首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dysfunction of pulmonary surfactant in the lungs is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome. Serum, cholesterol, and meconium have been described as inhibitory agents of surfactant’s interfacial activity once these substances appear in alveolar spaces during lung injury and inflammation. The deleterious action of these agents has been only partly evaluated under physiologically relevant conditions. We have optimized a protocol to assess surfactant inhibition by serum, cholesterol, or meconium in the captive bubble surfactometer. Specific measures of surface activity before and after native surfactant was exposed to inhibitors included i), film formation, ii), readsorption of material from surface-associated reservoirs, and iii), interfacial film dynamics during compression-expansion cycling. Results show that serum creates a steric barrier that impedes surfactant reaching the interface. A mechanical perturbation of this barrier allows native surfactant to compete efficiently with serum to form a highly surface-active film. Exposure of native surfactant to cholesterol or meconium, on the other hand, modifies the compressibility of surfactant films though optimal compressibility properties recover on repetitive compression-expansion cycling. Addition of polymers like dextran or hyaluronic acid to surfactant fully reverses inhibition by serum. These polymers also prevent surfactant inhibition by cholesterol or meconium, suggesting that the protective action of polymers goes beyond the mere enhancement of interfacial adsorption as described by depletion force theories.  相似文献   

2.
Pulmonary surfactant is a lipid-protein complex that lowers surface tension at the respiratory air-liquid interface, stabilizing the lungs against physical forces tending to collapse alveoli. Dysfunction of surfactant is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome where naturally occurring surfactant-inhibitory agents such as serum, meconium, or cholesterol reach the lung. We analyzed the effect of hyaluronan (HA) on the structure and surface behavior of pulmonary surfactant to understand the mechanism for HA-promoted surfactant protection in the presence of inhibitory agents. In particular, we found that HA affects structural properties such as the aggregation state of surfactant membranes and the size, distribution, and order/packing of phase-segregated lipid domains. These effects do not require a direct interaction between surfactant complexes and HA and are accompanied by a compositional reorganization of large surfactant complexes that become enriched with saturated phospholipid species. HA-exposed surfactant reaches very high efficiency in terms of rapid and spontaneous adsorption of surfactant phospholipids at the air-liquid interface and shows significantly improved resistance to inactivation by serum or cholesterol. We propose that physical effects pertaining to the formation of a meshwork of interpenetrating HA polymer chains are responsible for the changes in surfactant structure and composition that enhance surfactant function and, thus, resistance to inactivation. The higher resistance of HA-exposed surfactant to inactivation persists even after removal of the polymer, suggesting that transient exposure of surfactant to polymers like HA could be a promising strategy for the production of more efficient therapeutic surfactant preparations.  相似文献   

3.
A molecular film of pulmonary surfactant strongly reduces the surface tension of the lung epithelium-air interface. Human pulmonary surfactant contains 5-10% cholesterol by mass, among other lipids and surfactant specific proteins. An elevated proportion of cholesterol is found in surfactant, recovered from acutely injured lungs (ALI). The functional role of cholesterol in pulmonary surfactant has remained controversial. Cholesterol is excluded from most pulmonary surfactant replacement formulations, used clinically to treat conditions of surfactant deficiency. This is because cholesterol has been shown in vitro to impair the surface activity of surfactant even at a physiological level. In the current study, the functional role of cholesterol has been re-evaluated using an improved method of evaluating surface activity in vitro, the captive bubble surfactometer (CBS). Cholesterol was added to one of the clinically used therapeutic surfactants, BLES, a bovine lipid extract surfactant, and the surface activity evaluated, including the adsorption rate of the substance to the air-water interface, its ability to produce a surface tension close to zero and the area compression needed to obtain that low surface tension. No differences in the surface activity were found for BLES samples containing either none, 5 or 10% cholesterol by mass with respect to the minimal surface tension. Our findings therefore suggest that the earlier-described deleterious effects of physiological amounts of cholesterol are related to the experimental methodology. However, at 20%, cholesterol effectively abolished surfactant function and a surface tension below 15 mN/m was not obtained. Inhibition of surface activity by cholesterol may therefore partially or fully explain the impaired lung function in the case of ALI. We discuss a molecular mechanism that could explain why cholesterol does not prevent low surface tension of surfactant films at physiological levels but abolishes surfactant function at higher levels.  相似文献   

