首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, cholesterol has been emerging as a major regulator of ion channel function. We have previously shown that cholesterol suppresses Kir2 channels, a subfamily of constitutively active strongly rectifying K+ channels. Furthermore, our earlier studies have shown that cholesterol sensitivity of Kir2 channels depends on a group of residues that form a belt-like structure around the cytosolic pore of the channel in proximity to the transmembrane domain. In this study, we focus on the contributions of different structural domains of Kir2 channels in the regulation of their cholesterol sensitivity. Focusing on the mildest mutation in the sensitivity belt, L222I, we show that the sensitivity of the channel to cholesterol can be restored by crosstalk between three distinct cytosolic regions: the C-terminal CD loop, the EF and GA loops of the C-terminus, and the βA sheet of the N-terminus. Thus, in addition to the importance of residues that affect the cytosolic G-loop gate in the sensitivity of Kir2 channels to cholesterol, our data suggest an important role to the interactions at the interface between the channel’s N- and C- termini that couple the intracellular domains of its four subunits during gating.  相似文献   

2.
Kir channels are important in setting the resting membrane potential and modulating membrane excitability. A common feature of Kir2 channels and several other ion channels that has emerged in recent years is that they are regulated by cholesterol, a major lipid component of the plasma membrane whose excess is associated with multiple pathological conditions. Yet, the mechanism by which cholesterol affects channel function is not clear. We have recently shown that the sensitivity of Kir2 channels to cholesterol depends on residues in the CD loop of the cytosolic domain of the channels with one of the mutations, L222I, abrogating cholesterol sensitivity of the channels completely. Here we show that in addition to Kir2 channels, members of other Kir subfamilies are also regulated by cholesterol. Interestingly, while similarly to Kir2 channels, several Kir channels, Kir1.1, Kir4.1 and Kir6.2Delta36 were suppressed by an increase in membrane cholesterol, the function of Kir3.4* and Kir7.1 was enhanced following cholesterol enrichment. Furthermore, we show that independent of the impact of cholesterol on channel function, mutating residues in the corresponding positions of the CD loop in Kir2.1 and Kir3.4*, inhibits cholesterol sensitivity of Kir channels, thus extending the critical role of the CD loop beyond Kir2 channels.  相似文献   

3.
Inwardly rectifying potassium (Kir) channels play an important role in setting the resting membrane potential and modulating membrane excitability. An emerging feature of several Kir channels is that they are regulated by cholesterol. However, the mechanism by which cholesterol affects channel function is unclear. Here we show that mutations of two distant Kir2.1 cytosolic residues, Leu-222 and Asn-251, form a two-way molecular switch that controls channel modulation by cholesterol and affects critical hydrogen bonding. Notably, these two residues are linked by a residue chain that continues from Asn-251 to connect adjacent subunits. Furthermore, our data indicate that the same switch also regulates the sensitivity of the channels to phosphatidylinositol 4,5-bisphosphate, a phosphoinositide that is required for activation of Kir channels. Thus, although cholesterol and phosphatidylinositol 4,5-bisphosphate do not interact with the same region of Kir2.1, these different modulators induce a common gating pathway of the channel.  相似文献   

4.
Inwardly rectifying potassium (Kir) channels are characterized by a long pore comprised of continuous transmembrane and cytosolic portions. A high-resolution structure of a Kir3.1 chimera revealed the presence of the cytosolic (G-loop) gate captured in the closed or open conformations. Here, we conducted molecular-dynamics simulations of these two channel states in the presence and absence of phosphatidylinositol bisphosphate (PIP(2)), a phospholipid that is known to gate Kir channels. Simulations of the closed state with PIP(2) revealed an intermediate state between the closed and open conformations involving direct transient interactions with PIP(2), as well as a network of transitional inter- and intrasubunit interactions. Key elements in the G-loop gating transition involved a PIP(2)-driven movement of the N-terminus and C-linker that removed constraining intermolecular interactions and led to CD-loop stabilization of the G-loop gate in the open state. To our knowledge, this is the first dynamic molecular view of PIP(2)-induced channel gating that is consistent with existing experimental data.  相似文献   

