首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A range of disorders such as Alzheimer's disease and type II diabetes have been linked to protein misfolding and aggregation. Transthyretin is an amyloidogenic protein which is involved in familial amyloid polyneuropathy, the most common form of systemic amyloid disease. A peptide fragment of this protein, TTR105-115, has been shown to form well-defined amyloid fibrils in vitro. In this study, the stability of amyloid fibrils towards high hydrostatic pressure has been investigated by Fourier transform infrared spectroscopy. Information on the morphology of the species exposed to high hydrostatic pressure was obtained by atomic force microscopy. The species formed early in the aggregation process were found to be dissociated by relatively low hydrostatic pressure (220 MPa), whereas mature fibrils are pressure insensitive up to 1.3 GPa. The pressure stability of the mature fibrils is consistent with a fibril structure in which there is an extensive hydrogen bond network in a tightly packed environment from which water is excluded. The fact that early aggregates can be dissociated by low pressure suggests, however, that hydrophobic and electrostatic interactions are the dominant factors stabilizing the species formed in the early stages of fibril formation.  相似文献   

2.
Mutations in the polypeptide sequence that forms the core structure of amyloid fibrils are known to impact on fibril assembly and stability but the effect of changes on noncore residues, particularly relating to functionalized fibrils where the fibril core is preserved, has not been systematically examined. In this study, the short peptide sequence TTR(105-115) (also known as TTR1) and the functionalized variants TTR1-RGD and TTR1-RAD are used as a model system to investigate the effect of noncore residues on the kinetics of fibril assembly. The noncore residues in TTR1-RGD and TTR1-RAD influence the rate of fibril assembly in non-seeded samples with the glycine residue at position 15 increasing the rate of aggregation compared to alanine. Mature TTR1-RGD fibrils were also found to fragment more readily, indicating possible differences in mechanical properties. Fragments of each type of fibril are capable of self- and cross-seeding, generating fibrils with a highly similar cross-β core structure. The similar rates of assembly observed for self-seeded samples reflect the similar free energy of elongation calculated for these peptides, while the morphology of cross-seeded fibrils is determined by the properties of the monomeric peptide and its macromolecular arrangement within the protofilaments and fibrils. These findings illustrate that noncore residues impact on fibril formation and fibril properties and demonstrate that the influence of noncore residues should be considered when designing sequences for the production of self-assembling functional fibrillar materials.  相似文献   

3.
Structural characterisation of islet amyloid polypeptide fibrils   总被引:3,自引:0,他引:3  
Islet amyloid is found in many patients suffering from type 2 diabetes. Amyloid fibrils found deposited in the pancreatic islets are composed of a 37-residue peptide, known as islet amyloid polypeptide (IAPP) (also known as amylin) and are similar to those found in other amyloid diseases. Synthetic IAPP peptide readily forms amyloid fibrils in vitro and this has allowed fibril formation kinetics and the overall morphology of IAPP amyloid to be studied. Here, we use X-ray fibre diffraction, electron microscopy and cryo-electron microscopy to examine the molecular structure of IAPP amyloid fibrils. X-ray diffraction from aligned synthetic amyloid fibrils gave a highly oriented diffraction pattern with layer-lines spaced 4.7 A apart. Electron diffraction also revealed the characteristic 4.7 A meridional signal and the position of the reflection could be compared directly to the image of the diffracting unit. Cryo-electron microscopy revealed the strong signal at 4.7 A that has been previously visualised from a single Abeta fibre. Together, these data build up a picture of how the IAPP fibril is held together by hydrogen bonded beta-sheet structure and contribute to the understanding of the generic structure of amyloid fibrils.  相似文献   

4.
Liu W  Crocker E  Zhang W  Elliott JI  Luy B  Li H  Aimoto S  Smith SO 《Biochemistry》2005,44(9):3591-3597
Amyloid fibrils associated with diseases such as Alzheimer's are often derived from the transmembrane helices of membrane proteins. It is known that the fibrils have a cross-beta-sheet structure where main chain hydrogen bonding occurs between beta-strands in the direction of the fibril axis. However, the structural basis for how the membrane-spanning helix is converted into a beta-sheet or how protofibrils associate into fibrils is not known. Here, we use a model peptide corresponding to a portion of the single transmembrane helix of glycophorin A to investigate the structural role of glycine in amyloid-like fibrils formed from transmembrane helices. Glycophorin A contains a GxxxG motif that is found in many transmembrane sequences including that of the amyloid precursor protein and prion protein. We propose that glycine, which mediates helix interactions in membrane proteins, also provides key packing motifs when it occurs in beta-sheets. We show that glycines in the glycophorin A transmembrane helix promote extended beta-strand formation when the helix partitions into aqueous environments and stabilize the packing of beta-sheets in the formation of amyloid-like fibrils. We demonstrate that fibrillization can be disrupted with a new class of inhibitors that target the molecular grooves created by glycine.  相似文献   