4.
The presence of cholesterol is critical in defining a dynamic lateral structure in pulmonary surfactant membranes. However, an excess of cholesterol has been associated with impaired surface activity of surfactant. It has also been reported that surfactant protein SP-C interacts with cholesterol in lipid/protein interfacial films. In this study, we analyzed the effect of SP-C on the thermodynamic properties of phospholipid membranes containing cholesterol, and the ability of lipid/protein complexes containing cholesterol to form and respread interfacial films capable of producing very low surface tensions upon repetitive compression-expansion cycling. SP-C modulates the effect of cholesterol to reduce the enthalpy associated with the gel-to-liquid-crystalline melting transition in dipalmitoylphosphatidylcholine (DPPC) bilayers, as analyzed by differential scanning calorimetry. The presence of SP-C affects more subtly the effects of cholesterol on the thermotropic properties of ternary membranes, mimicking more closely the lipid composition of native surfactant, where SP-C facilitates the miscibility of the sterol. Incorporation of 1% or 2% SP-C (protein/phospholipid by weight) promotes almost instantaneous adsorption of suspensions of DPPC/palmitoyloleoylphospatidylcholine (POPC)/palmitoyloleoyl-phosphatidylglycerol (POPG) (50:25:15, w/w/w) into the air-liquid interface of a captive bubble, in both the absence and presence of cholesterol. However, cholesterol impairs the ability of SP-C-containing films to achieve very low surface tensions in bubbles subjected to compression-expansion cycling. Cholesterol also substantially impairs the ability of DPPC/POPC/POPG films containing 1% surfactant protein SP-B to mimic the interfacial behavior of native surfactant films, which are characterized by very low minimum surface tensions with only limited area change during compression and practically no compression-expansion hysteresis. However, the simultaneous presence of 2% SP-C practically restores the compression-expansion dynamics of cholesterol- and SP-B-containing films to the efficient behavior shown in the absence of cholesterol. This suggests that cooperation between the two proteins is required for lipid-protein films containing cholesterol to achieve optimal performance under physiologically relevant compression-expansion dynamics.  相似文献   

5.
Pulmonary surfactant forms a cohesive film at the alveolar air-lung interface, lowering surface tension, and thus reducing the work of breathing and preventing atelectasis. Surfactant function becomes impaired during inflammation due to degradation of the surfactant lipids and proteins by free radicals. In this study, we examine the role of reactive nitrogen (RNS) and oxygen (ROS) species on surfactant function with and without physiological cholesterol levels (5–10%). Surface activity was assessed in vitro in a captive bubble surfactometer (CBS). Surfactant chemistry, monolayer fluidity and thermodynamic behavior were also recorded before and after oxidation. We report that physiologic amounts of cholesterol combined with oxidation results in severe impairment of surfactant function. We also show that surfactant polyunsaturated phospholipids are the most susceptible to oxidative alteration. Membrane thermodynamic experiments showed significant surfactant film stiffening after free radical exposure in the presence of cholesterol. These results point to a previously unappreciated role for cholesterol in amplifying defects in surface activity caused by oxidation of pulmonary surfactant, a finding that may have implications for treating several lung diseases.  相似文献   

