首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Myosin subfragment 1 (S1) can be specifically modified at Lys-553 with the fluorescent probe FHS (6-[fluorescein-5(and 6)-carboxamido]hexanoic acid succinimidyl ester) (Bertrand, R., J. Derancourt, and R. Kassab. 1995. Biochemistry. 34:9500-9507), and solvent quenching of FHS-S1 with iodide has been shown to be sensitive to actin binding at low ionic strength (MacLean, Chrin, and Berger, 2000. Biophys. J. 000-000). In order to extend these results and examine the fraction of actin-bound myosin heads within the myofilament lattice during calcium activation, we have modified skeletal muscle myofibrils, mildly cross-linked with EDC (1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide) to prevent shortening, with FHS. The myosin heavy chain appears to be the predominant site of labeling, and the iodide quenching patterns are consistent with those obtained for myosin S1 in solution, suggesting that Lys-553 is indeed the primary site of FHS incorporation in skeletal muscle myofibrils. The iodide quenching results from calcium-activated FHS-myofibrils indicate that during isometric contraction 29% of the myosin heads are strongly bound to actin within the myofilament lattice at low ionic strength. These results suggest that myosin can be specifically modified with FHS in more complex and physiologically relevant preparations, allowing the real time examination of cross-bridge interactions with actin in in vitro motility assays and during isometric and isotonic contractions within single muscle fibers.  相似文献   

2.
Two-dimensional x-ray diffraction was used to investigate structural features of cross-bridges that generate force in isometrically contracting skeletal muscle. Diffraction patterns were recorded from arrays of single, chemically skinned rabbit psoas muscle fibers during isometric force generation, under relaxation, and in rigor. In isometric contraction, a rather prominent intensification of the actin layer lines at 5.9 and 5.1 nm and of the first actin layer line at 37 nm was found compared with those under relaxing conditions. Surprisingly, during isometric contraction, the intensity profile of the 5.9-nm actin layer line was shifted toward the meridian, but the resulting intensity profile was different from that observed in rigor. We particularly addressed the question whether the differences seen between rigor and active contraction might be due to a rigor-like configuration of both myosin heads in the absence of nucleotide (rigor), whereas during active contraction only one head of each myosin molecule is in a rigor-like configuration and the second head is weakly bound. To investigate this question, we created different mixtures of weak binding myosin heads and rigor-like actomyosin complexes by titrating MgATPgammaS at saturating [Ca2+] into arrays of single muscle fibers. The resulting diffraction patterns were different in several respects from patterns recorded under isometric contraction, particularly in the intensity distribution along the 5.9-nm actin layer line. This result indicates that cross-bridges present during isometric force generation are not simply a mixture of weakly bound and single-headed rigor-like complexes but are rather distinctly different from the rigor-like cross-bridge. Experiments with myosin-S1 and truncated S1 (motor domain) support the idea that for a force generating cross-bridge, disorder due to elastic distortion might involve a larger part of the myosin head than for a nucleotide free, rigor cross-bridge.  相似文献   

3.
T Chen  E Reisler 《Biochemistry》1984,23(11):2400-2407
Tryptic digestion of rabbit skeletal myofibrils under physiological ionic strength and pH conditions was used as a probe of cross-bridge interaction with actin in the presence of nucleotides and pyrophosphate. Under rigor conditions, digestion of myofibrils at 24 degrees C results in the formation of 25K, 110K [heavy meromyosin (HMM)], and light meromyosin (LMM) fragments as the main reaction products. Very little if any 50K peptide is generated in such digestions. In the presence of magnesium pyrophosphate, magnesium 5'-adenylyl imidodiphosphate (MgAMPPNP), and MgATP, the main cleavage proceeds at two positions, 25K and 75K from the N-terminal portion of myosin, yielding the 25K, 50K, and 150K species. The relative amounts of the 50K, 110K, and 150K peptides and the rates of myosin heavy-chain digestion in the presence of pyrophosphate and AMPPNP indicate partial dissociation of myosin from actin. Direct centrifugation measurements of the binding of HMM and subfragment 1 (S-1) to actin in myofibrils confirm that cross-bridges partition between attached and detached states in the presence of these ligands. In the presence of MgADP, HMM and S-1 remain attached to actin at 24 degrees C. However, tryptic digestion of myofibrils containing MgADP is consistent with the existence of a mixed population of attached and detached cross-bridges, suggesting that only one head on each myosin molecule is attached to actin. As shown by tryptic digestion of myofibrils and the measurements of HMM and S-1 binding to actin, nucleotide- and pyrophosphate-induced dissociation of cross-bridges is more pronounced at 4 than at 24 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Repulsive pressure has been measured as a function of lattice spacing in gels of tobacco mosaic virus (TMV) and in the filament lattice of vertebrate striated muscle. External pressures up to ten atm have been applied to these lattices by an osmotic stress method. Numerical solutions to the Poisson-Boltzmann equation in hexagonal lattices have been obtained and compared to the TMV and muscle data. The theoretical curves using values for k calculated from the ionic strength give a good fit to experimental data from TMV gels, and an approximate fit to that from the muscle lattice, provided that a charge radius for the muscle thick filaments of approximately 16 nm is assumed. Variations in ionic strength, sarcomere length and state of the muscle give results which agree qualitatively with the theory, though a good fit between experiment and theory in the muscle case will clearly require consideration of other types of forces. We conclude that Poisson-Boltzmann theory can provide a good first approximation to the long-range electrostatic forces operating in such biological gel systems.  相似文献   

