首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Overexpression of the sarcoplasmic reticulum Ca ATPase (SERCA2a) produces positive inotropism and it has been proposed as a promising strategy to counteract defective excitation-contraction coupling in the failing heart. However, the effects of overexpressing SERCA2a on action potential duration (APD), which can affect diastolic parameters in the heart, is unknown. We, therefore, investigated the relationship between SERCA2a overexpression and APD in adult rabbit ventricular myocytes which were cultured for 48 h. Overexpression of SERCA2a was achieved by infection with an adenovirus carrying both SERCA2a and GFP independently driven by CMV promoters, Ad.SERCA2a. Myocytes infected with Ad.GFP only and/or non-infected myocytes were used as controls. Electrophysiological measurements were taken using switch clamping with 15-25 M Omega resistance microelectrodes. In Ad.SERCA2a infected myocytes, APD was significantly reduced compared with both groups of control cells at 0.5 Hz (APD50 (ms) non-infected: 481+/-98, n=12; Ad.GFP: 464+/-85, n=11; Ad.SERCA2a: 285+/-69, n=13 (mean+/-S.E.M.) and at 1 Hz (APD50 (ms) non-infected: 375+/-64, n=22; Ad.GFP: 363+/-47, n=18; Ad.SERCA2a: 231+/-54, n=24). Using AP voltage-clamping, we recorded a 0.2 mM Cd-sensitive current which can be ascribed to Ca current flowing during the AP. The integral of this current was reduced in Ad.SERCA2a myocytes compared with control (non-infected charge (pC): 27.5+/-4.2, n=8; Ad.SERCA2a: 15.5+/-4.1, n=11; P<0.01). Using AP clamping during the loading protocol, to take into account changes in APD, SR Ca content (assessed by integrating a 20 mM caffeine-induced inward current) was significantly larger in Ad.SERCA2a compared with both controls (SR Ca content (microM/l non-mitochondrial volume): non-infected: 25.5+/-7, n=8; Ad.GFP: 25.7+/-11, n=6; Ad.SERCA2a: 80.5+/-19, n=8). In conclusion, this study shows that SR Ca content is increased despite decreased Ca entry after overexpression of SERCA2a, and this can lead to positive inotropism. This effect coupled with shorter APD may be a useful therapeutic modality in heart failure.  相似文献   

2.
3.
P-type Ca2+-ATPases of the sarco(endo)plasmic reticulum (SERCAs) and plasma membrane (PMCAs) are responsible for maintaining the Ca2+ gradients across cellular membranes that are required for regulation of Ca2+-mediated signaling and other biological processes. Gene-targeting studies of SERCA isoforms 1, 2, and 3 and PMCA isoforms 1, 2, and 4 have confirmed some of the general functions proposed for these pumps, such as a major role in excitation-contraction coupling for SERCA1 and SERCA2 and housekeeping functions for PMCA1 and SERCA2, but have also revealed some unexpected phenotypes. These include squamous cell cancer and plasticity in the regulation of Ca2+-mediated exocytosis in SERCA2 heterozygous mutant mice, modulation of Ca2+ signaling in SERCA3-deficient mice, deafness and balance disorders in PMCA2 null mice, and male infertility in PMCA4 null mice. These unique phenotypes provide new information about the cellular functions of these pumps, the requirement of their activities for higher order physiological processes, and the pathophysiological consequences of pump dysfunction.  相似文献   

4.
This study determined whether whole cell Ca(2+) transients and unitary sarcoplasmic reticulum (SR) Ca(2+) release events are constant throughout adult life or whether Ca(2+) release is altered in aging ventricular myocytes. Myocytes were isolated from young adult (approximately 5 mo old) and aged (approximately 24 mo old) mice. Spontaneous Ca(2+) sparks and Ca(2+) transients initiated by field stimulation were detected with fluo-4. All experiments were conducted at 37 degrees C. Ca(2+) transient amplitudes were reduced, and Ca(2+) transient rise times were abbreviated in aged cells stimulated at 8 Hz compared with young adult myocytes. Furthermore, the incidence and frequency of spontaneous Ca(2+) sparks were markedly higher in aged myocytes compared with young adult cells. Spark amplitudes and spatial widths were similar in young adult and aged myocytes. However, spark half-rise times and half-decay times were abbreviated in aged cells compared with younger cells. Resting cytosolic Ca(2+) levels and SR Ca(2+) stores were assessed by rapid application of caffeine in fura-2-loaded cells. Neither resting Ca(2+) levels nor SR Ca(2+) content differed between young adult and aged cells. Thus increased spark frequency in aging cells was not attributable to increased SR Ca(2+) stores. Furthermore, the decrease in Ca(2+) transient amplitude was not due to a decrease in SR Ca(2+) load. These results demonstrate that alterations in fundamental SR Ca(2+) release units occur in aging ventricular myocytes and raise the possibility that alterations in Ca(2+) release may reflect age-related changes in fundamental release events rather than changes in SR Ca(2+) stores and diastolic Ca(2+) levels.  相似文献   

