首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
A reversed-phase chromatographic system is described that is capable of separating vitamin D2 from vitamin D3 and ergosterol from 7-dehydro-cholesterol and cholesterol. The method uses Factice, a polymerized and vulcanized soybean oil, as stationary phase and a water/acetone mitxure as mobile phase. In contrast to other previously published techniques capable of separating vitamins D2 and D3, the present separation is accomplished without any chemical modification or alteration of the D-vitamins.  相似文献   

2.
3.
Concomitant intravenous administration of 25-hydroxycholecalciferol and [3H] vitamin D3 to vitamin D-depleted rats did not affect the conversion of [3H] vitamin D3 to 25-OH-[3H] vitamin D3 as indicated by a serum 25-OH-[3H] vitamin D3 to content at 3 and 24 h identical to those observed in animals receiving [3H] vitamin D3 alone. Similarly, pre-dosing with 25-OH vitamin D3 24 h earlier did not affect the conversion. Co-administration to vitamin D depleted rats of vitamin D2 or D3, at 200-fold higher doses than a control group receiving tracer [3H] vitamin D3 alone, resulted in serum 25-OH vitamin D levels that were 15-20 fold higher than the control, indicating a similar metabolic fate for synthetic and natural vitamin D in rats and the ability of increased substrate to overwhelm hepatic constraints on 25-OH vitamin D production. Following intravenous administration of 25-OH-[3H] vitamin D3 to vitamin D depleted rats, hepatic 3H content decreased in parallel with serum radioactivity. Hepatic accumulation of intravenously administered vitamin D3 ([14C] vitamin D3) alone or with 25-OH-[3H] vitamin D3, by vitamin D-depleted rats revealed a marked preference for vitamin D3; the hepatic accumulation of [14C] vitamin D3 increased to 35% of the dose by 45 min, at which time 25-OH-[3H] vitamin D3 hepatic content was 7-fold less, and decreasing. Chromatography of extracts of hepatic subcellular fractions revealed more [14C] vitamin D3 than 25-OH-[3H] vitamin D3 in the microsomes, the reported site of calciferol 25-hydroxylase. Circulating 25-OH vitamin D, therefore, has comparatively minimal potential for hepatic accumulation. Product inhibition of the calciferol 25-hydroxylase must, therefore, result from recently synthesized hepatic 25-OH vitamin D, and is not affected by exogenous 25-OH vitamin D3.  相似文献   

4.
5.
Two separate liver cytosolic proteins have been partially purified and identified by their selectivity for binding either [1α,2α(n)-3H]vitamin D3 or 25-hydroxy [26(27)-methyl-3H]vitamin D3. The chromatographic properties of the two proteins were not distinguishable by ion-exchange nor were they dependent upon the vitamin D3 nutritional status of the birds. However, in molecular exclusion chromatography, the binding proteins can be successfully resolved into two discrete entities. Their binding properties suggest that they are not identical with plasma vitamin D3 binding protein.  相似文献   

6.
Utilizing the microphthalamic mouse, (mi/mi) as a model of osteopetrosis, vitamin D3 (cholecalciferol) was administered prenatally and postnatally to study its effects on tooth development and subsequent eruption. It has previously been reported that vitamin D3 crosses the placental barrier and is absorbed into mammary gland milk. Fifteen heterozygotes (+/mi) were used as breeders. There were three study groups: A) 5.0 ng/gm cholecalciferol sulfate; B) 2.5 ng/gm cholecalciferol sulfate; and C) no therapy. Intraperitoneal injections were administered three times per week, beginning when pregnancy was evident, and continuing for 4 additional weeks during lactation. Approximately half of the 59 offspring were sacrificed at age 1 day and the other half at 4 weeks. The former group was studied for crown development, and the latter group was studied for root development and eruption. When the osteopetrotic offspring of group A were compared with osteopetrotic offspring of group C, crown development and tooth eruption were substantially more advanced. Parameters examined were maturity of the ameloblasts and odontoblasts, dentin and enamel formation, root sheath development, status of eruption, and degree of apex closure. It was concluded that cholecalciferol sulfate significantly improves tooth development and subsequent eruption in the osteopetrotic mouse. A genetic disease has had its phenotype modified by vitamin therapy during gestation.  相似文献   