5.
Inorganic phosphate (Pi) decreases the isometric tension of skinned skeletal muscle fibers, presumably by increasing the relative fraction of a low force quaternary complex of actin, myosin, ADP, and Pi (A.M.ADP.Pi). At the same time, Pi gives rise to a fast relaxing mechanical component as detected by oscillations at 500 Hz. To characterize the dynamic properties of this A.M.ADP.Pi complex, the effect of Pi on the tension response to stretch was investigated with rabbit psoas fibers. A ramp stretch applied in the presence of 20 mM Pi increased tension more than in the control solution (0 mM Pi) but reduced the fast relaxing component to the control level. Thus, a stretch seems to convert the low force, fast relaxing A.M.ADP.Pi complex to a high force, slow relaxing form. However, the Pi-induced enhancement of the tension response was not observed until the fibers were stretched more than 0.4% of their length, suggesting that a critical cross-bridge extension of approximately 4 nm is required for this conversion. The rate constant of the attachment/detachment of this low force complex was estimated from the velocity dependence of the enhancement. It was approximately 10 s-1, in marked contrast to the A.M.ADP.Pi complex under low salt, relaxed conditions (approximately 10,000 s-1). The enhancement of the tension response was not observed when isometric tension was reduced by lowering free calcium, implying that calcium and Pi affect different steps in the actomyosin ATPase cycle during contraction.  相似文献   

6.
When activated skeletal muscle is stretched, force increases in two phases. This study tested the hypothesis that the increase in stretch force during the first phase is produced by pre-power stroke cross bridges. Myofibrils were activated in sarcomere lengths (SLs) between 2.2 and 2.5 microm, and stretched by approximately 5-15 per cent SL. When stretch was performed at 1 microms-1SL-1, the transition between the two phases occurred at a critical stretch (SLc) of 8.4+/-0.85 nm half-sarcomere (hs)-1 and the force (critical force; Fc) was 1.62+/-0.24 times the isometric force (n=23). At stretches performed at a similar velocity (1 microms-1SL-1), 2,3-butanedione monoxime (BDM; 1 mM) that biases cross bridges into pre-power stroke states decreased the isometric force to 21.45+/-9.22 per cent, but increased the relative Fc to 2.35+/-0.34 times the isometric force and increased the SLc to 14.6+/-0.6 nm hs-1 (n=23), suggesting that pre-power stroke cross bridges are largely responsible for stretch forces.  相似文献   

7.
Mechanical characterization of skeletal muscle myofibrils.   总被引:2,自引:1,他引:1       下载免费PDF全文
A new instrument, based on a technique described previously, is presented for studying mechanics of micron-scale preparations of two to three myofibrils or single myofibrils from muscle. Forces in the nanonewton to micronewton range are measurable with 0.5-ms time resolution. Programmed quick (200-microseconds) steps or ramp length changes are applied to contracting myofibrils to test their mechanical properties. Individual striations can be monitored during force production and shortening. The active isometric force, force-velocity relationship, and force transients after rapid length steps were obtained from bundles of two to three myofibrils from rabbit psoas muscle. Contrary to some earlier reports on myofibrillar mechanics, these properties are generally similar to expectations from studies on intact and skinned muscle fibers. Our experiments provide strong evidence that the mechanical properties of a fiber result from a simple summation of the myofibrillar force and shortening of independently contracting sarcomeres.  相似文献   