5.
The relative contribution of the sarcoplasmic reticulum (SR), the L-type Ca(2+) channel and the Na(+)/Ca(2+) exchanger (NCX) were assessed in turtle ventricular myocytes using epifluorescent microscopy and electrophysiology. Confocal microscopy images of turtle myocytes revealed spindle-shaped cells, which lacked T-tubules and had a large surface area-to-volume ratio. Myocytes loaded with the fluorescent Ca(2+)-sensitive dye Fura-2 elicited Ca(2+) transients, which were insensitive to ryanodine and thapsigargin, indicating the SR plays a small role in the regulation of contraction and relaxation in the turtle ventricle. Sarcolemmal Ca(2+) currents were measured using the perforated-patch voltage-clamp technique. Depolarizing voltage steps to 0 mV elicited an inward current that could be blocked by nifedipine, indicating the presence of Ca(2+) currents originating from L-type Ca(2+) channels (I(Ca)). The density of I(Ca) was 3.2 +/- 0.5 pA/pF, which led to an overall total Ca(2+) influx of 64.1 +/- 9.3 microM/l. NCX activity was measured as the Ni(+)-sensitive current at two concentrations of intracellular Na(+) (7 and 14 mM). Total Ca(2+) influx through the NCX during depolarizing voltage steps to 0 mV was 58.5 +/- 7.7 micromol/l and 26.7 +/- 3.2 micromol/l at 14 and 7 mM intracellular Na(+), respectively. In the absence of the SR and L-type Ca(2+) channels, the NCX is able to support myocyte contraction independently. Our results indicate turtle ventricular myocytes are primed for sarcolemmal Ca(2+) transport, and most of the Ca(2+) used for contraction originates from the L-type Ca(2+) channel.  相似文献   

6.
The zebrafish is an important model for the study of vertebrate cardiac development with a rich array of genetic mutations and biological reagents for functional interrogation. The similarity of the zebrafish (Danio rerio) cardiac action potential with that of humans further enhances the relevance of this model. In spite of this, little is known about excitation-contraction coupling in the zebrafish heart. To address this issue, adult zebrafish cardiomyocytes were isolated by enzymatic perfusion of the cannulated ventricle and were subjected to amphotericin-perforated patch-clamp technique, confocal calcium imaging, and/or measurements of cell shortening. Simultaneous recordings of the voltage dependence of the L-type calcium current (I(Ca,L)) amplitude and cell shortening showed a typical bell-shaped current-voltage (I-V) relationship for I(Ca,L) with a maximum at +10 mV, whereas calcium transients and cell shortening showed a monophasic increase with membrane depolarization that reached a plateau at membrane potentials above +20 mV. Values of I(Ca,L) were 53, 100, and 17% of maximum at -20, +10, and +40 mV, while the corresponding calcium transient amplitudes were 64, 92, and 98% and cell shortening values were 62, 95, and 96% of maximum, respectively, suggesting that I(Ca,L) is the major contributor to the activation of contraction at voltages below +10 mV, whereas the contribution of reverse-mode Na/Ca exchange becomes increasingly more important at membrane potentials above +10 mV. Comparison of the recovery of I(Ca,L) from acute and steady-state inactivation showed that reduction of I(Ca,L) upon elevation of the stimulation frequency is primarily due to calcium-dependent I(Ca,L) inactivation. In conclusion, we demonstrate that a large yield of healthy atrial and ventricular myocytes can be obtained by enzymatic perfusion of the cannulated zebrafish heart. Moreover, zebrafish ventricular myocytes differed from that of large mammals by having larger I(Ca,L) density and a monophasically increasing contraction-voltage relationship, suggesting that caution should be taken upon extrapolation of the functional impact of mutations on calcium handling and contraction in zebrafish cardiomyocytes.  相似文献   