5.
Inwardly rectifying potassium (Kir) channels play an important role in setting the resting membrane potential and modulating membrane excitability. We have recently shown that cholesterol regulates representative members of the Kir family and that in the majority of the cases, cholesterol suppresses channel function. Furthermore, recent data indicate that cholesterol regulates Kir channels by specific sterol-protein interactions, yet the location of the cholesterol binding site in Kir channels is unknown. Using a combined computational-experimental approach, we show that cholesterol may bind to two nonanular hydrophobic regions in the transmembrane domain of Kir2.1 located between adjacent subunits of the channel. The location of the binding regions suggests that cholesterol modulates channel function by affecting the hinging motion at the center of the pore-lining transmembrane helix that underlies channel gating either directly or through the interface between the N and C termini of the channel.  相似文献   

6.
Ramu Y  Klem AM  Lu Z 《Biochemistry》2004,43(33):10701-10709
Tertiapin (TPN), a small protein toxin originally isolated from honey bee venom, inhibits only certain eukaryotic inward-rectifier K(+) (Kir) channels with high affinity. We found that a short ( approximately 10 residues) sequence in Kir channels, located in the N-terminal part of the linker between the two transmembrane segments, is essential for high-affinity inhibition by TPN and that variability in the region underlies the great variation of TPN affinities among eukaryotic Kir channels. This short variable region is however not present in a bacterial Kir channel (KirBac1.1) or in many other types of prokaryotic and eukaryotic K(+) channels. Thus, the acquisition in evolution of the variable region in eukaryotic Kir channels has created the opportunity to selectively target the numerous types of Kir channel that play important physiological roles. We also show that TPN sensitivity can be readily conferred onto some Kir channels that currently have no known inhibitors by replacing their variable region with that from a TPN-sensitive channel. In heterologous expression systems, such acquired toxin sensitivity will allow currents carried by mutant channels to be readily isolated from interfering background currents. Finally we show that, in the heteromeric GIRK1/4 channels, the GIRK4 and not GIRK1 subunit confers the high affinity for TPN.  相似文献   

7.
This study investigates how changes in the level of cellular cholesterol affect inwardly rectifying K+ channels belonging to a family of strong rectifiers (Kir2). In an earlier study we showed that an increase in cellular cholesterol suppresses endogenous K+ current in vascular endothelial cells, presumably due to effects on underlying Kir2.1 channels. Here we show that, indeed, cholesterol increase strongly suppressed whole-cell Kir2.1 current when the channels were expressed in a null cell line. However, cholesterol level had no effect on the unitary conductance and only little effect on the open probability of the channels. Moreover, no cholesterol effect was observed either on the total level of Kir2.1 protein or on its surface expression. We suggest, therefore, that cholesterol modulates not the total number of Kir2.1 channels in the plasma membrane but rather the transition of the channels between active and silent states. Comparing the effects of cholesterol on members of the Kir2.x family shows that Kir2.1 and Kir2.2 have similar high sensitivity to cholesterol, Kir2.3 is much less sensitive, and Kir2.4 has an intermediate sensitivity. Finally, we show that Kir2.x channels partition virtually exclusively into Triton-insoluble membrane fractions indicating that the channels are targeted into cholesterol-rich lipid rafts.  相似文献   

