首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of Pseudorasbora parva, a common zooplanktivorous fish species in Japan, on a zooplankton community was analyzed in experimental tanks, half of which were stocked with the fish. Different zooplankton species showed different responses to the introduction of the fish. In the presence of the fish, the populations of the large cladoceran Ceriodaphnia and the predatory copepod Mesocyclops were reduced, but the population of the herbivorous copepod Eodiaptomus and the small cladocerans Bosmina fatalis and Bosminopsis deitersi increased relative to the controls. The increase of Mesocyclops seen in the control tanks might have suppressed the populations of the small cladocerans, which are vulnerable to invertebrate predation. The results suggest that the population densities of the large prey items preferred by the fish, Ceriodaphnia and Mesocyclops, were controlled directly by fish predation, but the population densities of the smaller and less preferred zooplankton were controlled indirectly through the food-web cascade.  相似文献   

2.
We report results of a field test of the predator avoidance hypothesis as an explanation of the adaptive significance of diel vertical migration in zooplankton. We determined the vertical distribution and diel migration of the planktonic copepod Acartia hudsonica, concurrently with the abundance of pelagic fish, transparency and thermal stratification of the water column, on six cruises over a one year period in a temperate marine lagoon (Jakles Lagoon, San Juan Island, Washington, USA). Striking seasonal variability was observed in all biological and environmental variables. Linear regressions of the strength of diel vertical migration in A. hudsonica on these environmental variables resulted in only one statistically significant relationship, that between copepod diel vertical migration and predator abundance. These results, together with those of previous studies, point to diel vertical migration as a widespread behavioral response of planktonic prey to the presence of their predators.  相似文献   

3.
1. The fish fauna of many shallow Mediterranean Lakes is dominated by small‐bodied exotic omnivores, with potential implications for fish–zooplankton interactions still largely unknown. Here we studied diel variation in the vertical and horizontal distribution of the crustacean plankton in Lake Vela, a shallow polymictic and eutrophic lake. Diel sampling was carried out on three consecutive days along a horizontal transect, including an open‐water station and a macrophyte (Nymphaea alba) bed. Since transparency is a key determinant of the predation risk posed by fish, the zooplankton sampling campaigns were conducted in both the turbid (autumn) and clear water (spring) phases. 2. In the turbid phase, most taxa were homogeneously distributed along the vertical and horizontal axes in the three consecutive days. The only exception was for copepod nauplii, which showed vertical heterogeneity, possibly as a response to invertebrate predators. 3. In the clear water phase, most zooplankton taxa displayed habitat selection. Vertically, the general response consisted of a daily vertical migration (DVM), despite the limited depth (1.6 m). Horizontally, zooplankters showed an overall preference for the pelagic zone, independent of the time of the day. Such evidence is contrary to the postulated role of macrophytes as an anti‐predator refuge for the zooplankton. 4. These vertical (DVM) and horizontal (macrophyte‐avoidance) patterns were particularly conspicuous for large Daphnia, suggesting that predation risk from size‐selective predators (fish) was the main factor behind the spatial heterogeneity of zooplankton in the spring. Thus, the difference in the zooplankton spatial distribution pattern and habitat selection among seasons (turbid and clear water phases) seems to be mediated the predation risk from fish, which is directly related to water transparency. 5. The zooplankton in Lake Vela have anti‐predator behaviour that minimises predation from fish. We hypothesise that, due to the distinct fish community of shallow Mediterranean lakes, aquatic macrophytes may not provide adequate refuge to zooplankters, as seen in northern temperate lakes.  相似文献   