7.
Calcium (Ca2+) ions are prominent cell signaling regulators that carry information for a variety of cellular processes and are critical for neuronal survival and function. Furthermore, Ca2+ acts as a prominent second messenger that modulates divergent intracellular cascades in the nerve cells. Therefore, nerve cells have developed intricate Ca2+ signaling pathways to couple the Ca2+ signal to their biochemical machinery. Notably, intracellular Ca2+ homeostasis greatly relies on the rapid redistribution of Ca2+ ions into the diverse subcellular organelles which serve as Ca2+ stores, including the endoplasmic reticulum (ER). It is well established that Ca2+ released into the neuronal cytoplasm is pumped back into the ER by the sarco-/ER Ca2+ ATPase 2 (SERCA2), a P-type ion-motive ATPase that resides on the ER membrane. Even though the SERCA2 is constitutively expressed in nerve cells, its precise role in brain physiology and pathophysiology is not well-characterized. Intriguingly, SERCA2-dependent Ca2+ dysregulation has been implicated in several disorders that affect cognitive function, including Darier’s disease, schizophrenia, Alzheimer’s disease, and cerebral ischemia. The current review summarizes knowledge on the expression pattern of the different SERCA2 isoforms in the nervous system, and further discusses evidence of SERCA2 dysregulation in various neuropsychiatric disorders. To the best of our knowledge, this is the first literature review that specifically highlights the critical role of the SERCA2 in the brain. Advancing knowledge on the role of SERCA2 in maintaining neuronal Ca2+ homeostasis may ultimately lead to the development of safer and more effective pharmacotherapies to combat debilitating neuropsychiatric disorders.  相似文献   

8.
Adenoviral vectors have been successfully used to increase the activity of the sarcoplasmic reticulum Ca2+-ATPase in adult ventricular myocytes and to produce functional improvements in contractility in vivo and in vitro. While in vivo experiments are often performed in rat, in vitro manipulation of myocytes has been confined to rabbit and human cells. In the present study we make quantitative comparisons between cultured adult rat and rabbit myocytes in their responses to SERCA2a overexpression using adenoviral vectors. We also compare the strategy of SERCA2a overexpression with that of phospholamban down-regulation, using adenovirus carrying antisense message, as a means to increase SERCA2a activity and enhance contraction and relaxation. Adult myocytes were cultured for 48 h with either vector, and contraction assessed in 2 mM Ca2+, 37°C, at a range of stimulation frequencies. Contraction amplitude was enhanced to a similar degree in either rat or rabbit myocytes at most stimulation frequencies, with SERCA2a overexpression and phospholamban down-regulation approximately equally effective. The maximum effect of either vector was less than that of -adrenoceptor agonists. Relaxation was accelerated in rabbit myocytes more strongly than in rat. Phospholamban antisense was slightly less effective than SERCA2a overexpression on relaxation times in rabbit. Increasing stimulation frequency also accelerated relaxation in rat myocytes: this effect was greater than, and additive with, that of SERCA2a overexpression. We conclude that, despite some species-dependent modification, the effects of increased SERCA2a activity are broadly similar in rat and rabbit. Both SERCA2a overexpression and phospholamban down-regulation are effective strategies, and neither appears to produce supraphysiological stimulatory effects on contraction or relaxation.  相似文献   

9.
10.
Patients with cardiac hypertrophy and heart failure display abnormally slowed myocardial relaxation, which is associated with downregulation of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) gene expression. We previously showed that SERCA2 downregulation can be simulated in cultured neonatal rat ventricular myocytes (NRVM) by treatment with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA). However, NRVM express three different PMA-sensitive PKC isoenzymes (PKCalpha, PKCepsilon, and PKCdelta), which may be differentially regulated and have specific functions in the cardiomyocyte. Therefore, in this study we used adenoviral vectors encoding wild-type (wt) and kinase-defective, dominant negative (dn) mutant forms of PKCalpha, PKCepsilon, and PKCdelta to analyze their individual effects in regulating SERCA2 gene expression in NRVM. Overexpression of wtPKCepsilon and wtPKCdelta, but not wtPKCalpha, was sufficient to downregulate SERCA2 mRNA levels, as assessed by Northern blotting and quantitative, real-time RT-PCR (69 +/- 7 and 61 +/- 9% of control levels for wtPKCepsilon and wtPKCdelta, respectively; P < 0.05 for each adenovirus; n = 8 experiments). Conversely, overexpression of all three dnPKCs appeared to significantly increase SERCA2 mRNA levels (dnPKCdelta > dnPKCepsilon > dnPKCalpha). dnPKCdelta overexpression produced the largest increase (2.8 +/- 1.0-fold; n = 11 experiments). However, PMA treatment was still sufficient to downregulate SERCA2 mRNA levels despite overexpression of each dominant negative mutant. These data indicate that the novel PKC isoenzymes PKCepsilon and PKCdelta selectively regulate SERCA2 gene expression in cardiomyocytes but that neither PKC alone is necessary for this effect if the other novel PKC can be activated.  相似文献   