6.
We measured hepatic cholesterol 7 alpha-hydroxylase activity, mass, and catalytic efficiency (activity/unit mass) in bile fistula rats infused intraduodenally with taurocholate and its 7 beta-hydroxy epimer, tauroursocholate, with or without mevalonolactone to supply newly synthesized cholesterol. Enzyme activity was measured by an isotope incorporation assay and enzyme mass by densitometric scanning of immunoblots using rabbit anti-rat liver cholesterol 7 alpha-hydroxylase antisera. Cholesterol 7 alpha-hydroxylase activity increased 6-fold, enzyme mass 34%, and catalytic efficiency 5-fold after interruption of the enterohepatic circulation for 48 h. When taurocholate was infused to the bile acid-depleted animals at a rate equivalent to the hepatic bile acid flux (27 mumol/100-g rat/h), cholesterol 7 alpha-hydroxylase activity and enzyme mass declined 60 and 61%, respectively. Tauroursocholate did not significantly decrease cholesterol 7 alpha-hydroxylase activity, mass and catalytic efficiency. The administration of mevalonolactone, which is converted to cholesterol, modestly increased cholesterol 7 alpha-hydroxylase activity and enzyme mass in the bile acid-depleted rats. However, when taurocholate was infused together with mevalonolactone, cholesterol 7 alpha-hydroxylase activity and catalytic efficiency were markedly depressed while enzyme mass did not change as compared with bile acid-depleted rats. These results show that (a) hepatic bile acid depletion increases bile acid synthesis mainly by activating cholesterol 7 alpha-hydroxylase with only a small rise in enzyme mass, (b) replacement with taurocholate for 24 h decreases both cholesterol 7 alpha-hydroxylase activity and mass proportionally, (c) when cholesterol is available (mevalonolactone supplementation), the infusion of taurocholate results in the formation of a catalytically less active cholesterol 7 alpha-hydroxylase, and (d) tauroursocholate, the 7 beta-hydroxy epimer of taurocholate, does not inhibit cholesterol 7 alpha-hydroxylase. Thus, bile acid synthesis is modulated by the catalytic efficiency and mass of cholesterol 7 alpha-hydroxylase. The enterohepatic flux of 7 alpha-hydroxylated bile acids and the formation of hepatic cholesterol apparently control cholesterol 7 alpha-hydroxylase by different mechanisms.  相似文献   

7.
The ability of cholesterol esterase to catalyze the synthesis of cholesterol esters has been considered to be of limited physiological significance because of its bile salt requirements for activity, though detailed kinetic studies have not been reported. This study was performed to determine the taurocholate, pH, and substrate requirements for optimal cholesterol ester synthesis catalyzed by various pancreatic lipolytic enzymes, including the bovine 67- and 72-kDa cholesterol esterases, human 100-kDa cholesterol esterase, and human 52-kDa triglyceride lipase. In contrast to current beliefs, cholesterol esterase exhibits a bile salt independent as well as a bile salt dependent synthetic pathway. For the bovine pancreatic 67- and 72-kDa cholesterol esterases, the bile salt independent pathway is optimal at pH 6.0-6.5 and is stimulated by micromolar concentrations of taurocholate. For the bile salt dependent synthetic reaction for the 67-kDa enzyme, increasing the taurocholate concentration from 0 to 1.0 mM results in a progressive shift in the pH optimum from pH 6.0-6.5 to pH 4.5 or lower. In contrast, cholesterol ester hydrolysis by the 67-, 72-, and 100-kDa enzymes was characterized by pH optima from 5.5 to 6.5 at all taurocholate concentrations. Optimum hydrolytic activity for these three enzyme forms occurred with 10 mM taurocholate. Since hydrolysis is minimal at low taurocholate concentrations, the rate of synthesis actually exceeds hydrolysis when the taurocholate concentration is less than 1.0 mM. The 52-kDa enzyme exhibits very low cholesterol ester synthetic and hydrolytic activities, and for this enzyme both activities are bile salt independent. Thus, our data show that cholesterol esterase has both bile salt independent and bile salt dependent cholesterol ester synthetic activities and that it may catalyze the net synthesis of cholesterol esters under physiological conditions.  相似文献   

8.
Pulmonary surfactant is a lipid-protein complex, synthesized and secreted by the respiratory epithelium of lungs to the alveolar spaces, whose main function is to reduce the surface tension at the air-liquid interface to minimize the work of breathing. The activity of surfactant at the alveoli involves three main processes: (i) transfer of surface active molecules from the aqueous hypophase into the interface, (ii) surface tension reduction to values close to 0 mN/m during compression at expiration and (iii) re-extension of the surface active film upon expansion at inspiration. Phospholipids are the main surface active components of pulmonary surfactant, but the dynamic behaviour of phospholipids along the breathing cycle requires the necessary participation of some specific surfactant associated proteins. The present review summarizes the current knowledge on the structure, disposition and lipid-protein interactions of the hydrophobic surfactant proteins SP-B and SP-C, the two main actors participating in the surface properties of pulmonary surfactant. Some of the methodologies currently used to evaluate the surface activity of the proteins in lipid-protein surfactant preparations are also revised. Working models for the potential molecular mechanism of SP-B and SP-C are finally discussed. SP-B might act in surfactant as a sort of amphipathic tag, directing the lipid-protein complexes to insert and re-insert very efficiently into the air-liquid interface along successive breathing cycles. SP-C could be essential to maintain association of lipid-protein complexes with the interface at the highest compressed states, at the end of exhalation. The understanding of the mechanisms of action of these proteins is critical to approach the design and development of new clinical surfactant preparations for therapeutical applications.  相似文献   