5.
Amyloid deposits, which accumulate in numerous diseases, are the final stage of multi-step protein conformational-conversion and oligomerization processes. The underlying molecular mechanisms are not fully understood, and particularly little is known about the reverse reaction. Here we show that phosphoglycerate kinase amyloid fibrils can be converted back into native protein. We achieved recovery with 60% efficiency, which is comparable to the success rate of the unfolding-refolding studies, and the recovered enzyme was folded, stable and fully active. The key intermediate stages in the recovery process are fibril disassembly and unfolding followed by spontaneous protein folding.  相似文献   

6.
Cryo-electron microscopy studies are presented on amyloid fibrils isolated from amyloidotic organs of two patients with different forms of hereditary non-neuropathic systemic amyloidosis, caused, respectively, by Leu60Arg apolipoprotein AI and Asp67His lysozyme. Although ex vivo amyloid fibrils were thought to be more uniform in structure than those assembled in vitro, our findings show that these fibrils are also quite variable in structure. Structural disorder and variability of the fibrils have precluded three-dimensional reconstruction, but averaged cryo-electron microscopy images suggest models for protofilament packing in the lysozyme fibrils. We conclude that ex vivo amyloid fibrils, although variable, assemble as characteristic structures according to the identity of the precursor protein.  相似文献   

7.
Using the experimental structures of Abeta amyloid fibrils and all-atom molecular dynamics, we study the force-induced unbinding of Abeta peptides from the fibril. We show that the mechanical dissociation of Abeta peptides is highly anisotropic and proceeds via different pathways when force is applied in parallel or perpendicular direction with respect to the fibril axis. The threshold forces associated with lateral unbinding of Abeta peptides exceed those observed during the mechanical dissociation along the fibril axis. In addition, Abeta fibrils are found to be brittle in the lateral direction of unbinding and soft along the fibril axis. Lateral mechanical unbinding and the unbinding along the fibril axis load different types of fibril interactions. Lateral unbinding is primarily determined by the cooperative rupture of fibril backbone hydrogen bonds. The unbinding along the fibril axis largely depends on the interpeptide Lys-Asp electrostatic contacts and the hydrophobic interactions formed by the Abeta C terminal. Due to universality of the amyloid beta structure, the anisotropic mechanical dissociation observed for Abeta fibrils is likely to be applicable to other amyloid assemblies. The estimates of equilibrium forces required to dissociate Abeta peptide from the amyloid fibril suggest that these supramolecular structures are mechanically stronger than most protein domains.  相似文献   

8.
The 39- to 42-residue-long amyloid beta-peptide (Abeta-peptide) forms filamentous structures in the neuritic plaques found in the neuropil of Alzheimer's disease patients. The assembly and deposition of Abeta-fibrils is one of the most important factors in the pathogenesis of this neurodegenerative disease. Although the structural analysis of amyloid fibrils is difficult, single-molecule methods may provide unique insights into their characteristics. In the present work, we explored the nanomechanical properties of amyloid fibrils formed from the full-length, most neurotoxic Abeta1-42 peptide, by manipulating individual fibrils with an atomic force microscope. We show that Abeta-subunit sheets can be mechanically unzipped from the fibril surface with constant forces in a reversible transition. The fundamental unzipping force (approximately 23 pN) was significantly lower than that observed earlier for fibrils formed from the Abeta1-40 peptide (approximately 33 pN), suggesting that the presence of the two extra residues (Ile and Ala) at the peptide's C-terminus result in a mechanical destabilization of the fibril. Deviations from the constant force transition may arise as a result of geometrical constraints within the fibril caused by its left-handed helical structure. The nanomechanical fingerprint of the Abeta1-42 is further influenced by the structural dynamics of intrafibrillar interactions.  相似文献   