4.
Predation by cyclopoid copepods is an important factor affecting zooplankton communities in freshwater habitats. Experiments provide strong evidence of the role of selective predation by cyclopoid copepods in structuring zooplankton communities. To assess the predation impact of a cyclopoid copepod, Mesocyclops pehpeiensis, we conducted a mesocosm experiment using 20-l polyethylene tanks in which the density of the predator and the food available to herbivorous zooplankton varied. M. pehpeiensis had a notable but selective effect on the zooplankton community. The population of a small cladoceran, Bosmina fatalis was affected negatively, but M. pehpeiensis did not have any apparent impact on the population dynamics of another Bosmina species, B. longirostris. On the other hand, the population of small rotifers responded positively to the presence of M. pehpeiensis, and their densities increased in mesocosms with a high density of M. pehpeiensis. It seems that suppression of B. fatalis by M. pehpeiensis predation indirectly affected rotifers by releasing them from competition with B. fatalis. The results suggest that copepod predation is a powerful factor regulating zooplankton communities directly and indirectly.  相似文献   

5.
Fauvet  Guillaume  Claret  Cécile  Marmonier  Pierre 《Hydrobiologia》2001,464(1-3):121-131
An enclosure study was conducted in Ranger Lake in south-central Ontario, Canada from 4 July to 5 August 1997 to determine predation effects of the larvae of the phantom midge fly Chaoboruson the zooplankton community. Zooplankton assemblages were established in 12 enclosures (2 m in diameter, 7.5 m deep). Three densities of fourth-instar Chaoborus trivittatus (0 l–1, 0.1 l–1 and 0.5 l–1) were introduced as predator treatments to the enclosures. Temperature, dissolved oxygen and zooplankton community composition were monitored for six weeks. To determine if the zooplankton community composition changed, a repeated measures multivariate analysis was performed on percent biomass of Bosmina and calanoid copepods. There were no significant differences in mean taxon percent biomass among predator treatments. There were significant differences in mean taxon percent biomass between water layers (epilimnion and metalimnion). There were also significant differences in lengths of Bosmina and calanoid copepods among predator treatments at the end of the experiment. Crop content analysis of C. trivittatusshowed that Bosmina constituted 88–98% of the prey items found in the crops. These results demonstrate that the use of deep enclosures, a Chaoborus species which vertically migrates, and lower natural densities of Chaoborus may provide prey with an important natural refuge from predation and so allow a more accurate determination of the predation impact of Chaoborus trivittatusin temperate lakes where fish control Chaoborus densities.  相似文献   

6.
Our observations indicate the vertical distribution of zooplankton and its seasonal changes in Dubník II reservoir (Slovakia) are determined mainly by the thermal regime of the reservoir, by transparency, and by fish and invertebrate predation. During periods of circulation, zooplankton vertical distribution in the whole water column was more homogeneous, whilst during summer temperature stratification zooplankton concentrated in the epilimnion — rotifers in higher layers than crustaceans. During summer stagnation a steep thermal gradient occurred at the boundary of the epi-and hypolimnion and low temperature and low dissolved oxygen in hypolimnion offered a refuge for Chaoborus flavicans larvae against fish, enabling coexistence of vertebrate and invertebrate predation. This evidence supports our previous findings concerning dominance of rotifers in zooplankton and representation of crustaceans by small-bodied species in the study reservoir. Steep thermal gradient and the presence of Chaoborus larvae caused very low zooplankton abundance in the lower part of the water column and a reduction of cladocerans refuges against fish to layers of thermocline or closely under thermocline where Daphnia cucullata and Daphnia parvula were found. Our previous assumptions about the high density of zooplanktivorous fish in Dubník II reservoir are supported by the fact that these small cladocerans are represented by smaller individuals in the upper layers and bigger individuals in deeper layers.  相似文献   

7.
We investigated the behaviour and life histories of large zooplankton in the Esch-sur-Sûre reservoir (Luxembourg). We found that the decrease in size at maturity, as well as diurnal refuge in deep waters, were the adaptive responses (concurrently or alternatively) adopted by large zooplankters to cope with the increasing predation risk throughout the summer. Daphnia galeata initiated a more severe trade-off to cope with high summer predation relative to other cladoceran species. Diaphanosoma brachyurum and Daphnia cucullata seem less susceptible to fish predation as indicated by the low alteration of their size structure and their vertical distribution. The copepod Eudiaptomus gracilis took refuge in deep waters and achieved important modifications of its mature size.  相似文献   