9.
The maximal micellar solubility, distribution and apparent monomer activity of cholesterol in taurine-conjugated cholate and chenodeoxycholate micellar solutions were studied to clarify the different modulating effect of these bile salt species on cholesterol uptake in an intestinal lumen. The maximal micellar solubility was significantly greater in taurochenodeoxycholate. The intermicellar cholesterol monomer concentration was not significantly different between the two kinds of micellar solution. However, the apparent cholesterol monomer activity determined using an artificial organic phase (polyethylene disc) was significantly higher in taurocholate than that in taurochenodeoxycholate. A linear relationship between the intermicellar cholesterol concentration and the apparent cholesterol monomer activity was found, with the slope depending upon the bile salt species. It is concluded that the difference in partitioning of cholesterol from taurocholate and taurochenodeoxycholate micelles into a fixed organic phase may contribute in part to the different regulating effects of these bile salts on the uptake of cholesterol in the intraluminal phase.  相似文献   

10.
The molecular structure of the phospholipid component of intact pulmonary surfactant isolated from bovine lung lavage has been examined by Fourier transform infrared spectroscopy. Two different physical states of the surfactant were examined by means of different infrared spectroscopic sampling techniques. Transmission infrared experiments were used to study the surfactant in the bulk phase. In these experiments, the thermotropic behavior of the bulk surfactant was monitored by temperature-induced variations in the phospholipid acyl chain CH2 stretching frequencies. A broad phase transition (confirmed by differential scanning calorimetry) was noted with an onset temperature near 15 degrees C and a completion temperature near 42 degrees C. In addition to the bulk transmission experiments, external reflection infrared spectroscopy was used to examine surfactant films in situ at the air-water interface. As surface pressure was increased from 0 to 43 dyn/cm, a gradual and continuous decrease in the CH2 stretching frequency was noted for the surfactant. Thus, under surface pressures which correspond to large lung volumes in vivo, the surfactant acyl chains exist mostly in the ordered (trans) configuration. The frequency shift in the CH2 stretching mode is consistent with a continuous ordering of the acyl chains upon compression over the pressure range 0-43 dyn/cm, and implies that a weakly cooperative phase transition occurs in the hydrocarbon region of the surface film. The surface film transition is especially noted in the pressure-area curve of the surfactant and approximates in two dimensions the broad thermotropic phase transition of the bulk phase surfactant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
The purpose of the present study was to evaluate the possible interaction of bile salt monomer and cholesterol in the intermicellar aqueous phase. Cholesterol and taurocholate monomer concentrations in the intermicellar aqueous phase were determined using 0-20 mM taurocholate solutions saturated with cholesterol. Maximal solubilities of cholesterol in aqueous solutions having various concentrations of taurocholate, especially below its intermicellar monomer concentration (critical micellar concentration), were determined and compared with the intermicellar cholesterol concentration. The intermicellar monomer concentration of taurocholate was constant (6 mM) and independent of taurocholate concentrations. The cholesterol concentration in the intermicellar aqueous phase gradually increased, depending upon taurocholate concentrations, and became constant (1,3 microM) above 10 mM taurocholate. The solubility of cholesterol increased linearly with the taurocholate concentration even below the critical micellar concentration, and was 0.3 microM at 6 mM taurocholate, which was approx. 20-times higher than the aqueous solubility of cholesterol, but a fifth of the maximal intermicellar cholesterol concentration. The results indicate that the higher cholesterol concentration in the intermicellar aqueous phase compared to its aqueous solubility can be primarily ascribed to the interaction of cholesterol with bile salt monomers possibly forming bile salt-cholesterol dimers, and partly to the sustaining forces induced by numerous micelles.  相似文献   

