首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All chemical and biological reactions involve atomic motion, embodied in dynamic structural changes. Identifying these changes is the goal of time-resolved crystallography. The "raw" output of a time-resolved macromolecular crystallography experiment is the time-dependent set of difference electron density maps that span the desired time range and display the time-dependent changes in density (and underlying structure) as the reaction progresses. The goal is to interpret such data in terms of a small number of crystallographically refinable, time-independent structures, each associated with a reaction intermediate; to establish the pathways and rate coefficients by which the intermediates interconvert; and thus to establish a chemical kinetic mechanism. We review briefly the various strategies that may be used to achieve this goal and concentrate on two promising advances: singular value decomposition and cluster analysis. The strategies are illustrated by using data on the photocycle of the bacterial blue light photoreceptor, photoactive yellow protein.  相似文献   

2.
Singular value decomposition (SVD) is a technique commonly used in the analysis of spectroscopic data that both acts as a noise filter and reduces the dimensionality of subsequent least-squares fits. To establish the applicability of SVD to crystallographic data, we applied SVD to calculated difference Fourier maps simulating those to be obtained in a time-resolved crystallographic study of photoactive yellow protein. The atomic structures of one dark state and three intermediates were used in qualitatively different kinetic mechanisms to generate time-dependent difference maps at specific time points. Random noise of varying levels in the difference structure factor amplitudes, different extents of reaction initiation, and different numbers of time points were all employed to simulate a range of realistic experimental conditions. Our results show that SVD allows for an unbiased differentiation between signal and noise; a small subset of singular values and vectors represents the signal well, reducing the random noise in the data. Due to this, phase information of the difference structure factors can be obtained. After identifying and fitting a kinetic mechanism, the time-independent structures of the intermediates could be recovered. This demonstrates that SVD will be a powerful tool in the analysis of experimental time-resolved crystallographic data.  相似文献   

3.
The goal of time-resolved crystallographic experiments is to capture dynamic "snapshots" of molecules at different stages of a reaction pathway. In recent work, we have developed approaches to determine determined light-induced conformational changes in the proton pump bacteriorhodopsin by electron crystallographic analysis of two-dimensional protein crystals. For this purpose, crystals of bacteriorhodopsin were deposited on an electron microscopic grid and were plunge-frozen in liquid ethane at a variety of times after illumination. Electron diffraction patterns were recorded either from unilluminated crystals or from crystals frozen as early as 1 ms after illumination and used to construct projection difference Fourier maps at 3.5-A resolution to define light-driven changes in protein conformation. As demonstrated here, the data are of a sufficiently high quality that structure factors obtained from a single electron diffraction pattern of a plunge-frozen bacteriorhodopsin crystal are adequate to obtain an interpretable difference Fourier map. These difference maps report on the nature and extent of light-induced conformational changes in the photocycle and have provided incisive tools for understanding the molecular mechanism of proton transport by bacteriorhodopsin.  相似文献   

4.
5.
Direct observation of the progress of a catalysed reaction in crystals of glycogen phosphorylase b has been made possible through fast crystallographic data collection achieved at the Synchrotron Radiation source at Daresbury, UK. In the best experiments, data to 2.7 A resolution (some 108,300 measurements; 21,200 unique reflections) were measured in 25 min. In a series of time-resolved studies in which the control properties of the enzyme were exploited in order to slow down the reaction, the conversion of heptenitol to heptulose-2-phosphate, the phosphorylysis of maltoheptaose to yield glucose-1-phosphate and the oligosaccharide synthesis reaction involving maltotriose and glucose-1-phosphate have been monitored in the crystal. Changes in electron density in the difference Fourier maps are observed as the reaction proceeds not only at the catalytic site but also the allosteric and glycogen storage sites. Phosphorylase b is present in the crystals in the T state and under these conditions exhibits low affinity for both phosphate and oligosaccharide substrates. There are pronounced conformational changes associated with the formation and binding of the high-affinity dead-end product, heptulose-2-phosphate, which show that movement of an arginine residue, Arg 569, is critical for formation of the substrate-phosphate recognition site. The results are discussed with reference to proposals for the enzymic mechanism of phosphorylase. The feasibility for time-resolved studies on other systems and recent advances in this area utilizing Laue diffraction are also discussed.  相似文献   

