the endosperm. The GSH pool decreased at both storage temperatures in the embryos. As far as the ASC-GSH redox enzymes are concerned, their activities decreased with storage, but changes appeared to be time-dependent more than temperature-dependent, with the exception of the endosperm ascorbate free radical (AFR) reductase (EC 1.6.5.4), the activity of which rapidly decreased at 25 degrees C. Therefore overall the antioxidant enzymes were scarcely regulated and unable to counteract oxidative stress occurring during the long-term storage.  相似文献   

5.
Summary Potassium leakage and morphological changes during imbibition of white spruce [Picea glauca (Moench) Voss] seeds and somatic embryos were investigated. A single desiccated somatic embryo, a single somatic embryo exposed to a high relative humidity environment for 2 d, and a single dry zygotic embryo leaked similar amounts of potassium over a 120-min period of imbibition in liquid germination medium. A seed without a seed coat leaked two and eight times more potassium than a single whole seed and a single zygotic embryo, respectively. Nearly 50% of the potassium leaked for all tissues was leaked within the first 20 min of imbibition. Exposure of somatic embryos to an environment with high relative humidity resulted in a reduction in the percentage of potassium leaked after 80 and min to levels equivalent to those for zygotic embryos. Using an environmental scanning electron microscope, we found that desiccated somatic embryos and dry zygotic embryos had wrinkled surface cells, with cells in the surface of zygotic embryos being more shrunken in appearance. Imbibition of both types of embryos in water resulted in turgid surface cells after 2 h. Imbibition in liquid germination medium did not cause much hydration of surface cells, which still had wrinkled appearances after 2 h. Finally, imbibition on filter paper on semisolidified germination medium resulted in slower hydration of somatic and zygotic embryos. Cells near the medium appeared hydrated while cotyledon surface cells furthest from the medium resembled cells in desiccated embryos.  相似文献   

6.
The accumulation of reactive oxygen species (ROS) in seed tissues plays an important role in the loss of seed viability during storage. In the present study, we examined whether the loss of germination capacity and viability of beech (Fagus sylvatica L.) seeds during storage under different temperatures (4, 20 and 30 degrees C) and relative humidity levels (45% and 75% RH) is associated with: (1) an increase in the level of ROS, such as superoxide radical (O2*-), oxygen peroxide (H2O2); and, (2) changes in low molecular antioxidants (ascorbate and glutathione) and enzymatic scavengers such as ascorbate peroxidase dehydroascorbate reductase, glutathione reductase, catalase, superoxide dismutase and guaiacol peroxidase. Beech seeds progressively lost their ability to germinate during 9 weeks of storage under the above conditions. The deleterious effects of temperature treatments increased with growing seed moisture content at higher humidity. The loss of seed viability was correlated with the generation of ROS during storage, which was more intensive at higher temperatures and humidity levels. The ascorbate content significantly increased in seeds stored in all temperature and humidity variants, when the seeds lost the ability to germinate to a large degree. At the same time, glutathione content dramatically decreased, but it was possible to observe a defensive reaction in seeds stored at 20 degrees C. Activities of all scavenging enzymes, measured after slow imbibition of seeds, significantly increased in comparison to the non-treated control (8-9% MC, -10 degrees C). This increase was higher in embryo axes than in cotyledons. Our results suggest that the loss of viability of beech seeds during storage at different temperatures, above zero, and at different humidity levels is closely related to ROS production, and that the antioxidative system is not sufficient to protect them.  相似文献   