8.
The ability to measure properties of a single cross-bridge in working muscle is important because it avoids averaging the signal from a large number of molecules and because it probes cross-bridges in their native crowded environment. Because the concentration of myosin in muscle is large, observing the kinetics of a single myosin molecule requires that the signal be collected from small volumes. The introduction of small observational volumes defined by diffraction-limited laser beams and confocal detection has made it possible to limit the observational volume to a femtoliter (10(-15) liter). By restraining labeling to 1 fluorophore per 100 myosin molecules, we were able to follow the kinetics of approximately 400 cross-bridges. To reduce this number further, we used two-photon (2P) microscopy. The focal plane in which the laser power density was high enough to produce 2P absorption was thinner than in confocal microscopy. Using 2P microscopy, we were able to observe approximately 200 cross-bridges during contraction. The novel method of confocal total internal reflection (CTIR) provides a method to reduce the observational volume even further, to approximately 1 attoliter (10(-18) liter), and to measure fluorescence with a high signal-to-noise (S/N) ratio. In this method, the observational volume is made shallow by illuminating the sample with an evanescent field produced by total internal reflection (TIR) of the incident laser beam. To guarantee the small lateral dimensions of the observational volume, a confocal aperture is inserted in the conjugate-image plane of the objective. With a 3.5-mum confocal aperture, we achieved a volume of 1.5 attoliter. Association-dissociation of the myosin head was probed with rhodamine attached at cys707 of the heavy chain of myosin. Signal was contributed by one to five fluorescent myosin molecules. Fluorescence decayed in a series of discrete steps, corresponding to bleaching of individual molecules of rhodamine. The S/N ratio was sufficiently large to make statistically significant comparisons from rigor and contracting myofibrils.  相似文献   

9.
10.
11.
12.
Finite element modelling of contracting skeletal muscle   总被引:2,自引:0,他引:2  
To describe the mechanical behaviour of biological tissues and transport processes in biological tissues, conservation laws such as conservation of mass, momentum and energy play a central role. Mathematically these are cast into the form of partial differential equations. Because of nonlinear material behaviour, inhomogeneous properties and usually a complex geometry, it is impossible to find closed-form analytical solutions for these sets of equations. The objective of the finite element method is to find approximate solutions for these problems. The concepts of the finite element method are explained on a finite element continuum model of skeletal muscle. In this case, the momentum equations have to be solved with an extra constraint, because the material behaves as nearly incompressible. The material behaviour consists of a highly nonlinear passive part and an active part. The latter is described with a two-state Huxley model. This means that an extra nonlinear partial differential equation has to be solved. The problems and solutions involved with this procedure are explained. The model is used to describe the mechanical behaviour of a tibialis anterior of a rat. The results have been compared with experimentally determined strains at the surface of the muscle. Qualitatively there is good agreement between measured and calculated strains, but the measured strains were higher.  相似文献   

13.
During interaction of actin with myosin, cross-bridges impart mechanical impulses to thin filaments resulting in rotations of actin monomers. Impulses are delivered on the average every tc seconds. A cross-bridge spends a fraction of this time (ts) strongly attached to actin, during which it generates force. The "duty cycle" (DC), defined as the fraction of the total cross-bridge cycle that myosin spends attached to actin in a force generating state (ts/ tc), is small for cross-bridges acting against zero load, like freely shortening muscle, and increases as the load rises. Here we report, for the first time, an attempt to measure DC of a single cross-bridge in muscle. A single actin molecule in a half-sarcomere was labeled with fluorescent phalloidin. Its orientation was measured by monitoring intensity of the polarized TIRF images. Actin changed orientation when a cross-bridge bound to it. During isometric contraction, but not during rigor, actin orientation oscillated between two values, corresponding to the actin-bound and actin-free state of the cross-bridge. The average ts and tc were 3.4 and 6 s, respectively. These results suggest that, in isometrically working muscle, cross-bridges spend about half of the cycle time attached to actin. The fact that 1/ tc was much smaller than the ATPase rate suggests that the bulk of the energy of ATP hydrolysis is used for purposes other than performance of mechanical work.  相似文献   