8.
Inwardly rectifying K(+) currents are generated by a complex of four Kir (Kir1-6) subunits. Pore properties are conferred by the second transmembrane domain (M2) of each subunit. Using cadmium ions as a cysteine-interacting probe, we examined the accessibility of substituted cysteines in M2 of the Kir6.2 subunit of inwardly rectifying K(ATP) channels. The ability of Cd(2+) ions to inhibit channels was used as the estimate of accessibility. The distribution of Cd(2+) accessibility is consistent with an alpha-helical structure of M2. The apparent surface of reactivity is broad, and the most reactive residues correspond to the solvent-accessible residues in the bacterial KcsA channel crystal structure. In several mutants, single channel measurements indicated that inhibition occurred by a single transition from the open state to a zero-conductance state. Analysis of currents expressed from mixtures of control and L164C mutant subunits indicated that at least three cysteines are required for coordination of the Cd(2+) ion. Application of phosphatidylinositol 4,5-diphosphate to inside-out membrane patches stabilized the open state of all mutants and also reduced cadmium sensitivity. Moreover, the Cd(2+) sensitivity of several mutants was greatly reduced in the presence of inhibitory ATP concentrations. Taken together, these results are consistent with state-dependent accessibility of single Cd(2+) ions to coordination sites within a relatively narrow inner vestibule.  相似文献   

9.
Our earlier studies have shown that Kir2.x channels are suppressed by an increase in the level of cellular cholesterol, whereas cholesterol depletion enhances the activity of the channels. In this study, we show that Kir2.1 and Kir2.3 channels have double-peak distributions between cholesterol-rich (raft) and cholesterol-poor (non-raft) membrane fractions, indicating that the channels exist in two different types of lipid environment. We also show that whereas methyl--cyclodextrin-induced cholesterol depletion removes cholesterol from both raft and non-raft membrane fractions, cholesterol enrichment results in cholesterol increase exclusively in the raft fractions. Kinetics of both depletion-induced Kir2.1 enhancement and enrichment-induced Kir2.1 suppression correlate with the changes in the level of raft cholesterol. Furthermore, we show not only that cholesterol depletion shifts the distribution of the channels from cholesterol-rich to cholesterol-poor membrane fractions but also that cholesterol enrichment has the opposite effect. These observations suggest that change in the level of raft cholesterol alone is sufficient to suppress Kir2 activity and to facilitate partitioning of the channels to cholesterol-rich domains. Therefore, we suggest that partitioning to membrane rafts plays an important role in the sensitivity of Kir2 channels to cholesterol. ion channels; inward rectifiers; inwardly rectifying potassium channels  相似文献   

10.
Inwardly rectifying potassium (Kir) channels are gated by the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)). Among them, Kir3 requires additional molecules, such as the betagamma subunits of G proteins or intracellular sodium, for channel gating. Using an interactive computational-experimental approach, we show that sodium sensitivity of Kir channels involves the side chains of an aspartate and a histidine located across from each other in a crucial loop in the cytosolic domain, as well as the backbone carbonyls of two more residues and a water molecule. The location of the coordination site in the vicinity of a conserved arginine shown to affect channel-PtdIns(4,5)P(2) interactions suggests that sodium triggers a structural switch that frees the crucial arginine. Mutations of the aspartate and the histidine that affect sodium sensitivity also enhance the channel's sensitivity to PtdIns(4,5)P(2). Furthermore, on the basis of the molecular characteristics of the coordination site, we identify and confirm experimentally a sodium-sensitive phenotype in Kir5.1.  相似文献   

11.
ATP-sensitive potassium (K(ATP)) channels couple cell metabolism to electrical activity by regulating K(+) fluxes across the plasma membrane. Channel closure is facilitated by ATP, which binds to the pore-forming subunit (Kir6.2). Conversely, channel opening is potentiated by phosphoinositol bisphosphate (PIP(2)), which binds to Kir6.2 and reduces channel inhibition by ATP. Here, we use homology modelling and ligand docking to identify the PIP(2)-binding site on Kir6.2. The model is consistent with a large amount of functional data and was further tested by mutagenesis. The fatty acyl tails of PIP(2) lie within the membrane and the head group extends downwards to interact with residues in the N terminus (K39, N41, R54), transmembrane domains (K67) and C terminus (R176, R177, E179, R301) of Kir6.2. Our model suggests how PIP(2) increases channel opening and decreases ATP binding and channel inhibition. It is likely to be applicable to the PIP(2)-binding site of other Kir channels, as the residues identified are conserved and influence PIP(2) sensitivity in other Kir channel family members.  相似文献   