7.
Antifreeze proteins (AFPs) non-colligatively lower the freezing point of aqueous solutions, block membrane ion channels and thereby confer a degree of protection during cooling. Ovine embryos following prolonged hypothermic storage were used to determine 1) the type and concentration of a group of AFPs that can confer hypothermic tolerance, 2) the storage temperature, 3) the cooling rate, and 4) the in vitro and in vivo viability. In Experiment 1, Grade 1 and 2 embryos produced following superovulation were either cultured fresh (control) or stored at 4 degrees C for 4 d in media containing protein from 1 of 3 sources: Winter Flounder (WF; AFP Type 1); Ocean Pout (OP; AFP Type 3) at a concentration of 1 or 10 mg/ml; or bovine serum albumen (BSA) at 4 mg/ml in phosphate buffered saline (PBS). Following 72 h of culture, the viability rates were not different between controls (18 21 ); BSA (9 15 ); WF at 1 mg/ml (14 15 ); WF at 10 mg/ml (13 15 ) or OP at I mg/n-d (15 21 ), but were decreased (P < 0.05) in embryos stored in OP at 1 0 mg/ml (I 1 20 ). Pooled data showed higher (P < 0.05) viability rates for WF (27 30 ) than for OP (26 41 ) or BSA (9 15 ). There was no effect of protein source on hatching rates, but mean hatched diameters of embryos were lower (P < 0.05) following storage in BSA. In Experiment 2, Grade I to 3 embryos were either cultured fresh or stored for 4 d at 0 degrees or 4 degrees C in 4 mg/n-d BSA or 1 mg/ml WF. Embryos stored in WF at 4 degrees C (WF/4 degrees C) had comparable hatching rates (8 12 ) to that of controls (10 10 ), but embryos in the other treatments (WF 0 degrees C, 5 11 , BSA 4 degrees C, 6 11 and BSA 0 degrees C, 3 10 ) had significantly lower hatching rates (P < 0.01) compared with controls. Hatched diameters were comparable between controls and embryos stored in WF 4 degrees C, but embryos stored in WF 0 degrees C and BSA at both temperatures had smaller diameters (P < 0.05). In Experiment 3, Grade 1 to 3 embryos were either transferred fresh or were stored for 4 d at 4 degrees C in 4 mg/ml BSA or 1 mg/ml WF at different cooling rates (T1, BSA > 2 degrees C/min; T2, WF > 2 degrees C/min and T3, WF < 1 degrees C/min) prior to transfer. There were no differences in the number of ewes pregnant (T1, 10 1 1; T2, 6 10 and T3, 8 10 ) or in the number of viable fetuses recovered per treatment (T1, 14 25 ; T2, 10 1 4 and T3, 15 2 1) to indicate a negative effect of cooling rate or protein on embryo survival. In conclusion, ovine embryos can be stored in WF or BSA at 4 degrees C for 4 d, yielding similar pregnancy and embryo survival rates as fresh embryos following transfer to recipient ewes.  相似文献   

8.
9.
Studies with the seeds of soybean, navy bean, pea, and peanut were made to determine the extent of leakage of intracellular enzymes during imbition. Embryos with intact testae from all four species were found to leak detectable activities of either intracellular enzymes of the cytosol (glucose-6-phosphate dehydrogenase) or enzymes found in both the cytosol and organelles (malate dehydrogenase, glutamate dehydrogenase, glutamate oxaloacetate transaminase, and NADP-isocitrate dehydrogenase) after 6 hours imbition at 25 C. Pea and peanut embryos with testae leaked considerably lower levels of activity for these enzymes than did those of soybean and bean. Leakage of mitochondrial marker enzymes (fumarase, cytochrome c oxidase, and adenylate kinase) was not detected from embryos with testae, suggesting that a differential diffusion of intracellular components out of cells occurred. Soybean and bean embryos without testae leaked high, and proportionally (per cent dry seed basis) similar, levels of all cytosol, cytosol-organelle, and mitochondrial marker enzymes and protein during imbibition, indicating that cell membranes were not differential to leakage and that they had ruptured. Pea and peanut embryos without testae leaked detectable activities of all cytosol and cytosol-organelle enzymes, although fumarase was the only detectable mitochondrial marker enzyme leaked, suggesting that some degree of differential leakage may have occurred in these species. The outermost layers of embryo cells of seeds without testae of all four species absorbed and sequestered the nonpermeating pigment Evan's blue after 5 to 15 minutes imbibition, indicating that membranes had ruptured. This occurred to a much lesser extent in seeds with intact testae. Both soybean and bean embryos without testae were observed to disintegrate during imbibition, whereas those of pea and peanut did not. These data indicate that seeds of certain legumes are susceptible to cellular rupture during imbibition when seed coats are damaged or missing.  相似文献   