9.
Detailed structural studies of amyloid fibrils can elucidate the way in which their constituent polypeptides are folded and self-assemble, and exert their neurotoxic effects in Alzheimer's disease (AD). We have previously reported that when aqueous solutions of the N-terminal hydrophilic peptides of AD beta-amyloid (A beta) are gradually dried in a 2-Tesla magnetic field, they form highly oriented fibrils that are well suited to x-ray fiber diffraction. The longer, more physiologically relevant sequences such as A beta(1-40) have not been amenable to such analysis, owing to their strong propensity to polymerize and aggregate before orientation is achieved. In seeking an efficient and inexpensive method for rapid screening of conditions that could lead to improved orientation of fibrils assembled from the longer peptides, we report here that the birefringence of a small drop of peptide solution can supply information related to the cooperative packing of amyloid fibers and their capacity for magnetic orientation. The samples were examined by electron microscopy (negative and positive staining) and x-ray diffraction. Negative staining showed a mixture of straight and twisted fibers. The average width of both types was approximately 70 A, and the helical pitch of the latter was approximately 460 A. Cross sections of plastic-embedded samples showed a approximately 60-A-wide tubular structure. X-ray diffraction from these samples indicated a cross-beta fiber pattern, characterized by a strong meridional reflection at 4.74 A and a broad equatorial reflection at 8.9 A. Modeling studies suggested that tilted arrays of beta-strands constitute tubular, 30-A-diameter protofilaments, and that three to five of these protofilaments constitute the A beta fiber. This type of structure--a multimeric array of protofilaments organized as a tubular fibril--resembles that formed by the shorter A beta fragments (e.g., A beta(6-25), A beta(11-25), A beta(1-28)), suggesting a common structural motif in AD amyloid fibril organization.  相似文献   

10.
Apolipoprotein (apo) E is a well characterized lipid-binding protein in plasma that also exists as a common nonfibrillar component of both cerebral and systemic amyloid deposits. A genetic link between a common isoform of apoE, apoE4, and the incidence of late onset Alzheimer disease has drawn considerable attention to the potential roles of apoE in amyloid-related disease. We examined the interactions of apoE with amyloid fibrils composed of apoC-II and the amyloid-beta (Abeta) peptide. Aggregates of apoE with Abeta and apoC-II are found in Alzheimer and atherosclerotic plaques, respectively. Sedimentation velocity and fibril size distribution analysis showed that apoE3 and E4 isoforms bind and noncovalently cross-link apoC-II fibrils in a similar manner. This ability to cross-link apoC-II fibrils was abolished by the dissociation of the apoE tetramer to monomers or by thrombin cleavage to yield separate N- and C-terminal domains. Preparative ultracentrifuge binding studies indicated that apoE and the isolated N- and C-terminal domains of apoE bind with submicromolar affinities to both apoC-II and Abeta fibrils. Fluorescence quenching and resonance energy transfer experiments confirmed that both domains of apoE interact with apoC-II fibrils and demonstrated that the binding of the isolated N-terminal domain of apoE to apoC-II or Abeta fibrils is accompanied by a significant conformational change with helix three of the domain moving relative to helix one. We propose a model involving the interaction of apoE with patterns of aligned residues that could explain the general ability of apoE to bind to a diverse range of amyloid fibrils.  相似文献   

11.
We demonstrate that bovine core histones are natively unfolded proteins in solutions with low ionic strength due to their high net positive charge at pH 7.5. Using a variety of biophysical techniques we characterized their conformation as a function of pH and ionic strength, as well as correlating the conformation with aggregation and amyloid fibril formation. Tertiary structure was absent under all conditions except at pH 7.5 and high ionic strength. The addition of trifluoroethanol or high ionic strength induced significant alpha-helical secondary structure at pH 7.5. At low pH and high salt concentration, small-angle X-ray scattering and SEC HPLC indicate the histones are present as a hexadecamer of globular subunits. The secondary structure at low pH was independent of the ionic strength or presence of TFE, as judged by FTIR. The data indicate that histones are able to adopt five different relatively stable conformations; this conformational variability probably reflects, in part, their intrinsically disordered structure. Under most of the conditions studied the histones formed amyloid fibrils with typical morphology as seen by electron microscopy. In contrast to most aggregation/amyloidogenic systems, the kinetics of fibrillation showed an inverse dependence on histone concentration; we attribute this to partitioning to a faster pathway leading to non-fibrillar self-associated aggregates at higher protein concentrations. The rate of fibril formation was maximal at low pH, and decreased to zero by pH 10. The kinetics of fibrillation were very dependent on the ionic strength, increasing with increasing salt concentration, and showing marked dependence on the nature of the ions; interestingly Gdn.HCl increased the rate of fibrillation, although much less than NaCl. Different ions also differentially affected the rate of nucleation and the rate of fibril elongation.  相似文献   