12.
Pegan S  Arrabit C  Slesinger PA  Choe S 《Biochemistry》2006,45(28):8599-8606
Kir2.1 channels play a key role in maintaining the correct resting potential in eukaryotic cells. Recently, specific amino acid mutations in the Kir2.1 inwardly rectifying potassium channel have been found to cause Andersen's Syndrome in humans. Here, we have characterized individual Andersen's Syndrome mutants R218Q, G300V, E303K, and delta314-315 and have found multiple effects on the ability of the cytoplasmic domains in Kir2.1 channels to form proper tetrameric assemblies. For the R218Q mutation, we identified a second site mutation (T309K) that restored tetrameric assembly but not function. We successfully crystallized and solved the structure (at 2.0 A) of the N- and C-terminal cytoplasmic domains of Kir2.1-R218Q/T309K(S). This new structure revealed multiple conformations of the G-loop and CD loop, providing an explanation for channels that assemble but do not conduct ions. Interestingly, Glu303 forms both intra- and intersubunit salt bridges, depending on the conformation of the G-loop, suggesting that the E303K mutant stabilizes both closed and open G-loop conformations. In the Kir2.1-R218Q/T309K(S) structure, we discovered that the DE loop forms a hydrophobic pocket that binds 2-methyl-2,4-pentanediol, which is located near the putative G(betagamma)-activation site of Kir3 channels. Finally, we observed a potassium ion bound to the cytoplasmic domain for this class of K+ channels.  相似文献   

13.
Membrane potential of aortic endothelial cells under resting conditions is dominated by inward-rectifier K(+) channels belonging to the Kir 2 family. Regulation of endothelial Kir by membrane cholesterol was studied in bovine aortic endothelial cells by altering the sterol composition of the cell membrane. Our results show that enriching the cells with cholesterol decreases the Kir current density, whereas depleting the cells of cholesterol increases the density of the current. The dependence of the Kir current density on the level of cellular cholesterol fits a sigmoid curve with the highest sensitivity of the Kir current at normal physiological levels of cholesterol. To investigate the mechanism of Kir regulation by cholesterol, endogenous cholesterol was substituted by its optical isomer, epicholesterol. Substitution of approximately 50% of cholesterol by epicholesterol results in an early and significant increase in the Kir current density. Furthermore, substitution of cholesterol by epicholesterol has a stronger facilitative effect on the current than cholesterol depletion. Neither single channel properties nor membrane capacitance were significantly affected by the changes in the membrane sterol composition. These results suggest that 1) cholesterol modulates cellular K(+) conductance by changing the number of the active channels and 2) that specific cholesterol-protein interactions are critical for the regulation of endothelial Kir.  相似文献   

14.
K(ATP) channels couple intermediary metabolism to cellular excitability. Such a property relies on the inherent ATP-sensing mechanism known to be located in the Kir6 subunit. However, the molecular basis for the ATP sensitivity remains unclear. Here we showed evidence for protein domains and amino acid residues essential for the channel gating by intracellular ATP. Chimerical channels were constructed using protein domains of Kir6.2 and Kir1.1, expressed in HEK293 cells, and studied in inside-out patches. The N and C termini, although important, were inadequate for channel gating by intracellular ATP. Full ATP sensitivity also required M1 and M2 helices. Cytosolic portions of the M1 and M2 sequences were crucial, in which six amino acid residues were identified, i.e., Thr76, Met77, Ala161, Iso162, Leu164, and Cys166. Site-specific mutation of any of them reduced the ATP sensitivity. Construction of these residues together with the N/C termini produced ATP sensitivity identical to the wild-type channels. The requirement for specific membrane helices suggests that the Kir6.2 gating by ATP is not shared by even two closest relatives in the K(+) channel family, although the general gating mechanisms involving membrane helices appear to be conserved in all K(+) channels.  相似文献   