10.
The aim of this study was to evaluate the viability (percentage of dead cells) and the incidence of DNA fragmentation of horse embryos after storage in three different media at 5 degrees C for 6 and 24 h. Forty embryos were stored in Emcare Holding Solution for 6 and 24 h, in Hams'F10 or Vigro Holding Plus for 24 h at 5 degrees C (n = 9-10 per group) and 10 embryos were evaluated immediately after collection. First, embryos were stained, immediately after collection or following storage, to detect dead cells (DAPI) and, subsequently, DAPI-stained embryos were fixed and stained to detect DNA fragmentation (TUNEL). Finally, all the fixed embryos were re-stained with DAPI to determine the total number of cells. The percentage of cells stained with both TUNEL and DAPI or TUNEL-only or DAPI-only were determined. The percent of dead cells (DAPI-labelled) per embryo increased with duration of storage, but no differences were detected between the storage media. The percentage of early apoptotic cells (TUNEL+/DAPI-) in fresh and stored embryo for 6 h or 24 h did not differ significantly (P > 0.05). There was a significant correlation between the percentage of cells labelled by TUNEL and DAPI (R = 0.87) (P < 0.001). These results suggest that cooled storage increases cell death but this does not appear to occur by induction of apoptosis and that DAPI staining proves to be a quick and reliable method for assessing embryo viability.  相似文献   

11.
Seeds of Hancornia speciosa germinated best at a temperatureof 20–30 °C. The viability of the seeds during storagewas short and the best storage conditions for viability entailedkeeping the seeds in polyethylene bags. Seed viability was maintainedonly when the seeds were stored at a moisture content above30%; storage conditions which allowed dehydration resulted ina rapid loss of viability (the seeds showed recalcitrant behaviour). Low temperature during storage did not improve longevity. Arelationship between germination and moisture content was established,but when the moisture content fell below 25% there was a drasticreduction of germination. After 9 weeks of storage, even athigh moisture content, seeds lost viability. Loss of seed viability during seed dehydration was associatedwith increased leakage of electrolytes and organic solutes,and reduced tetrazolium staining during subsequent imbibition. Hancornia speciosa, germination, recalcitrant seeds, storage, moisture  相似文献   

12.
We evaluated the physiological and cytological aspects of the embryos of the palm tree Mauritia flexuosa, whose seeds show a rare association of recalcitrance and dormancy. Seeds were subjected to dehydration, or stored with stabilized water contents for 420 days. Seed viability and germination, as well as the anatomy, cytochemistry and ultrastructure of the embryos were evaluated using standardized methodologies. Under initial conditions (seeds with water contents of 44.6 %), viability was as high as 94 %, although without germination. Seeds dehydrated to water contents of 20 % lost all viability, whereas 87 % of the seeds stored while hydrated remained viable and 25 % germinated. Embryonic cells showed characteristics associated with recalcitrance in other palms species, such as the presence of large vacuoles and the absence of lipidic reserves, but also had abundant protein bodies and terpenoids in their cytoplasm as well as carbohydrate and protein reserves in their vacuoles—conditions found in the embryo cells of palms having orthodox seeds. Dehydration caused invagination of the cell walls, retraction of the plasma membrane, proliferation of the endoplasmic reticulum and autophagic vacuoles, and increased the densities of vacuolar contents—culminating in the collapse of the protoplast. Stored seeds showed preserved cell structures. M. flexuosa seeds are sensitive to dehydration, but will retain viability if kept hydrated, allowing dormancy to be overcome in seed banks in the swampy soils where this species occurs. The accumulations of secondary metabolites, vacuolation and the storage of carbohydrates and proteins in the vacuole all have important roles in the modulation of recalcitrance.  相似文献   