8.
Summary A zooplankton community was established in outdoor experimental ponds, into which a vertebrate predator (topmouth gudgeon: Pseudorasbora parva) and/or an invertebrate predator (phantom midge larva: Chaoborus flavicans) were introduced and their predation effects on the zooplankton community structure were evaluated. In the ponds which had Chaoborus but not fish, small- and medium-sized cladocerans and calanoid copepods were eliminated while rotifers became abundant. A large-sized cladoceran Daphnia longispina, whose juveniles had high helmets and long tailspines as anti-predator devices, escaped from Chaoborus predation and increased. In the ponds which had fish but not Chaoborus, the large-sized Daphnia was selectively predated by the fish while small-and medium-sized cladocerans and calanoid copepods predominated. In the ponds containing both Chaoborus and fish, the fish reduced the late instar larvae (III and IV) of Chaoborus but increased the early instar larvae (I and II). Small- and large-sized cladocerans were scarcely found. The former might have been eliminated by predation of the early instar larvae of Chaoborus, while the latter was probably predated by fish. Consequently, the medium-sized cladocerans, which may have succeeded in escaping from both types of predator, appeared abundantly. The results suggest that various combinations of vertebrate and invertebrate predators are able to drive various kinds of zooplankton community structure.  相似文献   

9.
Blumenshine  S.C.  Hambright  K.D. 《Hydrobiologia》2003,491(1-3):347-356
Limnologists have long recognized the importance of predation in freshwater communities. The majority of study of predator effects has involved vertebrate predators, with emphasis on planktivorous fish. Documented effects of planktivorous fish have been so dramatic that manipulations of their populations are seen by many as potential tools in lake management. However, the success of such manipulations is often less than desired due to the ubiquitous complexity of food webs and the pervasiveness of compensatory responses to food web manipulation. Recently, enormous effort has been applied to the Lake Kinneret pelagic food web in effort to reduced the abundance of the planktivorous Kinneret bleak Acanthobrama terraesanctae and thereby increase the biomass of herbivorous zooplankton in the hopes of increasing water clarity. We compared potential predation pressure on Lake Kinneret herbivorous zooplankton by bleak and the other major zooplankton predators in the lake, the cyclopoid copepods Mesocyclops ogunnus and Thermocyclops dybowskii. We found that, despite having much lower biomass, cyclopoid copepods accounted for a greater portion of the predation mortality on herbivorous zooplankton than bleak. Our results suggest that reductions in predation pressure by bleak will not yield subsequent increases in herbivorous zooplankton biomass. Rather, reductions in bleak predation pressure may allow for increases in cyclopoid copepod abundance and thereby a net increase in predation pressure on herbivorous zooplankton.  相似文献   

10.
We used mesocosms to analyze predation impacts on the prey populations and prey community structures by two cyclopoid copepod species, the larger Mesocyclops pehpeiensis and the smaller Thermocyclops taihokuensis, who coexist with small-sized herbivorous zooplankton species in a fish-abundant lake. The overall predation impact on the prey populations was stronger for Mesocyclops than for Thermocyclops. Mesocyclops had a strong and less selective impact on the rotifer community but a selective impact on the crustaceans. In contrast, Thermocyclops had a selective predation impact on rotifers but a weak and less selective impact on the crustacean community. As a result, the former predator reduced the diversity of the crustacean community but not the rotifer community, while the latter had an opposite impact on the diversities of the two communities. It has been suggested that fish induce development of a zooplankton community dominated by the small-sized zooplankton species in fish-abundant lakes. Our results demonstrated that cyclopoid copepods altered species composition and diversity of the small-sized zooplankton community in such lakes. Thus, the results have given an important suggestion on the role of the invertebrate predator cyclopoid copepods, which often coexist with fish, that they determine population dynamics and community structures of small-sized zooplankton in fish-abundant lakes.  相似文献   