15.
The inwardly rectifying potassium channel Kir6.2 assembles with sulfonylurea receptor 1 to form the ATP-sensitive potassium (KATP) channels that regulate insulin secretion in pancreatic β-cells. Mutations in KATP channels underlie insulin secretion disease. Here, we report the characterization of a heterozygous missense Kir6.2 mutation, G156R, identified in congenital hyperinsulinism. Homomeric mutant channels reconstituted in COS cells show similar surface expression as wild-type channels but fail to conduct potassium currents. The mutated glycine is in the pore-lining transmembrane helix of Kir6.2; an equivalent glycine in other potassium channels has been proposed to serve as a hinge to allow helix bending during gating. We found that mutation of an adjacent asparagine, Asn-160, to aspartate, which converts the channel from a weak to a strong inward rectifier, on the G156R background restored ion conduction in the mutant channel. Unlike N160D channels, however, G156R/N160D channels are not blocked by intracellular polyamines at positive membrane potential and exhibit wild-type-like nucleotide sensitivities, suggesting the aspartate introduced at position 160 interacts with arginine at 156 to restore ion conduction and gating. Using tandem Kir6.2 tetramers containing G156R and/or N160D in designated positions, we show that one mutant subunit in the tetramer is insufficient to abolish conductance and that G156R and N160D can interact in the same or adjacent subunits to restore conduction. We conclude that the glycine at 156 is not essential for KATP channel gating and that the Kir6.2 gating defect caused by the G156R mutation could be rescued by manipulating chemical interactions between pore residues.  相似文献   

16.
Regulation of inwardly rectifying potassium channels by intracellular ligands couples cell membrane excitability to important signaling cascades and metabolic pathways. We investigated the molecular mechanisms that link ligand binding to the channel gate in ATP-sensitive Kir6.2 channels. In these channels, the “slide helix” forms an interface between the cytoplasmic (ligand-binding) domain and the transmembrane pore, and many slide helix mutations cause loss of function. Using a novel approach to rescue electrically silent channels, we decomposed the contribution of each interface residue to ATP-dependent gating. We demonstrate that effective inhibition by ATP relies on an essential aspartate at residue 58. Characterization of the functional importance of this conserved aspartate, relative to other residues in the slide helix, has been impossible because of loss-of-function of Asp-58 mutant channels. The Asp-58 position exhibits an extremely stringent requirement for aspartate because even a highly conservative mutation to glutamate is insufficient to restore normal channel function. These findings reveal unrecognized slide helix elements that are required for functional channel expression and control of Kir6.2 gating by intracellular ATP.  相似文献   

17.
Lopes CM  Zhang H  Rohacs T  Jin T  Yang J  Logothetis DE 《Neuron》2002,34(6):933-944
Inwardly rectifying K(+) (Kir) channels are important regulators of resting membrane potential and cell excitability. The activity of Kir channels is critically dependent on the integrity of channel interactions with phosphatidylinositol 4,5-bisphosphate (PIP(2)). Here we identify and characterize channel-PIP(2) interactions that are conserved among Kir family members. We find basic residues that interact with PIP(2), two of which have been associated with Andersen's and Bartter's syndromes. We show that several naturally occurring mutants decrease channel-PIP(2) interactions, leading to disease.  相似文献   