13.
Oxidative stress is a major component of cryoinjury in plant tissues. This study investigated the ability of recalcitrant (i.e. desiccation sensitive) Amaryllis belladonna L. and Haemanthus montanus Baker zygotic embryos to survive cryopreservation, in relation to oxidative stress. The study also investigated whether glycerol cryoprotection promoted embryo post-cryo survival by protecting enzymic antioxidant activities. Zygotic embryos excised from hydrated stored seeds were subjected to various combinations of rapid dehydration (to < or >0.4 g g?1 [dmb]), cryoprotection (with sucrose or glycerol), and cooling (either rapidly or slowly), and were thereafter assessed for viability, extracellular superoxide (·O??) production, lipid peroxidation (TBARS) and antioxidant enzyme activities. Short-term hydrated storage of whole seeds was accompanied by ·O?? production and lipid peroxidation, but ·O?? levels were lower than in dehydrated and cooled embryos and viability was 100%, possibly associated with the high activities of certain antioxidant enzymes. Partial dehydration and cryoprotection (in H. montanus only) increased ·O?? production (especially in cryoprotected-dried embryos) and was associated with some viability loss, but this was not correlated with enhanced lipid peroxidation. Cooling was generally accompanied by the greatest increase in ·O?? production, and with a decline in viability. In A. belladonna only, post-cryo TBARS levels were generally higher than for fresh and pre-conditioned embryos. Partial dehydration and cooling decreased antioxidant activities, but these were consistently less severe in glycerol cryoprotected-dried, as opposed to non-cryoprotected-dried embryos. Post-cryo viability retention for glycerol cryoprotected-dried embryos was significantly higher than for non-cryoprotected-dried embryos, possibly facilitated by relatively low post-drying TBARS levels and high post-drying and post-rewarming activities of some antioxidant enzymes in the former. Pre-conditioning treatments such as glycerol cryoprotection, when used in combination with partial drying, may enhance post-cryo viability retention in recalcitrant zygotic embryos by protecting the activities of certain antioxidant enzymes during pre-conditioning for, and after retrieval from, cryostorage.  相似文献   

14.
K Nakamura  Y Tsunoda 《Cryobiology》1992,29(4):493-499
This study compares the resistance of the nuclei and the cytoplasm of two-cell mouse embryos to short-term storage at low temperature above 0 degrees C. Two-cell embryos were stored at 4 degrees C for 24-96 h in PB1 containing 0.25, 0.5, 0.75, and 1.0 M sucrose. The development to blastocysts in culture was highest in the presence of 0.5 M sucrose. However, only 3% of the embryos developed into blastocysts after 96 h of storage. On the other hand, the viability of the nuclei of two-cell embryos stored at 4 degrees C was significantly prolonged when they were transplanted into a blastomere of enucleated fresh F1 (C57BL/6JXCBA) two-cell embryos. The proportions of chimeric embryos that developed to blastocysts were 88, 67, 76, 71, 64, 45, 32, and 20% following storage for 0, 48, 72, 96, 120, 144, 168, and 192 h, respectively. In addition, there was no difference in the coat color of the young derived from nuclei stored at 4 degrees C or fresh nuclei, although the proportions of chimeric embryos that developed into live young after transfer tended to decrease with increased storage time. Moreover, the viability of nuclei stored at 4 degrees C for 192 h was confirmed in the germ cell population of chimeric mice mated with albino mice. These results demonstrated that the nuclei in the two-cell mouse embryos were more resistant to storage at low temperature than the cytoplasm.  相似文献   