6.
X-ray and electron diffraction studies of specific reaction intermediates, or reaction intermediate analogues, have produced a consistent picture of the structural mechanism of light-driven proton pumping by bacteriorhodopsin. Of central importance within this picture is the structure of the L-intermediate, which follows the retinal all-trans to 13-cis photoisomerization step of the K-intermediate and sets the stage for the primary proton transfer event from the positively charged Schiff base to the negatively charged Asp-85. Here we report the structural changes in bacteriorhodopsin following red light illumination at 150 K. Single crystal microspectrophotometry showed that only the L-intermediate is populated in three-dimensional crystals under these conditions. The experimental difference Fourier electron density map and refined crystallographic structure were consistent with those previously presented (Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E. M., and Neutze, R. (2000) Nature 406, 645-648; Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E. M., and Neutze, R. (2001) Photochem. Photobiol. 74, 794-804). Based on the refined crystallographic structures, molecular dynamic simulations were used to examine the influence of the conformational change of the protein that is associated with the K-to-L transition on retinal dynamics. Implications regarding the structural mechanism for proton pumping by bacteriorhodopsin are discussed.  相似文献   

7.
After a review of the current status of density functional theory (DFT) for spin-polarized and spin-coupled systems, we focus on the resting states and intermediates of redox-active metalloenzymes and electron transfer proteins, showing how comparisons of DFT-calculated spectroscopic parameters with experiment and evaluation of related energies and geometries provide important information. The topics we examine include (1) models for the active-site structure of methane monooxygenase intermediate Q and ribonucleotide reductase intermediate X; (2) the coupling of electron transfer to proton transfer in manganese superoxide dismutase, with implications for reaction kinetics; (3) redox, pK(a), and electronic structure issues in the Rieske iron-sulfur protein, including their connection to coupled electron/proton transfer, and an analysis of how partial electron delocalization strongly alters the electron paramagnetic resonance spectrum; (4) the connection between protein-induced structural distortion and the electronic structure of oxidized high-potential 4Fe4S proteins with implications for cluster reactivity; (5) an analysis of cluster assembly and central-atom insertion into the FeMo cofactor center of nitrogenase based on DFT structural and redox potential calculations.  相似文献   

8.
The bacteriophage HK97 capsid is a molecular machine that exhibits large-scale conformational rearrangements of its 420 identical protein subunits during capsid maturation. Immature empty capsids, termed Prohead II, assemble in vivo in an Escherichia coli expression system. Maturation of these particles may be induced in vitro, converting them into Head II capsids that are indistinguishable in conformation from the capsid of an infectious phage particle. One method of in vitro maturation requires acidification to drive the reaction through two expansion intermediates (EI-I, EI-II) to its penultimate particle state (EI-III), which has 86% more internal volume than Prohead II. Neutralization of EI-III produces the fully mature capsid, Head II. The three expansion intermediates and the acid expansion pathway were characterized by cryo-EM analysis and 3D reconstruction. We now report that, although large-scale structural changes are involved, the electron density maps for these intermediate states are readily interpreted in terms of quasi-atomic models based on subunit structures determined by prior crystallographic analysis of Head II. Progression through the expansion intermediate states primarily represents rigid-body rotations and translations of the subunits, accompanied by refolding of two small regions, the N-terminal arm and a beta-hairpin called the E-loop. Movies made with these pseudo-atomic coordinates and the Head II X-ray coordinates illuminate various aspects of the maturation pathway in the course of which the pattern of inter-subunit interactions is sequentially transformed while the integrity of the capsid is maintained.  相似文献   

9.
Noguchi T  Suzuki H  Tsuno M  Sugiura M  Kato C 《Biochemistry》2012,51(15):3205-3214
Photosynthetic oxygen evolution by plants and cyanobacteria is performed by water oxidation at the Mn(4)CaO(5) cluster in photosystem II. The reaction is known to proceed via a light-driven cycle of five intermediates called S(i) states (i = 0-4). However, the detailed reaction processes during the intermediate transitions remain unresolved. In this study, we have directly detected the proton and protein dynamics during the oxygen-evolving reactions using time-resolved infrared spectroscopy. The time courses of the absorption changes at 1400 and 2500 cm(-1), which represent the reactions and/or interaction changes of carboxylate groups and the changes in proton polarizability of strong hydrogen bonds, respectively, were monitored upon flash illumination. The results provided experimental evidence that during the S(3) → S(0) transition, drastic proton rearrangement, most likely reflecting the release of a proton from the catalytic site, takes place to form a transient state before the oxidation of the Mn(4)CaO(5) cluster that leads to O(2) formation. Early proton movement was also detected during the S(2) → S(3) transition. These observations reveal the common mechanism in which proton release facilitates the transfer of an electron from the Mn(4)CaO(5) cluster in the S(2) and S(3) states that already accumulate oxidizing equivalents. In addition, relatively slow rearrangement of carboxylate groups was detected in the S(0) → S(1) transition, which could contribute to the stabilization of the S(1) state. This study demonstrates that time-resolved infrared detection is a powerful method for elucidating the detailed molecular mechanism of photosynthetic oxygen evolution by pursuing the reactions of substrate and amino acid residues during the S-state transitions.  相似文献   