11.
Cyclopoid copepods are common in lakes and ponds, and they have a significant predation impact on the communities of the small zooplankton species. To reduce the predation risk, some cladoceran zooplankters develop protuberant (defensive) morphologies in the presence of the copepods. In the case of the small cladoceran Bosmina, they elongate their appendages (antennule and mucrone) and change the antennule morphotype. However, information about the effectiveness of these defensive devices against copepod predation is still insufficient. In our study, to find the compositive effects of these appendages on the vulnerability of Bosmina, we exposed two bosminid species (B. longirostris and B. fatalis) of different body sizes and with appendages of different lengths and shapes to copepod (Mesocyclops) predation. The experiment revealed that the shape of the antennule is a main factor determining the bosminid’s vulnerability to copepod predation and indicated that the protection of the opened ventral carapace must be a key strategy by which Bosmina avoids copepod predation.  相似文献   

12.
Parabroteas sarsi is a predaceous calanoid copepod commonly found in South Andes lakes. Feeding experiments were carried out in order to estimate the predation rates and attack patterns on different cladoceran prey. Predation rates were related with prey sizes. The smallest prey, Bosmina longirostris, was ingested up to 5 prey pred–1 h–1 while the largest, Daphnia middendorffiana, only at 0.12 prey pred–1 h–1. The functional response of P. sarsi differed when confronted with different prey although in all cases, the number of kills increased with prey density. A saturation of ingestion rates at high prey densities was only observed for B. longirostris and Ceriodaphnia dubia juveniles. Remains seldom appeared at the end of the experiments, implying that the predator consumed prey totally. Yet, in all experiments carried out with Daphnia ambigua and D. middendorffiana, remains, including soft parts, were found. Direct observations of attack and of number and types of remains showed interference of handling by tail, helmet, and size of the prey.  相似文献   

13.
Kumar  Ram  Rao  T. Ramakrishna 《Hydrobiologia》2001,(1):261-268
In many shallow, eutrophic subtropical ponds, brachionid rotifers are common prey of the predatory copepod Mesocyclops thermocyclopoides. The predatory rotifer Asplanchna intermedia, which is itself a potential prey of the copepod, also feeds preferentially on brachionids. We studied in the laboratory the population dynamics of two mutually competing prey species, Brachionus angularis and B. calyciflorus, in the presence of the two predators A. intermedia and M. thermocyclopoides. The experimental design included separate population dynamics studies with one prey–one predator, two prey–one predator, one prey–two predator, and two prey–two predator systems. These combinations were compared with controls, in which both the prey species (B. angularis and B. calyciflorus) were grown separately and in combination with each other. In the absence of any predator, B. angularis generally eliminated the larger B. calyciflorus. Selective predation by the copepod allowed B. calyciflorus to persist longer in competition with B. angularis. Feeding by M. thermocyclopoides on A. intermedia reduced the predation pressure on B. calyciflorus. However, given enough time, the cyclopoid copepod was able to eliminate both the brachionids as well as the predatory Asplanchna.  相似文献   

14.
It is believed that habitat heterogeneity can change the extent of predator-prey interactions. Therefore, in this study we examined the effect of habitat heterogeneity (characterized here as an addition of refuge) on D. ater predation on M. domestica. Predation of D. ater on M. domestica larvae was carried out in experimental habitats with and without refuge, and examined at different prey densities. The number of prey eaten by beetles over 24 h of predator-prey interaction was recorded, and we investigated the strength of interaction between prey and predator in both experimental habitats by determining predator functional response. The mean number of prey eaten by beetles in the presence of refuge was significantly higher than in the absence of refuge. Females had greater weight gains than males. Logistic regression analyses revealed the type II functional response for both experimental habitats, even though data did not fit well into the random predator model. Results suggest that the addition of refuge in fact enhanced predation, as prey consumption increased in the presence of refuge. Predators kept in the presence of refuge also consumed more prey at high prey densities. Thus, we concluded that the addition of refuge was an important component mediating D. ater-M. domestica population interactions. Refuge actually acted as a refuge for predators from prey, since prey behaviors detrimental to predators were reduced in this case.  相似文献   