13.
In adult respiratory distress syndrome, the primary function of pulmonary surfactant to strongly reduce the surface tension of the air-alveolar interface is impaired, resulting in diminished lung compliance, a decreased lung volume, and severe hypoxemia. Dysfunction coincides with an increased level of cholesterol in surfactant which on its own or together with other factors causes surfactant failure. In the current study, we investigated by atomic force microscopy and Kelvin-probe force microscopy how the increased level of cholesterol disrupts the assembly of an efficient film. Functional surfactant films underwent a monolayer-bilayer conversion upon contraction and resulted in a film with lipid bilayer stacks, scattered over a lipid monolayer. Large stacks were at positive electrical potential, small stacks at negative potential with respect to the surrounding monolayer areas. Dysfunctional films formed only few stacks. The surface potential of the occasional stacks was also not different from the surrounding monolayer. Based on film topology and potential distribution, we propose a mechanism for formation of stacked bilayer patches whereby the helical surfactant-associated protein SP-C becomes inserted into the bilayers with defined polarity. We discuss the functional role of the stacks as mechanically reinforcing elements and how an elevated level of cholesterol inhibits the formation of the stacks. This offers a simple biophysical explanation for surfactant inhibition in adult respiratory distress syndrome and possible targets for treatment.  相似文献   

14.
Pulmonary surfactant, the lipid-protein material that stabilizes the respiratory surface of the lungs, contains approximately equimolar amounts of saturated and unsaturated phospholipid species and significant proportions of cholesterol. Such lipid composition suggests that the membranes taking part in the surfactant structures could be organized heterogeneously in the form of inplane domains, originating from particular distributions of specific proteins and lipids. Here we report novel results concerning the lateral organization of bilayer membranes made of native pulmonary surfactant where the coexistence of two distinct micrometer sized fluid phases (fluid ordered and fluid disordered-like phases) is observed at physiological temperatures by using fluorescence microscopy and atomic force microscopy. Additional experiments using fluorescent-labeled proteins SP-B and SP-C show that at physiological temperatures these hydrophobic proteins are located exclusively in the fluid disordered-like phase. Most interestingly, the microscopic coexistence of fluid phases is maintained up to 37.5 degrees C, where most fluid ordered phases melt. This observation suggests that the particular composition of this material is naturally designed to be at the "edge" of a lateral structure transition under physiological conditions, likely providing particular structural and dynamic properties for its mechanical function. The observed lateral structure in native pulmonary surfactant membranes is dramatically affected by the extraction of cholesterol, an effect not observed upon extraction of the surfactant proteins. Furthermore, the spreading properties of the native surfactant material at the air-liquid interface were also greatly affected by cholesterol extraction, suggesting a connection between the observed lateral structure and a physiologically relevant function of the material. We suggest that the particular lipid composition of surfactant could be finely tuned to provide, under physiological conditions, a structural scaffold for surfactant proteins to act at appropriate local densities and lipid composition.  相似文献   

15.
16.
Examination of bile acid negative feedback regulation in rats   总被引:2,自引:0,他引:2  
Recent data obtained using cultured rat hepatocytes showed that bile acids do not inhibit bile acid synthesis, whereas cholesterol concentrations vary in parallel with bile acid synthesis (Davis et al. (1983. J. Biol. Chem. 258: 4079-4082). This led us to re-evaluate in vivo experiments upon which the consensus that bile acid synthesis is primarily regulated by bile acid "negative feedback" is based. Infusion of taurocholate into either the jugular vein or duodenum of bile-diverted rats stimulated biliary cholesterol secretion and bile flow, but it did not inhibit bile acid synthesis. The lack of an inhibitory effect was evident using several different infusion rates of taurocholate. Even at the greatest rate of taurocholate infusion (25 mumol/(100 g.hr] there was no significant inhibition of bile acid synthesis. In contrast, infusing mevinolin (1 mg/hr), a potent competitive inhibitor of HMG-CoA reductase, almost completely inhibited bile acid synthesis and biliary cholesterol secretion. Since mevinolin did not affect bile flow, these results cannot be ascribed to bile secretory failure. Thus, while these studies suggest that taurocholate may not regulate bile acid synthesis directly via negative feedback, cholesterol is likely to act as a positive effector of bile acid synthesis.  相似文献   