10.
11.
In this overview some of our crystallographic and spectroscopic studies on reactive complexes in myoglobin and nitric oxide synthase are summarised. Myoglobin and nitric oxide synthase are both haemoproteins with some similar reaction intermediates. For myoglobin we have studied different intermediates generated in the reaction with hydrogen peroxide by X-ray diffraction, single-crystal microspectrophotometry, electron paramagnetic resonance spectroscopy, Mössbauer spectroscopy, resonance Raman spectroscopy and quantum refinement. Several of these myoglobin states are quite susceptible to radiation-induced changes during crystallographic data collection, and we have observed a radiation-induced change of the ferric resting myoglobin to aqua ferrous myoglobin, of myoglobin compound II to a proposed intermediate H, and of myoglobin compound III to peroxy myoglobin. For the myoglobin compound II/ intermediate H we observe a single-bonded FeIV-O species, which is probably protonated. The long Fe-O bond seen in the crystal structure can be supported by the observation of a new 18O-sensitive resonance Raman mode at 687 cm−1. For nitric oxide synthase we detected with cryobiochemical methods in electron paramagnetic resonance spectra the first biopterin radical serving as electron donor to the ferrous-oxy complex, and that biopterin serves as a proton donor as well, in addition we could observe formation of the Fe(NO) complex with a amino-pterin cofactor capable to form a reactive radical.  相似文献   

12.
The amino acid sequence of cytoplasmic malate dehydrogenase (sMDH) has been determined by a combination of X-ray crystallographic and chemical sequencing methods. The initial molecular model incorporated an "X-ray amino acid sequence" that was derived primarily from an evaluation of a multiple isomorphous replacement phased electron density map calculated at 2.5-A resolution. Following restrained least-squares crystallographic refinement, difference electron density maps were calculated from model phases, and attempts were made to upgrade the X-ray amino acid sequence. The method used to find the positions of peptides in the X-ray structure was similar to those used for studying protein homology and was shown to be successful for large fragments. For sMDH, X-ray methods by themselves were insufficient to derive a complete amino acid sequence, even with partial chemical sequence data. However, for this relatively large molecule at medium resolution, the electron density maps were of considerable help in determining the linear position of peptide fragments. The N-acetylated polypeptide chain of sMDH has 331 amino acids and has been crystallographically refined to an R factor of 19% for 2.5-A resolution diffraction data.  相似文献   

13.
The development of "time-resolved" crystallographic methods, including trapping of reaction intermediates and rapid data collection, allows the comparative study of discrete structural species formed during a macromolecular reaction, such as enzymatic catalysis, ribozyme cleavage, or a protein photocycle. The primary technical details that must be addressed in such studies are the reaction initiation, the accumulation of a specific reaction species throughout the crystal, the lifetime of that species and of the crystal under the experimental conditions, and the method used to collect X-ray data. Methods of reaction initiation range from substrate diffusion, which is appropriate for the visualization of very long-lived intermediates, to photolysis, which is appropriate for the accumulation of rate-limited species with half-lives ranging from milliseconds to nanoseconds. This review discusses various methods for initiating turnover in crystals and trapping rate-limiting species for structural studies.  相似文献   

14.
In an effort to probe the structure of the reaction intermediate of metallo-beta-lactamase L1 when reacted with nitrocefin and other beta-lactams, time-dependent absorption and rapid-freeze-quench (RFQ) EPR spectra were obtained using the Co(II)-substituted form of the enzyme. When using nitrocefin as the substrate, time-dependent absorption spectra demonstrate that Co(II)-substituted L1 utilizes a reaction mechanism, similar to that of the native Zn(II) enzyme, in which a short-lived intermediate forms. RFQ-EPR spectra of this intermediate demonstrate that the binding of substrate results in a change in the electronic properties of one or both of the Co(II)'s in the enzyme that is consistent with a change in the coordination sphere of this metal ion. This observation provides evidence that the reaction intermediate is a metal-bound species. RFQ-EPR studies also demonstrate that other beta-lactams, such as cephalothin, meropenem, and penicillin G, proceed through an electronically similar complex and that the role of metal is similar in all cases. EPR spectroscopy has also identified distinct product-bound species of L1, indicating that reversible product binding must be considered in all future kinetic mechanisms. Consideration of the time-dependent optical and EPR studies in light of available crystallographic information indicates the intimate involvement of the metal ion in the Zn(2)-binding site of L1 in the hydrolytic reaction.  相似文献   