14.
Ca2+ binding to skeletal muscle troponin C in skeletal or cardiac myofibrils was measured by the centrifugation method using 45Ca. The specific Ca2+ binding to troponin C was obtained by subtracting the amount of Ca2+ bound to the CDTA-treated myofibrils (troponin C-depleted myofibrils) from that to the myofibrils reconstituted with troponin C. Results of Ca2+ binding measurement at various Ca2+ concentrations showed that skeletal troponin C had two classes of binding sites with different affinity for Ca2+. The Ca2+ binding of low-affinity sites in cardiac myofibrils was about eight times lower than that in skeletal myofibrils, while the high-affinity sites of troponin C in skeletal or cardiac myofibrils showed almost the same affinity for Ca2+. The Ca2+ sensitivity of the ATPase activity of skeletal troponin C-reconstituted cardiac myofibrils was also about eight times lower than that of skeletal myofibrils reconstituted with troponin C. These findings indicated that the difference in the sensitivity to Ca2+ of the ATPase activity between skeletal and cardiac CDTA-treated myofibrils reconstituted with skeletal troponin C was mostly due to the change in the affinity for Ca2+ of the low-affinity sites on the troponin C molecule.  相似文献   

15.
The mechanism underlying the formation of easily releasable myofilaments, from myofibrils treated with an ATP-containing relaxing solution, was examined in this investigation. The proportion of releasable myofilaments purified from myofibrils of cardiac, fast- and slow-twitch muscles increased as the [ATP] was raised from 0 to 8.5 mM. The protein composition of the easily releasable myofilaments did not differ with increasing ATP concentrations as observed by 5–15% linear gradient SDS-PAGE. There is a nucleotide specificity to the release of myofilaments in the order of ATP > GTP >> UTP > CTP. Experiments with AMP-PNP and inorganic phosphate (Pi) showed that ATP hydrolysis and the build up of Pi are not requirements in the formation of the easily releasable myofilaments. The release of myofilaments was found to be insensitive to variations in pH from 6.5 to 7.5. The ATP stimulation of myofilament release is ubiquitin-independent, since incubation of purified myofibrils with ubiquitin (1–100 g/ml) at both 20 and 37°C did not change the amount released. Modifying the free sulfhydryl group content by treatment of myofibrils with NEM (0.01–1 mM) or silver nitrate (0.1–10 mM) decreased the proportion of myofilaments that were releasable. Exclusion of 1 mM DTT from the preparation of myofibrils had similar results. These results indicate that the formation of easily releasable myofilaments can be mediated by metabolically related parameters such as the adenosine nucleotides and the reduction-oxidation status of the myofibrillar proteins of striated muscle.  相似文献   

16.
The effects of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), which has been hypothesized to be a chemical transmitter in excitation-contraction coupling in skeletal muscle, on aldolase bound to isolated triad junctions were investigated. Fructose-1,6-bisphosphate aldolase was identified as the major specific binding protein for the Ins(1,4,5)P3 analogue glycolaldehyde (2)-1-phospho-D-myo-inositol 4,5-bisphosphate which can form covalent bonds with protein amino groups by reduction of the Schiff's base intermediate with [3H]NaCNBH3. This analogue, Ins(1,4,5) P3, and the inositol polyphosphates inositol 1,3,4,5-tetrakisphosphate and inositol 1,4-bisphosphate were nearly equipotent in selectively releasing membrane bound aldolase with a K0.5 of about 3 microM. The rank order of the K0.5 values was identical to the KI values for inhibition of aldolase. Aldolase was also released by its substrate fructose 1,6-bisphosphate and by 2,3-bisphosphoglycerate. Ins(1,4,5)P3-induced aldolase release did not disrupt the triad junction; glyceraldehyde-3-phosphate dehydrogenase, a known junctional constituent, was displaced only at much higher Ins(1,4,5)P3 concentrations. Ins(1,4,5)P3 was as effective as fructose 1,6-bisphosphate in releasing aldolase from myofibrils. A finite number of binding sites for aldolase exist on triads (Bmax = 43-47 pmol of tetrameric aldolase exist on triads (Bmax = 43-47 pmol of tetrameric aldolase/mg of triad protein, KD = 23 nM). The junctional foot protein was implicated as an aldolase binding site by affinity chromatography with the junctional foot protein immobilized on Sepharose 4B. The potential consequences of aldolase being bound in the gap between the terminal cisternae and the transverse tubule to inositol polyphosphate and glycolytic metabolism in that local region are discussed.  相似文献   