17.
18.
Pulmonary surfactant is a complex mixture of lipids and proteins that forms a surface-active film at the air-water interface of alveoli capable of reducing surface tension to near 0 mN/m. The role of cholesterol, the major neutral lipid component of pulmonary surfactant, remains uncertain. We studied the physiological effect of cholesterol by monitoring blood oxygenation levels of surfactant-deficient rats treated or not treated with bovine lipid extract surfactant (BLES) containing zero or physiological amounts of cholesterol. Our results indicate no significant difference between BLES and BLES containing cholesterol immediately after treatment; however, during ventilation, BLES-treated animals maintained higher PaO2 values compared to BLES+cholesterol-treated animals. We used a captive bubble tensiometer to show that physiological amounts of cholesterol do not have a detrimental effect on the surface activity of BLES at 37 degrees C. The effect of cholesterol on topography and lateral organization of BLES Langmuir-Blodgett films was also investigated using atomic force microscopy. Our data indicate that cholesterol induces the formation of domains within liquid-ordered domains (Lo). We used time-of-flight-secondary ion mass spectrometry and principal component analysis to show that cholesterol is concentrated in the Lo phase, where it induces structural changes.  相似文献   

19.
The effect of individual bile acids on bile acid synthesis was studied in primary hepatocyte cultures. Relative rates of bile acid synthesis were measured as the conversion of lipoprotein [4-14C]cholesterol into 4-14C-labeled bile acids. Additions to the culture media of cholate, taurocholate, glycocholate, chenodeoxycholate, taurochenodeoxycholate, glycochenodeoxycholate, deoxycholate, and taurodeoxycholate (10-200 microM) did not inhibit bile acid synthesis. The addition of cholate (100 microM) to the medium raised the intracellular level of cholate 10-fold, documenting effective uptake of added bile acid by cultured hepatocytes. The addition of 200 microM taurocholate to cultured hepatocytes prelabeled with [4-14C]cholesterol did not result in inhibition of bile acid synthesis. Taurocholate (10-200 microM) also failed to inhibit bile acid synthesis in suspensions of freshly isolated hepatocytes after 2, 4, and 6 h of incubation. Surprisingly, the addition of taurocholate and taurochenodeoxycholate (10-200 microM) stimulated taurocholate synthesis from [2-14C]mevalonate-labeled cholesterol (p less than 0.05). Neither taurocholate nor taurochenodeoxycholate directly inhibited cholesterol 7 alpha-hydroxylase activity in the microsomes prepared from cholestyramine-fed rats. By contrast, 7-ketocholesterol and 20 alpha-hydroxycholesterol strongly inhibited cholesterol 7 alpha-hydroxylase activity at low concentrations (10 microM). In conclusion, these data strongly suggest that bile acids, at the level of the hepatocyte, do not directly inhibit bile acid synthesis from exogenous or endogenous cholesterol even at concentrations 3-6-fold higher than those found in rat portal blood.  相似文献   

20.
The effects of sulfonate analogs of cholic (C), chenodeoxycholic (CDC), and ursodeoxycholic acid (UDC) and three 7-alkylated CDCs--7-methyl-, 7-ethyl-, and 7-propyl-CDCs--on taurocholate absorption from rat terminal ileum in situ and on cholesterol 7alpha-hydroxylase activity in primary culture of the rat liver were investigated. The sulfonate analogs of two dihydroxy bile acids CDC and UDC, but not C, significantly decreased the absorption of taurocholate. Taurine conjugates of 7-alkylated CDC slightly decreased the taurocholate absorption, and tauro-7-propyl-CDC significantly suppressed the absorption. Although the sulfonate analogs of C and CDC reduced cholesterol 7alpha-hydroxylase activity by 40% and 60% compared to control, UDC-sulfonate analog did not affect enzymatic activity. These results were consistent with those of the lead compounds, C, CDC, and UDC. The introduction of methyl group at C-7 position of CDC attenuated the reduction in cholesterol 7alpha-hydroxylase activity by CDC. However, elongation of the alkyl group resulted in an inhibitory effect. The present study revealed the following: 1) bile acid sulfonates act on cholesterol and bile acid metabolism in a similar manner as taurine conjugated bile acids; and 2) the biologic properties of CDC could be altered by the introduction of alkyl group at C-7 position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号