15.
1. The vertical distribution of zooplankton results from active habitat choice aiming to optimise fitness gain in a system of trade‐offs. 2. Using large, controlled indoor mesocosms (Plön Plankton Towers), we monitored the behavioural response of Daphnia pulicaria to vertical gradients of temperature, food, oxygen and light, in the presence and absence of fish predation. 3. In the absence of fish, Daphnia distributed as predicted by an ideal ‘free distribution with costs’. If the food was distributed homogeneously, they stayed in the warm epilimnion, while they balanced their time dwelling in epi‐ and hypolimnion if the food was concentrated in a deep‐water maximum. 4. However, oxygen depletion in the hypolimnion, representing an additional cost, prevented Daphnia from completely exploiting the hypolimnetic food maximum. Consequently, the proportion dwelling in the hypolimnion was larger if oxygen was not limiting. 5. Fish predation had an overwhelming effect, driving Daphnia into the hypolimnion under all experimental conditions. If permitted by oxygen availability, Daphnia used the whole hypolimnion, but oxygen depletion reduced their possible habitat to the upper hypolimnion with oxygen concentrations above c. 0.7 mg L?1. As fish were less tolerant of low oxygen, the layer below the thermocline formed a predation refuge for Daphnia.  相似文献   

16.
M. A. Leibold 《Oecologia》1991,86(4):510-520
Summary Two commonly coexisting species of Daphnia segregate by habitat in many stratified lakes. Daphnia pulicaria is mostly found in the hypolimnion whereas D. galeata mendotae undergoes diel vertical migration between the hypolimnion and the epilimnion. I examined how habitat segregation between these two potentially competing species might be affected by trophic interactions with their resources and predators by performing a field experiment in deep enclosures in which I manipulated fish predation, nutrient levels, and the density of epilimnetic Daphnia. The results of the experiment indicate that habitat use by D. pulicaria can be jointly regulated by competition for food from epilimnetic Daphnia and predation by fishes. Patterns of habitat segregation between the two Daphnia species were determined by predation by fish but not by nutrient levels: The removal of epilimnetic fish predators resulted in higher zooplankton and lower epilimnetic phytoplankton densities and allowed D. pulicaria to expand its habitat distribution into the epilimnion. In contrast, increased resource productivity resulted in higher densities of both Daphnia species but did not affect phytoplankton levels or habitat use by Daphnia. The two species exhibit a trade-off in their ability to exploit resources and their susceptibility to predation by fish. D. g. mendotae (the less susceptible species) may thus restrict D. pulicaria (the better resource exploiter) from the epilimnion when fish are common due to lower minimum resource requirements than those needed by D. pulicaria to offset the higher mortality rate imposed by selective epilimnetic fish predators. D. g. mendotae does not appear to have this effect in the absence of fish.  相似文献   