17.
Cross-linking of myosin subfragment 1 (S1) with a molar excess of actin in vitro reveals the presence of an actin-S1-actin complex. It is absolutely essential that actin be present in molar excess over S1 so that the decoration of F-actin with S1 be incomplete. However, the excess of actin may not be available in the overlap zone of sarcomeres of skeletal muscle. We therefore found it necessary to test for the presence of the actin-S1-actin complex in vivo. Myofibrils from rabbit skeletal muscle were reacted with zero-length cross-linker, the products were resolved by polyacrylamide gel electrophoresis and analyzed by Western blots using antibodies against actin and against heavy and light chains of myosin. The cross-linking produced the evidence of formation of actin-S1-actin complex.  相似文献   

18.
The quantity and molar ratio of the three troponin subunits to actin were determined in rabbit psoas muscle, muscle homogenates (800 X g pellet), and purified myofibrils. Proteins were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The quantities of the separated proteins were determined directly from the gel slices by amino acid analysis after correction for losses and background. The molar ratio of actin, troponin T, troponin I, and troponin C was found to be 6.99:1:05:1:04:0.92 in purified myofibrils and was not significantly different (p greater than 0.05) from those obtained from 800 X g pellets of muscle homogenates or intact muscle tissue. Isolated troponin purified by several different procedures also had a 1:1:1 subunit ratio although the variability was much greater than that found in myofibrils. The troponin content of rabbit psoas muscle and myofibrils was 91 +/- 16 and 770 +/- 110 pmol/mg, respectively.  相似文献   

19.
The regulatory mechanism of sarcomeric activity has not been fully clarified yet because of its complex and cooperative nature, which involves both Ca2+ and cross-bridge binding to the thin filament. To reveal the mechanism of regulation mediated by the cross-bridges, separately from the effect of Ca2+, we investigated the force-sarcomere length (SL) relationship in rabbit skeletal myofibrils (a single myofibril or a thin bundle) at SL > 2.2 μm in the absence of Ca2+ at various levels of activation by exogenous MgADP (4-20 mM) in the presence of 1 mM MgATP. The individual SLs were measured by phase-contrast microscopy to confirm the homogeneity of the striation pattern of sarcomeres during activation. We found that at partial activation with 4-8 mM MgADP, the developed force nonlinearly depended on the length of overlap between the thick and the thin filaments; that is, contrary to the maximal activation, the maximal active force was generated at shorter overlap. Besides, the active force became larger, whereas this nonlinearity tended to weaken, with either an increase in [MgADP] or the lateral osmotic compression of the myofilament lattice induced by the addition of a macromolecular compound, dextran T-500. The model analysis, which takes into account the [MgADP]-and the lattice-spacing-dependent probability of cross-bridge formation, was successfully applied to account for the force-SL relationship observed at partial activation. These results strongly suggest that the cross-bridge works as a cooperative activator, the function of which is highly sensitive to as little as ≤1 nm changes in the lattice spacing.  相似文献   

20.
M Xiao  J Borejdo 《Biophysical journal》1997,72(5):2268-2274
Cis-parinaric acid (PA) binds to a hydrophobic pocket formed between the heavy chain of myosin subfragment-1 (S1) and the 41-residue N-terminal of essential light chain 1 (A1). The binding is strong (Ka = 5.6 x 10(7) M-1) and rigid (polarization = 0.334). PA does not bind to myofibrils in which A1 has been extracted or replaced with alkali light chain 2 (A2). As in the case of S1 labeled with other probes, polarization of fluorescence of S1-PA added to myofibrils depended on fractional saturation of actin filament with S1, i.e., on whether the filaments were fully or partially saturated with myosin heads. Because fluorescence quantum yield of PA is enhanced manyfold upon binding, and because PA binds weakly to myofibrillar structures other then A1, the dye is a convenient probe of cross-bridge orientation in native muscle fibers. The polarization of a fiber irrigated with PA was equal to the polarization of S1-PA added to fibers at nonsaturating concentration. Cross-linking of S1 added to fibers at nonsaturating concentration showed that each S1 bound to two actin monomers of a thin filament. These results suggest that in rigor rabbit psoas muscle fiber each myosin cross-bridge binds to two actins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号