11.
The hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, or cardiac (If)/neuronal (Ih) time- and voltage-dependent inward cation current channels, are conventionally considered as monovalent-selective channels. Recently we discovered that calcium ions can permeate through HCN4 and Ih channels in neurons. This raises the possibility of Ca2+ permeation in If, the Ih counterpart in cardiac myocytes, because of their structural homology. We performed simultaneous measurement of fura-2 Ca2+ signals and whole cell currents produced by HCN2 and HCN4 channels (the 2 cardiac isoforms present in ventricles) expressed in HEK293 cells and by If in rat ventricular myocytes. We observed Ca2+ influx when HCN/If channels were activated. Ca2+ influx was increased with stronger hyperpolarization or longer pulse duration. Cesium, an If channel blocker, inhibited If and Ca2+ influx at the same time. Quantitative analysis revealed that Ca2+ flux contributed to 0.5% of current produced by the HCN2 channel or If. The associated increase in Ca2+ influx was also observed in spontaneously hypertensive rat (SHR) myocytes in which If current density is higher than that of normotensive rat ventricle. In the absence of EGTA (a Ca2+ chelator), preactivation of If channels significantly reduced the action potential duration, and the effect was blocked by another selective If channel blocker, ZD-7288. In the presence of EGTA, however, preactivation of If channels had no effects on action potential duration. Our data extend our previous discovery of Ca2+ influx in Ih channels in neurons to If channels in cardiac myocytes. calcium ion flux; hyperpolarization-activated, cyclic nucleotide-gated/cardiac time- and volume-dependent cation current channels  相似文献   

12.
In cardiac muscle, Ca2+ is released from the sarcoplasmic reticulum (SR) in units called Ca2+ sparks. Ca2+ spark characteristics have been studied almost entirely at room temperature. This study compares characteristics of spontaneous sparks detected with fluo 3 in resting mouse ventricular myocytes at 22 and 37 degrees C. The incidence and frequency of Ca2+ sparks decreased dramatically at 37 degrees C compared with 22 degrees C. Also, spark amplitudes and times to peak were significantly reduced at 37 degrees C. In contrast, spatial width and decay times were unchanged. During field stimulation, peak spatially averaged transients were similar at 22 and 37 degrees C, and experiments with fura 2 demonstrated that diastolic and systolic Ca2+ concentrations were unchanged. However, SR Ca2+ content decreased significantly at 37 degrees C. Restoration of SR Ca2+ by superfusion with 5 mM Ca2+ increased spark frequency but did not reverse the effects of temperature on spark parameters. Thus effects of temperature on spark frequency may reflect changes in SR stores, whereas changes in spark amplitude and rise time may reflect known effects of temperature on ryanodine receptor function.  相似文献   

13.
Mani AR  Ollosson R  Mani Y  Ippolito S  Moore KP 《Life sciences》2006,79(17):1593-1599
Nitric oxide has both an inhibitory and excitatory role in the regulation of pre-ganglionic sympathetic neurons, involving the iNOS and nNOS systems respectively. The aim of the present study was to examine cardiovascular autonomic activity in iNOS knockout mice using spectral analysis of heart rate variability (HRV), and to determine the role of iNOS in altered HRV in endotoxaemia. Electrocardiograms were recorded in anaesthetised mice, and the R-R intervals digitized for spectral analysis of HRV and cardiac rhythm regularity using sample entropy analysis. The basal heart rate was higher in iNOS knockout mice compared with controls (465+/-8 vs 415+/-13 beat/min P<0.05), with a significant increase in the low frequency power of HRV spectra in iNOS knockout mice compared with controls (49.4+/-4.3 vs 33.8+/-5.6 normalized units, P<0.05), consistent with increased cardiac sympathetic activity. Endotoxaemia is known to decrease HRV, but the role of iNOS is unknown. LPS (20 mg/kg i.p) increased basal heart rate in both wild type and iNOS knockout mice, but caused a depression of HRV and sample entropy in both groups. Studies in isolated beating atria showed that the changes of HRV under basal or post-LPS conditions disappeared in vitro, suggesting that the autonomic system is responsible for altered HRV. We conclude that disruption of iNOS gene leads to an increase in the low frequency power of HRV consistent with increased cardiac sympathetic activity. These data also demonstrate that LPS-induced decrease of HRV is independent of iNOS.  相似文献   