15.
A variety of neutron, X-ray and electron diffraction experiments have established that the transmembrane regions of bacteriorhodopsin undergo significant light-induced changes in conformation during the course of the photocycle. A recent comprehensive electron crystallographic analysis of light-driven structural changes in wild-type bacteriorhodopsin and a number of mutants has established that a single, large protein conformational change occurs within 1 ms after illumination, roughly coincident with the time scale of formation of the M(2) intermediate in the photocycle of wild-type bacteriorhodopsin. Minor differences in structural changes that are observed in mutants that display long-lived M(2), N or O intermediates are best described as variations of one fundamental type of conformational change, rather than representing structural changes that are unique to the optical intermediate that is accumulated. These observations support a model for the photocycle of wild-type bacteriorhodopsin in which the structures of the initial state and the early intermediates (K, L and M(1)) are well approximated by one protein conformation in which the Schiff base has extracellular accessibility, while the structures of the later intermediates (M(2), N and O) are well approximated by the other protein conformation in which the Schiff base has cytoplasmic accessibility.  相似文献   

16.
The 13C-NMR spectra of the reaction intermediates of D-amino acid oxidase (DAO) were measured with DAO reconstituted with FAD in which the 2-, 4-, 4a-, and 10a-positions of the isoalloxazine moiety were selectively 13C-enriched. The reaction intermediates used include charge-transfer complexes of the oxidized DAO with substrate intermediates and those of the reduced enzyme with substrate intermediates. For the former type of complex, the reaction intermediates with beta-cyano-D-alanine (D-BCNA) and D-proline were used, while for the latter the purple intermediates with D-alanine and D-proline were chosen. The 13C-resonances of 2-13C in the reaction intermediates with D-BCNA and D-proline were downfield-shifted by about 1 ppm relative to the free oxidized DAO. The 4-13C signal for the DAO-D-BCNA intermediate was observed at 1.2 ppm upfield from that of the oxidized DAO, though that for DAO-D-proline intermediate showed no shift. These results suggest modulation of the hydrogen bondings at C(2) = 0 and/or C(4) = 0 in these reaction intermediates. Comparison of the 13C-resonances of reduced DAO with those of free reduced FMN in the neutral and anionic forms indicate that FAD in reduced DAO is in the anionic reduced form. The 4a-13C resonance of reduced DAO is upfield-shifted by about 3 ppm from that of free reduced anionic FMN. Comparison of the 13C-resonances for the purple intermediates with those of reduced FMN and reduced DAO indicate unequivocally that FAD in the purple intermediate is in the anionic reduced state. The 4a-13C resonances for the purple intermediates were substantially upfield-shifted (by 2.4 ppm with D-alanine and 1.9 ppm with D-proline) relative to reduced DAO. This indicates that the electron density, and hence the nucleophilicity, of the 4a-carbon is elevated in the purple intermediate relative to free reduced DAO. This leads to a model in which the oxidative half reaction proceeds via the reaction of molecular oxygen at the 4a-position of the reduced FAD in the purple intermediate. This provides a rational molecular basis for the oxidative half reaction by way of the purple intermediate prior to product release rather than by way of free reduced enzyme after product release.  相似文献   