17.
Predator-prey relationships within the pelagic community of Neusiedler See   总被引:4,自引:4,他引:0  
Herzig  Alois 《Hydrobiologia》1994,(1):81-96
Neusiedler See, a shallow alkaline lake, has become increasingly eutrophic; this enrichment improved the nutritive situation of the herbivorous zooplankton leading to a higher standing stock. A multiple regression analysis of the long-term development of the crustacean plankton indicates that abiotic factors (i.e. wind, temperature) have the most important impact on the community in spring and autumn, biotic factors (i.e. food, predation) during the summer months. Currently an invertebrate (Leptodora kindti) and two planktivorous fish (Pelecus cultratus and Alburnus alburnus) control the population development of Diaphanosoma mongolianum during summer. L. kindti predation acts on immature stages, whereas the fishes consume adult stages. L. kindti densities of 100 to 200 ind. × m-3 affect the prey population to a negligible extent; densities between 300 and 500 ind. × m-3 result in elimination rates of 5% to >40% of the juvenile Diaphanosoma stock. The impacts by the invertebrate predator are pronounced but short-term events. Juvenile and underyearling fish eliminate 4–13% of the zooplankton in the open lake and 5–33% inshore; their predation pressure acts on all younger stages of the crustaceans. Planktivorous fish older than 0 + concentrate on the large food items (adult stages of the crustaceans). A. alburnus is able to consume 6–16% of the zooplankton standing stock during summer. P. cultratus eliminates about 1–49% of D. mongolianum, 1–4% of A. spinosus and 1–31% of L. kindti. From May until August the position of the dominant predator changes, beginning with juvenile fish which are then followed by P. cultratus and then by A. alburnus. Predation by L. kindti is of importance in July and August; at that time it causes suppression of the juveniles of D. mongolianum, but, on the other hand, the older stages of L. kindti are endangered themselves by the predatory impact of planktivorous fish.  相似文献   

18.
Aquatic macrophytes produce considerable structural variation within the littoral zone and as a result the vegetation provides refuge to prey communities by hindering predator foraging activities. The behavior of planktivorous fish Pseudorasbora parva (Cyprinidae) and their zooplankton prey Daphnia pulex were quantified in a series of laboratory experiments with artificial vegetation at densities of 0, 350, 700, 1400, 2100 and 2800 stemsm–2. Swimming speeds and foraging rates of the fish were recorded at different prey densities for all stem densities. The foraging efficiency of P. parva decreased significantly with increasing habitat complexity. This decline in feeding efficiency was related to two factors: submerged vegetation impeded swimming behavior and obstructed sight while foraging. This study separated the effects of swimming speed variation and of visual impairment, both due to stems, that led to reduced prey–predator encounters and examined how the reduction of the visual field volume may be predicted using a random encounter model.  相似文献   

19.
Predator driven changes in community structure   总被引:5,自引:0,他引:5  
Summary The zooplankton community of a small pond changed markedly with temporal variation in predation pressure. Long term changes in zooplankton community structure occurred following the replacement of planktivorous fish by phantom midge (Chaoborus americanus) larvae as the predominant predator of zooplankton. The interannual changes following the establishment of Chaoborus included the apparent or near extinction, of species ill adapted to the new predation pressure and the successful colonization of well adapted species. Seasonal changes in the species composition and size distribution of the zooplankton community correlate with temporal variation in predation intensity associated with temperature-activity patterns of the predator or changes in the stage structure of the predator population.  相似文献   

20.
We performed laboratory experiments to investigate the effects of predator avoidance and numerical effects of predation on spatial distribution of small Saduria entomon (Isopoda) and Monoporeia affinis (Amphipoda), with large S. entomon as predators. The horizontal distribution and mortality of the prey species, separately and together, were studied in aquaria with a spatial horizontal refuge. We also estimated effects of refuge on mortality of small S. entomon and M. affinis by experiments without the refuge net. In addition, we investigated whether predation risk from large S. entomon influenced the swimming activity of M. affinis, to clarify the mechanisms behind the spatial distribution. Both small S. entomon and M. affinis avoided large S. entomon. The avoidance behaviour of M. fffinis contributed about 10 times more to the high proportion in the refuge than numerical effects of predation. Due to the low mortality of small S. entomon the avoidance behaviour of this species was even more important for the spatial distribution. The combined effect of avoidance behaviour and predation in both species was aggregation, producting a positive correlation between the species in density. M. affinis showed two types of avoidance behaviour. In the activity experiments they reduced activity by 36% and buried themselves in the sediment. In the refuge experiments we also observed avoidance behaviour with the emigration rate from the predator compartment being twice the immigration rate. The refuge did not lower predation mortality in M. affinis, probably due to the small scale of the experimental units in relation to the mobility of the species. Predation mortality in small S. entomon was higher in absence of a refuge and especially high in absence of M. affinis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号