12.
  1. Download : Download high-res image (183KB)
  2. Download : Download full-size image
  相似文献   

13.
Increasing evidence indicates that oligomeric protein assemblies may represent the molecular species responsible for cytotoxicity in a range of neurological disorders including Alzheimer and Parkinson diseases. We use all-atom computer simulations to reveal that the process of oligomerization can be divided into two steps. The first is characterised by a hydrophobic coalescence resulting in the formation of molten oligomers in which hydrophobic residues are sequestered away from the solvent. In the second step, the oligomers undergo a process of reorganisation driven by interchain hydrogen bonding interactions that induce the formation of β sheet rich assemblies in which hydrophobic groups can become exposed. Our results show that the process of aggregation into either ordered or amorphous species is largely determined by a competition between the hydrophobicity of the amino acid sequence and the tendency of polypeptide chains to form arrays of hydrogen bonds. We discuss how the increase in solvent-exposed hydrophobic surface resulting from such a competition offers an explanation for recent observations concerning the cytotoxicity of oligomeric species formed prior to mature amyloid fibrils.  相似文献   

14.
Prion protein (PrP) amyloid formation is a central feature of genetic and acquired forms of prion disease such as Gerstmann-Str?ussler-Scheinker disease (GSS) and variant Creutzfeldt-Jakob disease. The major component of GSS amyloid is a PrP fragment spanning residues approximately 82-146. To investigate the determinants of the physicochemical properties of this fragment, we synthesized PrP-(82-146) and variants thereof, including entirely and partially scrambled peptides. PrP-(82-146) readily formed aggregates that were partially resistant to protease digestion. Peptide assemblies consisted of 9.8-nm-diameter fibrils having a parallel cross-beta-structure. Second derivative of infrared spectra indicated that PrP-(82-146) aggregates are primarily composed of beta-sheet (54%) and turn (24%) which is consistent with their amyloid-like properties. The peptide induced a remarkable increase in plasma membrane microviscosity of primary neurons. Modification of the amino acid sequence 106-126 caused a striking increase in aggregation rate, with formation of large amount of protease-resistant amorphous material and relatively few amyloid fibrils. Alteration of the 127-146 region had even more profound effects, with the inability to generate amyloid fibrils. These data indicate that the intrinsic properties of PrP-(82-146) are dependent upon the integrity of the C-terminal region and account for the massive deposition of PrP amyloid in GSS.  相似文献   

15.
Solid-state nuclear magnetic resonance (NMR) measurements have made major contributions to our understanding of the molecular structures of amyloid fibrils, including fibrils formed by the beta-amyloid peptide associated with Alzheimer's disease, by proteins associated with fungal prions, and by a variety of other polypeptides. Because solid-state NMR techniques can be used to determine interatomic distances (both intramolecular and intermolecular), place constraints on backbone and side-chain torsion angles, and identify tertiary and quaternary contacts, full molecular models for amyloid fibrils can be developed from solid-state NMR data, especially when supplemented by lower-resolution structural constraints from electron microscopy and other sources. In addition, solid-state NMR data can be used as experimental tests of various proposals and hypotheses regarding the mechanisms of amyloid formation, the nature of intermediate structures, and the common structural features within amyloid fibrils. This review introduces the basic experimental and conceptual principles behind solid-state NMR methods that are applicable to amyloid fibrils, reviews the information about amyloid structures that has been obtained to date with these methods, and discusses how solid-state NMR data provide insights into the molecular interactions that stabilize amyloid structures, the generic propensity of polypeptide chains to form amyloid fibrils, and a number of related issues that are of current interest in the amyloid field.  相似文献   