17.
We report a comprehensive electron crystallographic analysis of conformational changes in the photocycle of wild-type bacteriorhodopsin and in a variety of mutant proteins with kinetic defects in the photocycle. Specific intermediates that accumulate in the late stages of the photocycle of wild-type bacteriorhodopsin, the single mutants D38R, D96N, D96G, T46V, L93A and F219L, and the triple mutant D96G/F171C/F219L were trapped by freezing two-dimensional crystals in liquid ethane at varying times after illumination with a light flash. Electron diffraction patterns recorded from these crystals were used to construct projection difference Fourier maps at 3.5 A resolution to define light-driven changes in protein conformation.Our experiments demonstrate that in wild-type bacteriorhodopsin, a large protein conformational change occurs within approximately 1 ms after illumination. Analysis of structural changes in wild-type and mutant bacteriorhodopsins under conditions when either the M or the N intermediate is preferentially accumulated reveals that there are only small differences in structure between M and N intermediates trapped in the same protein. However, a considerably larger variation is observed when the same optical intermediate is trapped in different mutants. In some of the mutants, a partial conformational change is present even prior to illumination, with additional changes occurring upon illumination. Selected mutations, such as those in the D96G/F171C/F219L triple mutant, can sufficiently destabilize the wild-type structure to generate almost the full extent of the conformational change in the dark, with minimal additional light-induced changes. We conclude that the differences in structural changes observed in mutants that display long-lived M, N or O intermediates are best described as variations of one fundamental type of conformational change, rather than representing structural changes that are unique to the optical intermediate that is accumulated. Our observations thus support a simplified view of the photocycle of wild-type bacteriorhodopsin in which the structures of the initial state and the early intermediates (K, L and M1) are well approximated by one protein conformation, while the structures of the later intermediates (M2, N and O) are well approximated by the other protein conformation. We propose that in wild-type bacteriorhodopsin and in most mutants, this conformational change between the M1 and M2 states is likely to make an important contribution towards efficiently switching proton accessibility of the Schiff base from the extracellular side to the cytoplasmic side of the membrane.  相似文献   

18.
Proteins in the crystalline state retain biological activity although lattice constraints, the composition of the bathing medium and the low temperatures required for the stabilization of catalytic intermediates might alter their structure and dynamics with respect to the solution phase. Detailed functional studies are essential to the planning and the interpretation of time-resolved X-ray crystallographic experiments.  相似文献   

19.
In complex cycles, helminth larvae in their intermediate hosts typically grow to a fixed size. We define this cessation of growth before transmission to the next host as growth arrest at larval maturity (GALM). Where the larval parasite controls its own growth in the intermediate host, in order that growth eventually arrests, some form of size- or time-dependent increase in its death rate must apply. In contrast, the switch from growth to sexual reproduction in the definitive host can be regulated by constant (time-independent) mortality as in standard life history theory. We here develop a step-wise model for the evolution of complex helminth life cycles through trophic transmission, based on the approach of Parker et al. [2003a. Evolution of complex life cycles in helminth parasites. Nature London 425, 480-484], but which includes size- or time-dependent increase in mortality rate. We assume that the growing larval parasite has two components to its death rate: (i) a constant, size- or time-independent component, and (ii) a component that increases with size or time in the intermediate host. When growth stops at larval maturity, there is a discontinuous change in mortality to a constant (time-independent) rate. This model generates the same optimal size for the parasite larva at GALM in the intermediate host whether the evolutionary approach to the complex life cycle is by adding a new host above the original definitive host (upward incorporation), or below the original definitive host (downward incorporation). We discuss some unexplored problems for cases where complex life cycles evolve through trophic transmission.  相似文献   

20.
Time-resolved x-ray diffraction studies of the isolated sarcoplasmic reticulum (SR) membrane have provided the difference electron density profile for the SR membrane for which the Ca2+ ATPase is transiently trapped exclusively in the first phosphorylated intermediate state, E1 approximately P, in absence of detectable enzyme turnover vs. that before ATP-initiated phosphorylation of the enzyme. These diffraction studies, which utilized the flash-photolysis of caged ATP, were performed at temperatures between 0 and -2 degrees C and with a time-resolution of 2-5 s. Analogous time-resolved x-ray diffraction studies of the SR membrane at 7-8 degrees C with a time resolution of 0.2-0.5 s have previously provided the difference electron density profile for the SR membrane for which the Ca2+ ATPase is only predominately in the first phosphorylated intermediate state under conditions of enzyme turnover vs. that before enzyme phosphorylation. The two difference profiles, compared at the same low resolution (approximately 40 A), are qualitatively similar but nevertheless contain some distinctly different features and have therefore been analyzed via a step-function model analysis. This analysis was based on the refined step-function models for the two different electron density profiles obtained independently from x-ray diffraction studies at higher resolution (16-17 A) of the SR membrane before enzyme phosphorylation at 7.5 and -2 degrees C. The step-function model analysis indicated that the low resolution difference profiles derived from both time-resolved x-ray diffraction experiments arise from a net movement of Ca2+ ATPase protein mass from the outer monolayer to the inner monolayer of the SR membrane lipid bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号