18.
Kir2.3 plays an important part in the maintenance of membrane potential in neurons and myocardium. Identification of intracellular signaling molecules controlling this channel thus may lead to an understanding of the regulation of membrane excitability. To determine whether Kir2.3 is modulated by direct phosphorylation of its channel protein and identify the phosphorylation site of protein kinase C (PKC), we performed experiments using several recombinant and mutant Kir2.3 channels. Whole-cell Kir2.3 currents were inhibited by phorbol 12-myristate 13-acetate (PMA) in Xenopus oocytes. When the N-terminal region of Kir2.3 was replaced with that of Kir2.1, another member in the Kir2 family that is insensitive to PMA, the chimerical channel lost its PMA sensitivity. However, substitution of the C terminus was ineffective. Four potential PKC phosphorylation sites in the N terminus were studied by comparing mutations of serine or threonine with their counterpart residues in Kir2.1. Whereas substitutions of serine residues at positions 5, 36, and 39 had no effect on the channel sensitivity to PMA, mutation of threonine 53 completely eliminated the channel response to PMA. Interestingly, creation of this threonine residue at the corresponding position (I79T) in Kir2.1 lent the mutant channel a PMA sensitivity almost identical to the wild-type Kir2.3. These results therefore indicate that Kir2.3 is directly modulated by PKC phosphorylation of its channel protein and threonine 53 is the PKC phosphorylation site in Kir2.3.  相似文献   

19.
Several inwardly-rectifying (Kir) potassium channels (Kir1.1, Kir4.1 and Kir4.2) are characterised by their sensitivity to inhibition by intracellular H+ within the physiological range. The mechanism by which these channels are regulated by intracellular pH has been the subject of intense scrutiny for over a decade, yet the molecular identity of the titratable pH-sensor remains elusive. In this study we have taken advantage of the acidic intracellular environment of S. cerevisiae and used a K+-auxotrophic strain to screen for mutants of Kir1.1 with impaired pH-sensitivity. In addition to the previously identified K80M mutation, this unbiased screening approach identified a novel mutation (S172T) in the second transmembrane domain (TM2) that also produces a marked reduction in pH-sensitivity through destabilization of the closed-state. However, despite this extensive mutagenic approach, no mutations could be identified which removed channel pH-sensitivity or which were likely to act as a separate H+-sensor unique to the pH-sensitive Kir channels. In order to explain these results we propose a model in which the pH-sensing mechanism is part of an intrinsic gating mechanism common to all Kir channels, not just the pH-sensitive Kir channels. In this model, mutations which disrupt this pH-sensor would result in an increase, not reduction, in pH-sensitivity. This has major implications for any future studies of Kir channel pH-sensitivity and explains why formal identification of these pH-sensing residues still represents a major challenge.Key words: pH-sensitivity, Kir channel, pH-sensor, potassium channel, Kir1.1  相似文献   

20.
ATP-sensitive potassium (K(ATP)) channels composed of sulfonylurea receptor 1 (SUR1) and Kir6.2 regulate insulin secretion by linking glucose metabolism with membrane potential. The number of K(ATP) channels in the plasma membrane affects the sensitivity of β-cells to glucose. Aberrant surface channel expression leads to insulin secretion disease. Previously, we have shown that K(ATP) channel proteins undergo endoplasmic reticulum (ER)-associated degradation (ERAD) via the ubiquitin-proteasome pathway, and inhibition of proteasome function results in an increase in channel surface expression. Here, we investigated whether Derlin-1, a protein involved in retrotranslocation of misfolded or misassembled proteins across the ER membrane for degradation by cytosolic proteasomes, plays a role in ERAD and, in turn, biogenesis efficiency of K(ATP) channels. We show that both SUR1 and Kir6.2 form a complex with Derlin-1 and an associated AAA-ATPase, p97. Overexpression of Derlin-1 led to a decrease in the biogenesis efficiency and surface expression of K(ATP) channels. Conversely, knockdown of Derlin-1 by RNA interference resulted in increased processing of SUR1 and a corresponding increase in surface expression of K(ATP) channels. Importantly, knockdown of Derlin-1 increased the abundance of disease-causing misfolded SUR1 or Kir6.2 proteins and even partially rescued surface expression in a mutant channel. We conclude that Derlin-1, by being involved in ERAD of SUR1 and Kir6.2, has a role in modulating the biogenesis efficiency and surface expression of K(ATP) channels. The results suggest that physiological or pathological changes in Derlin-1 expression levels may affect glucose-stimulated insulin secretion by altering surface expression of K(ATP) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号