15.
We previously reported that an apparent water potential disequilibrium is maintained late in muskmelon (Cucumis melo L.) seed development between the embryo and the surrounding fruit tissue (mesocarp). To further investigate the basis of this phenomenon, the permeability characteristics of the tissues surrounding muskmelon embryos (the mucilaginous endocarp, the testa, a 2- to 4-cell-layered perisperm and a single cell layer of endosperm) were examined from 20 to 65 days after anthesis (DAA). Water passes readily through the perisperm envelope (endosperm + perisperm), testa, and endocarp at all stages of development. Electrolyte leakage (conductivity of imbibition solutions) of individual intact seeds, decoated seeds (testa removed), and embryos (testa and perisperm envelope removed) was measured during imbibition of freshly harvested seeds. The testa accounted for up to 80% of the total electrolyte leakage. Leakage from decoated seeds fell by 8- to 10-fold between 25 and 45 DAA. Presence of the perisperm envelope prior to 40 DAA had little effect on leakage, while in more mature seeds, it reduced leakage by 2- to 3-fold. In mature seeds, freezing, soaking in methanol, autoclaving, accelerated aging, and other treatments which killed the embryos had little effect on leakage of intact or decoated seeds, but caused osmotic swelling of the perisperm envelope due to the leakage of solutes from the embryo into the space between the embryo and perisperm. The semipermeability of the perisperm envelope of mature seeds did not depend upon cellular viability or lipid membrane integrity. After maximum seed dry weight is attained (35-40 DAA), the perisperm envelope prevents the diffusion of solutes, but not of water, between the embryo and the surrounding testa, endocarp, and mesocarp tissue.  相似文献   

16.
We have measured the lateral diffusion coefficient (D), of active dansyl-labeled gramicidin C (DGC), using the technique of fluorescence photobleaching recovery, under conditions in which the cylindrical dimer channel of DGC predominates. In pure, hydrated, dimyristoylphosphatidylcholine (DMPC) multibilayers (MBL), D decreases from 6 X 10(-8) cm2/s at 40 degrees C to 3 X 10(-8) cm2/s at 25 degrees C, and drops 100-fold at 23 degrees C, the phase transition temperature (Tm) of DMPC. Above Tm, addition of cholesterol decreases D; a threefold stepwise drop occurs between 10 and 20 mol %. Below Tm, increasing cholesterol increases D; a 10-fold increase occurs between 10 and 20 mol % at 21 degrees C, between 20 and 25 mol % at 15 degrees C, and between 25 and 30 mol % at 5 degrees C. In egg phosphatidylcholine (EPC) MBL, D decreases linearly from 5 X 10(-8) cm2/s at 35 degrees C to 2 X 10(-8) cm2/s at 5 degrees C; addition of equimolar cholesterol reduces D by a factor of 2. Thus this transmembrane polypeptide at low membrane concentrations diffuses quite like a lipid molecule. Its diffusivity in lipid mixtures appears to reflect predicted changes of lateral composition. Increasing gramicidin C (GC) in DMPC/GC MBL broadened the phase transition, and the diffusion coefficient of the lipid probe N-4-nitrobenzo-2-diazole phosphatidylethanolamine (NBD-PE) at 30 degrees C decreases from 8 X 10(-8) cm2/s below 5 mol % GC to 2 X 10(-8) cm2/s at 14 mol % GC; D for DGC similarly decreases from 4 X 10(-8) cm2/s at 2 mol % GC to 1.4 X 10(-8) cm2/s at 14 mol % GC. Hence, above Tm, high concentrations of this polypeptide restrict the lateral mobility of membrane components.  相似文献   

17.
Norway spruce (Picea abies Karst.) seeds were frozen and stored for 15 months at + 3, ? 25, ? 75 or ? 196°C. After storage, seeds were germinated for 9?14 days to determine viability and plasma membrane protein composition, H+-ATPase activity and fluidity. The results indicate no significant differences in viability of seed 14 days after germination. Biochemical analyses revealed increased plasma membrane fluidity in 9-day-old Norway spruce seedlings raised from seeds pretreated at ? 75 °C. and changes in the temperature profile of membrane fluidity in seedlings after pre-treatment of seeds at ? 25 °C. On the other hand, the same treatments did not result in changes in plasma membrane protein content, protein composition or ATPase activity. There was also no difference in plasma membrane H+-ATPase activity assayed in the presence of different ATP hydrolysis inhibitors. Based on the presented results, and other experimental data, we suggest that during early seedling growth, adaptation of seeds to ? 25 and ? 75°C freezing and/or storage temperature results in stability of the plasma membrane protein function and composition and increased fluidity or changes in the temperature-dependent fluidity profile of these membranes.  相似文献   