14.
In the present study, we have demonstrated hysteresis phenomena in the excitability of single, enzymatically dissociated guinea pig ventricular myocytes. Membrane potentials were recorded with patch pipettes in the whole-cell current clamp configuration. Repetitive stimulation with depolarizing current pulses of constant cycle length and duration but varying strength led to predictable excitation (1:l) and non-excitation (1:0) patterns depending on current strength. In addition, transition between patterns depended on the direction of current intensity change and stable hysteresis loops were obtained in stimulus:response pattern vs. current intensity plots in 14 cells. Increase of pulse duration and decrease of stimulation rate contributed to a reduction in hysteresis loop areas. Changes in amplitude and shape of the subthreshold responses during the transitions from one stable pattern to the other, suggested that activity led to an increase in membrane resistance, particularly in the voltage domain between resting potential, and threshold. Therefore, we modelled the dynamic behaviour of the single cells as a function of diastolic membrane resistance, using previously published analytical solutions. Numerical iteration of the analytical model equations closely reproduced the experimental hysteresis loops in both qualitative and quantitative ways. In particular, the effect of stimulation frequency on the model was similar to the experimental findings. The overall study suggests that the excitability pattern of guinea pig ventricular myocytes accounts for hysteresis and bistabilities when current intensity is allowed to fluctuate around threshold levels.  相似文献   

15.
Powell T  Matsuoka S  Sarai N  Noma A 《Cell calcium》2004,35(6):535-542
The measurements of the sarcomere length in dissociated cardiac ventricular myocytes are discussed using mainly our own experimental data. The striation periodicity of these unloaded cells was found to be that which is to be expected of a myocyte free of the ultrastructural constraints imposed upon it by the normal syncytial matrix of the ventricular wall. The sarcomere length and [Ca(2+)] relationship was consistent as expected from the intact tissue, when it was measured soon after partial rupturing the cell membrane. Miniature fluctuations of individual sarcomere length were demonstrated during rest, which was augmented by the Ca(2+) overload. The [Ca(2+)] could be estimated from the measurements of sarcomere length during the positive staircase of contraction. The usefulness of the optical measurement of sarcomere pattern was indicated.  相似文献   

16.
Cardiac alternans is a dangerous rhythm disturbance of the heart, in which rapid stimulation elicits a beat-to-beat alternation in the action potential duration (APD) and calcium (Ca) transient amplitude of individual myocytes. Recently, “subcellular alternans”, in which the Ca transients of adjacent regions within individual myocytes alternate out-of-phase, has been observed. A previous theoretical study suggested that subcellular alternans may result during static pacing from a Turing-type symmetry breaking instability, but this was only predicted in a subset of cardiac myocytes (with negative Ca to voltage (Ca→Vm) coupling) and has never been directly verified experimentally. A recent experimental study, however, showed that subcellular alternans is dynamically induced in the remaining subset of myocytes during pacing with a simple feedback control algorithm (“alternans control”). Here we show that alternans control pacing changes the effective coupling between the APD and the Ca transient (VmCa coupling), such that subcellular alternans is predicted to occur by a Turing instability in cells with positive Ca→Vm coupling. In addition to strengthening the understanding of the proposed mechanism for subcellular alternans formation, this work (in concert with previous theoretical and experimental results) illuminates subcellular alternans as a striking example of a biological Turing instability in which the diffusing morphogens can be clearly identified.  相似文献   