7.
8.
Serum concentrations of 25-hydroxy vitamin D (25-OHD3) were measured in seven Asians of Indian extraction and eight Europeans before and at intervals after taking 1 mg vitamin D3 by mouth. In all subjects the concentrations rose in the 24 hours after ingestion. There was little change over the next nine days in the concentrations in the Europeans but those in the Asians continued to rise until about day 10. Subsequent rates of fall in 25-OHD3 were similar in the two groups. Our observations suggest that the low serum concentrations of 25-OHD3 found in Asians are not caused by either impaired intestinal absorption of vitamin D or rapid clearance of 25-ODH3 from the plasma.  相似文献   

9.
As the fourth most abundant anion in the body, sulfate plays an essential role in numerous physiological processes. One key protein involved in transcellular transport of sulfate is the sodium-sulfate cotransporter NaSi-1, and previous studies suggest that vitamin D modulates sulfate homeostasis by regulating NaSi-1 expression. In the present study, we found that, in mice lacking the vitamin D receptor (VDR), NaSi-1 expression in the kidney was reduced by 72% but intestinal NaSi-1 levels remained unchanged. In connection with these findings, urinary sulfate excretion was increased by 42% whereas serum sulfate concentration was reduced by 50% in VDR knockout mice. Moreover, levels of hepatic glutathione and skeletal sulfated proteoglycans were also reduced by 18 and 45%, respectively, in the mutant mice. Similar results were observed in VDR knockout mice after their blood ionized calcium levels and rachitic bone phenotype were normalized by dietary means, indicating that vitamin D regulation of NaSi-1 expression and sulfate metabolism is independent of its role in calcium metabolism. Treatment of wild-type mice with 1,25-dihydroxyvitamin D3 or vitamin D analog markedly stimulated renal NaSi-1 mRNA expression. These data provide strong in vivo evidence that vitamin D plays a critical role in sulfate homeostasis. However, the observation that serum sulfate and skeletal proteoglycan levels in normocalcemic VDR knockout mice remained low in the absence of rickets and osteomalacia suggests that the contribution of sulfate deficiency to development of rickets and osteomalacia is minimal.  相似文献   

10.
Calreticulin inhibits vitamin D3 signal transduction.   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

11.
12.
13.
14.
WEHI-3B D- cells differentiate in response to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) but not to all-trans-retinoic acid (RA) or other inducing agents. Combinations of RA with 1,25-(OH)2D3 interact to produce synergistic differentiation of WEHI-3B D- cells. To determine factors involved in the synergistic interaction, expression of the 1,25-(OH)2D3 receptor (VDR) and retinoid receptors, RARalpha and RXRalpha, was measured. No VDR was detected in untreated WEHI-3B D- cells; however, RA and 1,25-(OH)2D3 when used as single agents caused a slight induction of the VDR and in combination produced a marked increase in the VDR. In contrast, no changes in RARalpha and RXRalpha were initiated by these compounds. An RAR-selective agonist combined with 1,25-(OH)2D3 produced synergistic differentiation of WEHI-3B D- cells, whereas an RXR-selective agonist did not. To gain information on the role of the VDR in the synergistic interaction, the VDR gene was transferred into WEHI-3B D+ cells, in which no VDR was detected and no synergism was produced. Expression of the VDR conferred differentiation responsiveness to 1,25-(OH)2D3 in WEHI-3B D+ cells. These findings suggest that (a) induction of VDR expression is a key component in the synergistic differentiation induced by 1,25-(OH)2D3 and RA and (b) RAR and not RXR must be activated for enhanced induction of the VDR and for the synergistic differentiation produced by RA and 1, 25-(OH)2D3.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号