16.
Amyloid fibrils of patients treated with regular hemodialysis essentially consists of beta2-microglobulin (beta2-m) and its truncated species DeltaN6beta2-m lacking six residues at the amino terminus. The truncated fragment has a more flexible three-dimensional structure and constitutes an excellent candidate for the analysis of a protein in the amyloidogenic conformation. The surface topology of synthetic fibrils obtained from intact beta2-m and truncated DeltaN6beta2-m was investigated by the limited proteolysis/mass spectrometry approach that appeared particularly suited to gain insights into the structure of beta2-m within the fibrillar polymer. The distribution of prefential proteolytic sites observed in both fibrils revealed that the central region of the protein, which had been easily cleaved in the full-length globular beta2-m, was fully protected in the fibrillar form. In addition, the amino- and carboxy-terminal regions of beta2-m became exposed to the solvent in the fibrils, whereas they were masked completely in the native protein. These data indicate that beta2-m molecules in the fibrils consist of an unaccessible core comprising residues 20-87 with the strands I and VIII being not constrained in the fibrillar polymer and exposed to the proteases. Moreover, proteolytic cleavages observed in vitro at Lys 6 and Lys 19 reproduce specific cleavages that have to occur in vivo to generate the truncated forms of beta2-m occurring in natural fibrils. On the basis of these data, a possible mechanism for fibril formation from native beta2-m is discussed and an explanation for the occurrence of truncated protein species in natural fibrils is given.  相似文献   

17.
Kraevskiĭ VA 《Biofizika》1999,44(5):842-851
The effect of hyperacetylation of histones on the packing of nucleosomal fibers into higher-order structures was studied. The organization of the higher-order levels of packing of hyperacetylated and normal chromatin in intact hepatocytes of green marmoset (CV1 line) was compared by using the intercalating agent chloroquine diphosphate to change the axial twinting of DNA of internucleosomal linkers.  相似文献   

18.
Electron paramagnetic resonance spectroscopy analysis of 19 spin-labeled derivatives of the Alzheimer's amyloid beta (Abeta) peptide was used to reveal structural features of amyloid fibril formation. In the fibril, extensive regions of the peptide show an in-register, parallel arrangement. Based on the parallel arrangement and side chain mobility analysis we find the amyloid structure to be mostly ordered and specific, but we also identify more dynamic regions (N and C termini) and likely turn or bend regions (around residues 23-26). Despite their different aggregation properties and roles in disease, the two peptides, Abeta40 and Abeta42, homogeneously co-mix in amyloid fibrils suggesting that they possess the same structural architecture.  相似文献   

19.
The formation of amyloid aggregates in tissue is a pathological feature of many neurodegenerative diseases and type II diabetes. Amyloid deposition, the process of amyloid growth by the association of individual soluble amyloid molecules with a pre-existing amyloid template (i.e., plaque), is known to be critical for amyloid formation in vivo. The requirement for a natural amyloid template, however, has made amyloid deposition study difficult and cumbersome. In the present work, we developed a novel, synthetic amyloid template by attaching amyloid seeds covalently onto an N-hydroxysuccinimide-activated surface, where insulin was chosen as a model amyloidogenic protein. According to ex situ atomic force microscopy observations, insulin monomers in solution were deposited onto the synthetic amyloid template to form fibrils, like hair growth. The fibril formation on the template occurred without lag time, and its rate was highly accelerated than in the solution. The fibrils were long, over 2 mum, and much thinner than those in the solution, which was caused by limited nucleation sites on the template surface and lack of lateral twisting between fibrils. According to our investigations using thioflavin T-induced fluorescence, birefringent Congo red binding, and circular dichroism, fibrils grown on the template were identified to be amyloids that formed through a conformational rearrangement of insulin monomers upon interaction with the template. The amyloid deposition rate followed saturation kinetics with respect to insulin concentration in the solution. The characteristics of amyloid deposition on the synthetic template were in agreement with previous studies performed with human amyloid plaques. It is demonstrated that the synthetic amyloid template can be used for the screening of inhibitors on amyloid deposition in vitro.  相似文献   

20.
The amyloid protein in familial amyloidosis, Finnish type, is a 71 amino acid long fragment of the inner region of mutant Asp187----Asn gelsolin. The mechanism of gelsolin amyloid formation was tested with synthetic 11 and 30 residue peptides corresponding to the normal and mutant sequence of gelsolin. Fibrils meeting the morphologic criteria of amyloid were formed from the mutant Asn187 peptides. Substitution of the normal Asp187 residue with the mutant Asn residue resulted in a 9-fold increase in fibrillogenicity as determined by quantitative fluorometry. The present study demonstrates the first successful in vitro creation of amyloid-like fibrils from Asn187 gelsolin peptides and provides evidence that amyloid formation in Finnish amyloidosis is a direct consequence of the Asp187----Asn substitution in gelsolin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号