17.
The role of the Na+/Ca2+ exchanger (NCX) as the main pathway for Ca2+ extrusion from ventricular myocytes is well established. However, both the role of the Ca2+ entry mode of NCX in regulating local Ca2+ dynamics and the role of the Ca2+ exit mode during the majority of the physiological action potential (AP) are subjects of controversy. The functional significance of NCXs location in T-tubules and potential co-localization with ryanodine receptors was examined using a local Ca2+ control model of low computational cost. Our simulations demonstrate that under physiological conditions local Ca2+ and Na+ gradients are critical in calculating the driving force for NCX and hence in predicting the effect of NCX on AP. Under physiological conditions when 60% of NCXs are located on T-tubules, NCX may be transiently inward within the first 100 ms of an AP and then transiently outward during the AP plateau phase. Thus, during an AP NCX current (INCX) has three reversal points rather than just one. This provides a resolution to experimental observations where Ca2+ entry via NCX during an AP is inconsistent with the time at which INCX is thought to become inward. A more complex than previously believed dynamic regulation of INCX during AP under physiological conditions allows us to interpret apparently contradictory experimental data in a consistent conceptual framework. Our modelling results support the claim that NCX regulates the local control of Ca2+ and provide a powerful tool for future investigations of the control of sarcoplasmic reticulum (SR) Ca2+ release under pathological conditions.  相似文献   

18.
Wassenaar TA  Daura X  Padrós E  Mark AE 《Proteins》2009,74(3):669-681
The purple membrane (PM) is a specialized membrane patch found in halophilic archaea, containing the photoreceptor bacteriorhodopsin (bR). It is long known that calcium ions bind to the PM, but their position and role remain elusive to date. Molecular dynamics simulations in conjunction with a highly detailed model of the PM have been used to investigate the stability of calcium ions placed at three proposed cation binding sites within bR, one near the Schiff base, one in the region of the proton release group, and one near Glu9. The simulations suggest that, of the sites investigated, the binding of calcium ions was most likely at the proton release group. Binding in the region of the Schiff base, while possible, was associated with significant changes in local geometry. Calcium ions placed near Glu9 in the interior of bR (simultaneously to a Ca(2+) near the Schiff base and another one near the Glu194-Glu204 site) were not stable. The results obtained are discussed in relation to recent experimental observations and theoretical considerations.  相似文献   

19.
Duchenne muscular dystrophy (DMD) is a lethal degenerative disease of skeletal muscle, characterized by the absence of the cytoskeletal protein dystrophin. Some DMD patients show a dilated cardiomyopathy leading to heart failure. This study explores the possibility that dystrophin is involved in the regulation of a stretch-activated channel (SAC), which in the absence of dystrophin has increased activity and allows greater Ca(2+) into cardiomyocytes. Because cardiac failure only appears late in the progression of DMD, we examined age-related effects in the mdx mouse, an animal model of DMD. Ca(2+) measurements using a fluorescent Ca(2+)-sensitive dye fluo-4 were performed on single ventricular myocytes from mdx and wild-type mice. Immunoblotting and immunohistochemistry were performed on whole hearts to determine expression levels of key proteins involved in excitation-contraction coupling. Old mdx mice had raised resting intracellular Ca(2+) concentration ([Ca(2+)](i)). Isolated ventricular myocytes from young and old mdx mice displayed abnormal Ca(2+) transients, increased protein expression of the ryanodine receptor, and decreased protein expression of serine-16-phosphorylated phospholamban. Caffeine-induced Ca(2+) transients showed that the Na(+)/Ca(2+) exchanger function was increased in old mdx mice. Two SAC inhibitors streptomycin and GsMTx-4 both reduced resting [Ca(2+)](i) in old mdx mice, suggesting that SACs may be involved in the Ca(2+)-handling abnormalities in these animals. This finding was supported by immunoblotting data, which demonstrated that old mdx mice had increased protein expression of canonical transient receptor potential channel 1, a likely candidate protein for SACs. SACs may play a role in the pathogenesis of the heart failure associated with DMD. Early in the disease process and before the onset of clinical symptoms increased, SAC activity may underlie the abnormal Ca(2+) handling in young mdx mice.  相似文献   

20.
The measurements of the sarcomere length in dissociated cardiac ventricular myocytes are discussed using mainly our own experimental data. The striation periodicity of these unloaded cells was found to be that which is to be expected of a myocyte free of the ultrastrucural constraints imposed upon it by the normal syncytial matrix of the ventricular wall. The sarcomere length and [Ca2+] relationship was consistent as expected from the intact tissue, when it was measured soon after partial rupturing the cell membrane. Miniature fluctuations of individual sarcomere length were demonstrated during rest, which was augmented by the Ca2+ overload. The [Ca2+] could be estimated from the measurements of sarcomere length during the positive staircase of contraction. The usefulness of the optical measurement of sarcomere pattern was indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号