18.
Thermotropic properties of saturated mixed acyl phosphatidylethanolamines   总被引:2,自引:0,他引:2  
The mixed acyl phosphatidylethanolamine (PE) series C(18)C(18)PE, C(18)C(16)PE, C(18)C(14)PE, C(18)C(12)PE, and C(18)C(10)PE has been prepared from the corresponding phosphatidylcholines by phospholipase D mediated transphosphatidylation. The thermotropic behavior of unhydrated and hydrated preparations of these PEs has been investigated by differential scanning calorimetry and 31P NMR spectroscopy. Unhydrated preparations of the PEs undergo crystalline to liquid-crystalline transitions (Tm+h), which correspond to the simultaneous hydration and acyl chain melting of poorly hydrated crystalline samples. Hydrated preparations of the PEs undergo gel to liquid-crystalline transitions (Tm) when scanned immediately subsequent to cooling from temperatures above their respective Tm+hs. Multilamellar bilayers of C(18)C(18)PE, C(18)C(16)PE, and C(18)C(14)PE pack without significant interdigitation of the phospholipid acyl chains across the bilayer center in the gel phase. C(18)C(10)PE multilamellar preparations exhibit a mixed-interdigitated gel phase packing of the phospholipid acyl chains. Hydrated bilayers of C(18)C(12)PE adopt a mixed-interdigitated gel phase packing at temperatures below 13.9 degrees C. Between 13.9 degrees C and the gel to liquid-crystalline transition temperature of 36.9 degrees C, the C(18)C(12)PE bilayer adopts a noninterdigitated gel phase packing. The metastable behavior of fully hydrated and partially hydrated preparations of the mixed acyl PEs has been investigated. Bilayers of C(18)C(18)PE, C(18)C(16)PE, and C(18)C(14)PE exhibited little or no tendency toward regeneration of the crystalline phase. In contrast, bilayers of C(18C(12)PE and C(18)C(10)PE exhibited a metastability of the liquid-crystalline phase in the temperature interval between Tm and Tm+h, which can allow for the regeneration of the crystalline phase under certain conditions.Bilayers of C(18)C(12)PE exhibited an additional metastability of the noninterdigitated gel phase.  相似文献   

19.
Some pea seeds were killed or damaged by soaking in water, andthe damage was aggravated by low temperatures. Low-vigour seedlots were more sensitive to injury than high-vigour lots. Reducedwater uptake in osmotic solutions resulted in less damage andmost injury occurred during the initial phase of imbibition. More electrolytes exuded from dead and low-vigour seeds thanfrom high-vigour seeds and increased exudation at low temperaturewas associated with a higher incidence of dead seeds. Death is thought to be caused by a sudden inrush of water whichdisrupts the sub-cellular organization and membranes of a proportionof seeds predisposed to injury.  相似文献   

20.
Age-induced changes in cellular membranes of imbibed soybean seed axes   总被引:1,自引:0,他引:1  
The physical and chemical properties of microsomal membranes and cellular antioxidant systems were investigated in imbibed soybean ( Glycine max L. Merr. cv. Maple Arrow) seeds following aging for 5 years at room temperature. The loss of germination capacity in aged seeds was associated with increased solute leakage during imbibition and with a loss of membrane phospholipid. Higher levels of free fatty acids were observed in the microsomal membranes from aged seeds. However, there was no change in fatty acid saturation. Wide angle X-ray diffraction studies indicated the presence of gel phase in addition to liquid-crystalline phase lipid domains in the membranes of aged seeds. Those from fresh seeds were exclusively liquid-crystalline. Fluorescence depolarization, using diphenylhexatriene, suggested that the microviscosity of the membrane bilayer was increased by aging. Aged seeds had a lower antioxidant potential in the lipid fraction, lower tocopherol content, and reduced ascorbate:dehydroxyascorbate ratio indicating that the aging process was associated with exposure to an oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号